向量式有限元薄壳单元的理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壳结构在实际工程中的应用十分广泛,在外荷载作用下,薄壳结构往往会出现大变形大变位、弹塑性材料非线性以及碰撞接触、破裂破碎和穿透等严重不连续行为。传统有限元在处理这类复杂结构行为分析时需事先区分行为类型并采用专用的公式和程序来处理,对于结构行为预测和破坏全过程模拟往往难以得到满意的结果。
     本文基于向量式有限元这一新型分析方法,以向量力学为理论基础,通过理论分析、程序开发和数值模拟等手段实现金属薄壳结构的复杂力学行为分析。研究工作沿两条主线:一是单元发展,包括薄膜单元、薄板单元和薄壳单元;二是复杂结构行为实现,包括大变形大转动、屈曲、碰撞、断裂和穿透。
     第二章介绍了向量式有限元法的基本概念、假设、原理和推导思路,并对中央差分公式、共转坐标和逆向运动、材料(非)线性、静力和动力求解、等效质量和惯量矩阵以及误差分析和内力自平衡机制等问题进行了探讨;针对大变形大转动运动以及屈曲、碰撞、断裂和穿透等复杂结构行为问题及其求解思路进行了简单讨论;总结了向量式有限元法的分析步骤与流程。
     第三章建立了三角形CST常应变薄膜单元和四节点等参薄膜单元的向量式有限元基本公式,描述运动解析的原理及变形坐标系下单元节点内力的求解方法,同时对四节点膜单元的位置模式和内力计算的数值积分等问题提出处理方法;编制了相应的分析程序并通过算例进行验证。在复杂结构行为分析方面,针对膜材大变形大转动问题,采用本文方法跟踪获得其运动变形全过程;针对膜材的碰撞接触行为,采用“点-三角形”检测和基于中央差分式的罚接触力方法处理膜材的碰撞检测和碰撞响应问题,跟踪获得其碰撞接触全过程;针对膜材的破裂破碎行为,采用失效应力判断准则和质点分裂的向量式有限元处理,跟踪获得其破裂和破碎的全过程。
     第四章建立了三角形DKT薄板单元的向量式有限元基本理论,同时对质点的质量矩阵与惯量矩阵、应力计算的数值积分及插值方法、时间步长及阻尼参数的取值等问题提出处理方式;并通过平板结构的静、动力算例进行分析验证。
     第五章基于三角形CST薄膜单元和三角形DKT薄板单元的叠加组合,建立了三角形薄壳单元的向量式有限元基本理论,同时对质点位移和内力的合并和分离、单元应变和应力的合并和分离以及单元节点内力积分方案的处理等关键问题提出处理方法;基于C-S粘塑性材料本构模型和动态Mises屈服准则,推导获得C-S材料本构模型的弹塑性增量分析步骤,并将其引入向量式有限元薄壳单元的基本理论推导,实现金属薄壳结构同时考虑塑性硬化和应变率硬化效应的非线性分析。
     第六章研究了向量式有限元在薄壳结构复杂行为分析中的应用。针对薄壳结构的屈曲和后屈曲行为,采用位移和力控制处理方法来跟踪获得其变形全过程,并分析了两种控制方法的特点和应用范围;针对薄壳结构的碰撞接触行为,仍采用“点-三角形”检测和罚接触力法处理碰撞检测和碰撞响应问题,跟踪获得其碰撞接触的全过程;针对薄壳结构的破裂破碎行为,采用失效应变断裂判断准则和质点分裂的向量式有限元处理,跟踪获得其破裂和破碎的全过程;针对薄壳结构的穿透行为,结合碰撞检测、碰撞响应处理机制以及基于失效应变的断裂准则,实现刚体对薄壳结构的穿透过程。
     第七章综合本文基于向量式有限元的薄壳结构非线性分析基本理论,包括薄壳单元、材料本构、破裂破碎的理论公式与有效算法,实现了钢储罐结构在爆炸冲击荷载作用下的动力响应分析和破坏全过程分析,分析了内部三角形简化形式爆炸荷载作用下平顶罐、锥顶罐和拱顶罐的应力变形发展以及破坏模式。
     本文成果体现了向量式有限元分析方法在处理结构大变形、大变位、碰撞、断裂和穿透等强非线性和不连续力学行为中的独特优势,推动了向量式有限元的理论发展与工程应用,为薄膜结构、金属薄壳结构的复杂行为分析提供了一种新的有效方法。
Thin shell structures are widely applied in practical engineering. Under the externnal loading, the behaviors of the thin shell structures usually contain large deformation and large deflection, elastoplastic nonlinear material and complex discontinuous behaviors such as collision-contact, crack-fracture and penetration. For these complex structural behaviors, the traditional finite element analysis need to distinguish the type of the behavior first, then adopt the corresponding special formulas ande process. Thus, for the problems of the structural behavior prediction and the whole process simulation of structural failure, it is difficult to obtain satisfactory results by using the traditional finite element method.
     The Vector Form Intrinsic Finite Element (VFIFE) is a new analysis method on the basis of vector mechanics theory. This thesis achieves the complex mechanical behaviors for thin metal shell structures by using theoretical analysis, program development and numerical simulation. The study of this thesis along the following two main lines:one is the element development including thin membrane element, thin plate element and thin shell element, and the other is the realization of the complex behaviors including large deformation and large rotation, buckling and post buckling, collision, fracture and penetration.
     Chapter2introduces the basic concepts, assumptions, principles and deduction ideas of VFIFE. And the related problems such as center differential formula, co-rotational coordinate and reverse movement, nonlinear material, static and dynamic calculation, equivalent mass matrix and inertia matrix, error analysis and internal force balance mechanism are studied. Then the analysis and solving ideas for complex behavior problems such as large deformation and large rotation, buckling and post buckling, collision-contact, crack-fracture and penetration are simply discussed. Finally, the analysis process of VFIFE method is summarized.
     Chapter3establishes the basic formulas of VFIFE for the triangle CST constant strain membrane element and4-node quadrilateral isoparametric membrane element, describes the principles of motion analysis and the solving method of element node internal forces in deformation coordinate system. Then, some special problems such as the position modes and the numerical integration of the internal force calculation for the4-node quadrilateral isoparametric membrane element are presented, and the corresponding treatment methods are proposed. Computer analysis programs are then developed, and the derived theory and the developed programs are verified through numerical examples finially. In the analysis of complex structural behaviors, for the large deformation and large rotation problems, VFIFE method is used to track the whole process of structural motion and deformation. For the collision-contact problems, the "point-triangle" detection and the penalty contact force method based on the central difference method are adopted separately for the problems of collision detection and collision response, and the whole process of structural collision-contact is tracked. For the crack-fracture problems, the judgment criterion based on the failure stress and the particle splitting method based on VFIFE are adopted to track the whole process of structural crack-fracture.
     Chapter4establishes the basic theory of VFIFE for the triangle DKT plate element. Then, some special problems such as the mass matrix and inertia matrix of particle, the numerical integration of the stress calculation and interpolation method, and the parameters of time step and damp for the triangle DKT plate element are presented, and the corresponding treatment methods are proposed. All of above are verified by the static and dynamic analysis of plate structural examples finally.
     Chapter5establishes the basic theory of VFIFE for the triangle shell element based on the combination of the triangle CST constant strain membrane element and the triangle DKT plate element. Then, the processsing methods for the problems are proposed, including the combination and the division of the particle displacements and the internal forces, the combination and the division of the element stresses and strains, and the element node integration scheme. Based on the C-S viscoplastic constitutive model and the dynamic Mises yield criterion, the elastoplastic incremental analysis steps of the C-S constitutive model are deducted, and introduced into the theoretical derivation of the thin shell element of VFIFE. Thus, the plastic hardening effect and the strain rate hardening effect for the nonlinear analysis of the thin metal shell structures are both considered in this material model.
     Chapter6carries out the research of complex structural behaviors for thin shell structures. For the buckling and post buckling problems, the displacement and the force control methods are used to track the whole process of structural deformation, and the characteristics and applications of the two control methods are then analysed. For the collision-contact problems, the "point-triangle" detection and the penalty contact force method based on the central difference method are still adopted separately for the problems of collision detection and collision response, and the whole process of structural collision-contact is tracked. For the crack-fracture problems, the judgment criterion based on the failure strain and the particle splitting method based on VFIFE are adopted to track the whole process of structural crack-fracture. For the penetration problems, the combination of the collision detection mechanisms, the collision response mechanisms and the fracture criterion based on the failure strain are adopted, and the process of penetration for rigid body-thin shell structure is achieved.
     Chapter7synthesizes the nonlinear analysical basic theorys for the thin shell structures based on VFIFE, including the theory formulas and the effective algorithms of thin shell element, material constitutive, crack-fracture. And the dynamic response analysis and the whole failure process for the steel tank structures under the explosive loading are achieved. Then, the development of the stresses and the deformationes and the failure modes for flat-roof tank, cone-roof tank and dome-roof tank under the explosive loadings with simplified triangle forms are analysed.
     The results of this thesis reflect the unique advantages of VFIFE method in dealing with the strong nonlinear and discontinuous mechanics behaviors such as large deformation, large deflection, collision, fracture and penetration. The theory development and the engineering application of VFIFE are pushed, and a new effective method for complex behaviors of thin membrane structures and thin metal shell structures.
引文
[1]铁摩辛柯S,沃诺斯基s著.《板壳理论》翻译组译.板壳理论[M].北京:科学出版社,1977.
    [2]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989.
    [3]翁志远.梁板壳静动力学译文集(1)[M].上海:同济大学出版社,1986.
    [4]Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element:Part Ⅰ. Basic procedure and a plane frame element [J]. Journal of Mechanics,2004,20(2):113-122.
    [5]Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element:Part Ⅱ. Plane solid elements [J]. Journal of Mechanics,2004,20(2):123-132.
    [6]Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element:Part Ⅲ. Convected material frame and examples [J]. Journal of Mechanics,2004,20(2):133-143.
    [7]吴连元.板壳稳定性理论[M].华中理工大学出版社,1996.
    [8]沙风焕.圆柱壳的动力屈曲理论及其应用[M].中国建材工业出版社,2008.
    [9]Battoz J L, Dhatt G. Incremental displacement algorithms for nonlinear problem [J]. International Journal for Numerical Methods in Engineering,1979,14(8):1262-1267.
    [10]Bergen P G. Solution algorithms for nonlinear structures problems [J]. Computers and Structures,1981,12(4):497-509.
    [11]Riks E. The application of Newton's method to the problem of elastic stability [J]. Journal of Applied Mechanics,1972,39(4):1060-1066.
    [12]Crisfield M A. A fast incremental/iterative solution procedure that handles "snap-through". Computers and Structures,1981,13(1-3):55-62.
    [13]刘正兴,叶榕.薄壳后屈曲分析的载荷-位移交替控制法[J].上海交通大学学报,1990,24(3):38-44.
    [14]Lindberg H E, Florence A L. Dynamic pulse buckling:theory and experiment [M]. Martinus Nijhoff,The Netherlands,1987.
    [15]Kirkpatrick S W, Holmes B S. Structural response of thin cylindrical shells subjected to impulsive external loads [J]. AIAA Journal,1988,26(1):96-103.
    [16]Updike D P. On the large deformation of a rigid-plastic spherical shell compressed by a rigid plate [J]. Journal of Engineering for Industry,1972,94(3):949-955.
    [17]Gupat N K, Venkatesh. Experimental and numerical studies of dynamic axial compression of thin walled spherical shells [J]. International Journal of Impact Engineering,2004,30(8-9): 1225-1240.
    [18]Guida M, Marulo F, Meo M, et al. SPH-Lagrangian study of strike on leading edge wing [J]. Composite Structures,2011,93(3):1060-1071.
    [19]McCarthy M A, Xiao J R. Modeling of bird strike on an aircraft wing leading edge made from fibre metal laminates. Applied Composite Materials,2004,11(5):317-340.
    [20]Liu J J, Wan Z Q, Qi E R, et al. Numerical simulations of the damage process of double cylindrical shell structure subjected to an impact [J]. Journal of Ship Mechanics,2010,14(6): 660-669.
    [21]Montfort C, Chauvet M. Analysis of the collision of a submarine [C].68th Shock and Vibration Symposium. Hunt Valley, MD, USA, November,1997,3-7:619-632.
    [22]Donner R, Besnier F, Le Sourne H. Numerical simulation of ship-submarine collision [C].8th International Symposium on Practical Design of Ships and Other Floating Structures. Shanghai, China,2001,2:1309-1314.
    [23]崔艳,韩志军,路国运,张善元.刚性快轴向冲击圆柱壳动力屈曲的计算机模拟[J].科学技术与工程,2010,10(5):1105-1108.
    [24]刘敬喜,叶文兵,胡紫剑.单壳船舷侧结构的碰撞分析[J].中国造船,2008,49(S):124-133.
    [25]Ivanov A G. Explosive deformation and destruction of tubes [J]. Strength of Materials, 1976-1983,8(11):1303-1314.
    [26]封加坡.对薄层柱壳爆炸膨胀断裂过程的研究[J].高压物理学报,1988,2(2):97-103.
    [27]Gao C Y, Shi H J, Yao Z H, et al. Numerical simulation and dynamic fracture criteria of thin cylindrical shells under inner explosive loading [J]. Tsinghua Science and Technology,2000, 5(1):13-17.
    [28]Gao C Y, Shi H J, Yao Z H, et al. Measurement of dynamic fracture parameters in the expanding process at high-strain rates [J]. Key Engineering Materials,2000,184:277-282.
    [29]范峰,王多智,支旭东,等.K8型单层球面网壳抗冲击荷载性能研究[J].工程力学,2009,26(6):75-81.
    [30]李忠献,刘志侠,丁阳.爆炸荷载作用下钢结构的动力响应与破坏模式[J].建筑结构学报,2008,29(6):75-8.
    [31]丁阳,汪明,李忠献.爆炸荷载作用下平板网架结构破坏倒塌分析[J].土木工程学报,2010,43(S):34-41.
    [32]Manjit S, Suneja H R. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering,2002,27(9):939-954.
    [33]黄亚宁,李世芸.汽车离合器壳体开裂的有限元分析[J].昆明理工大学学报,1999,24(4):47-60.
    [34]Warren T L, Tabbara M R. Simulations of the penetration of 6061-T6511 aluminum targets by spherical-nosed VAR 4340 steel projectiles [J]. International Journal of Solids Structure, 2000,37(32):4419-4435.
    [35]Warren T L, Kevin L P. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations [J]. International Journal of Impact Engineering,2001,25(10):993-1022.
    [36]Sikhanda S, Stephan B. Response of long rods to moving lateral pressure pulse:numerical evaluation in DYNA 3D [J]. International Journal of Impact Engineering,2001,26(1): 663-674.
    [37]朱锡,梅志远,徐顺棋等.高速破片侵彻舰用复合装甲模拟试验研究[J].兵工学报,2003,24(4):530-533.
    [38]张中国,黄风雷,段卓平等.弹体侵彻带加筋结构靶的试验研究[J].爆炸与冲击,2004,24(5):431-436.
    [39]宋卫东,王静,宁建国等.截卵形弹体贯穿加筋靶板的数值模拟研究[C].计算爆炸力学进展,中国青岛,200608:233-239.
    [40]谌勇.加筋板结构受高速弹丸碰撞时的实验研究[R].NSAF联合基金2005年度报告.200510.
    [41]丁承先,段元锋,吴东岳.向量式结构力学[M].北京:科学出版社,2012.
    [42]李东奇.向量式有限元时间积分法之研究[D].中原大学土木工程研究所硕士论文,2006.
    [43]王仁佐.向量式结构运动分析[D].国立中央大学土木工程研究所博士论文,2006.
    [44]Wu T, Wang R, Wang C. Large deflection analysis of flexible planar frames [J]. Journal of the Chinese Institute of Engineers,2006,29(4):593-606
    [45]赖哲宇.向量式有限元素法之分散式计算应用于平面构架运动分析[D].中原大学土木工程研究所硕士论文,2006.
    [46]赖建豪.向量式有限元素法于平面构架几何非线性之应用[D].中原大学土木工程研究所硕士论文,2003.
    [47]陈世凯.向量式有限元素法于空间桁架之应用[D].中原大学土木工程研究所硕士论文,2004.
    [48]Wang C Y, Wang R Z, Chuang C C, et al. Nonlinear dynamic analysis of reticulated space truss structure [J]. Journal of Mechanics,2006,22(3):199-212.
    [49]蔡宗和.向量式有限元固体元素内并入刚架元素之应用研究[D].国防大学中正理工学院军事工程研究所硕士论文,2003.
    [50]Wu T Y, Wang C Y, Chuang C C, et al. Motion analysis of 3D membrane structures by a vector form intrinsic finite element [J]. Journal of the Chinese Institute of Engineers,2007, 30(6):961-976.
    [51]张博彦.向量式有限元素法—平板元素之发展与应用[D].国立中山大学博士论文,2009.
    [52]吴政翰.三维实体运动模拟与图形化使用者介面之建立[D].中原大学硕士论文,2005.
    [53]陈柏宏.运用向量式有限元素法于隔震桥梁之非线性动力分析[D].国立中央大学土木工程研究所硕士论文,2008.
    [54]陈建霖.向量式有限元素法于平面构架弹塑性及断裂之应用[D].中原大学土木工程研 究所硕士论文,2005.
    [55]吴思颖.向量式刚架有限元于二维结构之大变位与接触行为分析[D].国立中央大学硕士论文,2005.
    [56]蔡文昌.向量式有限元求解具高度非线性二维刚架结构问题[D].台湾大学硕士论文,2009.
    [57]林明廷.二维可变性块体之向量式运动分析[D].国立中央大学土木工程学系硕士论文,2005.
    [58]王国昌.混凝土结构之非线性不连续变形分析[D].国立中央大学土木工程研究所博士论文,2004.
    [59]Wang C Y, Wang R Z, Wu T Y, et al. Nonlinear discontinuous deformation analysis of structure [C]. Proceedings of the Sixth International Conference on Analysis of Discontinuous Deformation (ICADD-6), A. A. Balkema Publishers,2003:79-91.
    [60]陈彦桦.移动质量与荷载作用下之刚架结构动力行为分析[D].国立中央大学土木工程研究所硕士论文,2007.
    [61]刘奕廷.应用向量式有限元素法于施工阶段结构物之模拟[D].中原大学土木工程研究所硕士论文,2007.
    [62]萧程瑞.向量式有限元于三维构架被动控制之应用[D].中原大学土木工程研究所硕士论文,2008.
    [63]孙伟翰.应用向量式有限元素法于挠性机构的运动分析[D].台湾大学机械工程学研究所,2004.
    [64]陈仲恩.运动解析应用于三维机构分析[D].台湾大学机械工程学研究所硕士论文,2007.
    [65]张燕如.钢结构火害反应之向量式有限元素法分析[D].国立成功大学土木工程学系硕士论文,2007.
    [66]魏子凌.含温度效应之向量式有限元素法于平面构架运动分析[D].中央大学土木工程研究所硕士论文,2007.
    [67]Chang P Y, Tseng K W, Lee H H, et al. A new vector form of finite element applied to offshore structures [C],4th International Conference on Advances in Structural Engineering and Mechanics,2008.
    [68]杨庆山,姜忆南.张拉索-膜结构分析与设计[M].北京:科学出版社,2004.
    [69]陈务军.膜结构工程设计[M].北京:中国建筑工业出版社,2005.
    [70]王勖成.有限单元法[M].北京:清华大学出版社,2008:105-111,143-149.
    [71]Ergatoudis I, Iron B M, Zeinkiewicz O C. Curved Isoparametric'Quadrilateral'element for Finite Element Analysis [J]. International Journal for Numerical Methods in Engineering, 1968,4(1):31-42.
    [72]江见鲸,何放龙,何益斌等.有限元法及其应用[M].北京:机械工业出版社,2006,40-46.
    [73]龙驭球,李聚轩,龙志飞等.四边形单元面积坐标理论[J].工程力学,1997,14(3):1-11.
    [74]Bergan P G, Felippa C A. A triangular membrane element with rotational degrees of freedom [J]. Computer Methods in Applied Mechanics and Engineering,1985,50(1):25-69.
    [75]Gosling P D, Lewis W J. Optimal structural membranes—Ⅰ. Formulation of a curved quadrilateral element for surface definition [J]. Computers and Structures,1996,61(5): 871-883.
    [76]Gosling P D, Lewis W J. Optimal structural membranes—Ⅱ. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition [J]. Computers and Structures,1996,61(5):885-895.
    [77]彭涛.向量式有限元在索膜结构分析中的应用[D].杭州:浙江大学,2012.
    [78]Tsiatas G C, Katsikadelis J T. Large deflection analysis of elastic space membranes [J]. International Journal for Numerical Method in Engineering,2006,65(2):264-294.
    [79]Noguchi H, Kawashima T, Miyamura T. Element free analysis of shell and spatial structures [J]. International Journal for Numerical Method in Engineering,2000,47(6):1215-1240.
    [80]Bletzinger K U, Ramm E. A general finite element approach to the form finding of tensile structures by the updated reference strategy [J]. International Journal of Space Structures, 1999,14(2):131-145.
    [81]Valdes J G, Miquel J, Onate E. Nonlinear finite element analysis of orthotropic and prestressed membrane structures [J]. Finite Elements in Analysis and Design,2009,45(6-7): 395-405.
    [82]伞冰冰,武岳,沈世钊.膜结构有限元分析中的平面单元与曲面单元的比较[J].工程力学,2008,25(2):168-173.
    [83]Li L, Volkov V. Cloth animation with adaptively refined meshes [C]. ACSC,2005,107-114.
    [84]Pauletti R M O, Pimenta P M. The natural force density method for the shape finding of taut structures [J]. Computer Methods in Applied Mechanics and Engineering,2008,197(49-50): 4419-4428.
    [85]Han S E, Lee K S. A study of the stabilizing process of unstable structures by dynamic relaxation method [J]. Computers & Structures,2003,81:1677-1688.
    [86]Maurin B, Motro R. Surface stress density method as a form-finding tool for tensile membranes [J]. Engineering Structures,1998,20(8):712-719.
    [87]张华,单建.张拉膜结构的动力松弛法研究[J].应用力学学报,2002,19(1):84-86.
    [88]刘凌霞,宋强.基于简化的质点-弹簧模型织物变形仿真研究[J].计算机仿真,2011,28(5):406-409.
    [89]Natsupakpong S, Cavusoglu M C. Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects [J]. Graphical Models,2010,72(6):61-73.
    [90]Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation [J]. ACM Transactions on Graphics (ACM S1GGRAPH) (S0730-0301),2002, 21(3):594-603.
    [91]Teng J G, Chen S F, Hu J L. A finite-volume method for deformation analysis of woven fabrics [J]. International Journal for Numerical Methods in Engineering,1999,46(12): 2061-2098.
    [92]Wu T Y, Wang C Y, Chuang C C, et al. Motion analysis of 3D membrane structures by a vector form intrinsic finite element [J]. Journal of the Chinese Institute of Engineers,2007, 30(6):961-976.
    [93]Wu T Y, Ting E C. Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element [J]. Thin-Walled Structures,2008,46(3):261-275.
    [94]宋维举.薄膜结构在冲击荷载作用下的动力响应研究[D].重庆:重庆大学,2011.
    [95]Fang H, Lou M, Hah J. Deployment study of a self-rigidizable inflatable boom [J]. Journal of Spacecraft and Rokets,2006,43(1):25-30.
    [96]韩克良,关富玲,曹莉等.充气膜结构展开过程仿真分析[J].建筑结构学报,2010,31(S1):288-292.
    [97]Khalil T B, Sheh M Y. Vehicle crashworthiness and occupant protection in frontal impact by FE analysis-an integrated approach [A]. Proceedings of Crashworthiness of Transportation Systems:Impact and Occupant Protection [C]. Kluwer Academic Publisher,1997:363-399.
    [98]Potula S R, Solanki K N, Oglesby D L, et al. Investigating occupant safety through simulating the interaction between side curtain airbag deployment and an out-of-position occupant [J]. Accident Analysis and Prevention,2012,49:392-403.
    [99]李良春,黄刚,李文生等.基于ANSYS/LS-DYNA的新型着陆缓冲气囊仿真分析[J].包装工程,2012,33(15):16-20.
    [100]Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation [J]. ACM Transactions on Graphics (ACM SIGGRAPH 2002),2002,21(3): 594-603.
    [101]Harmon D, Vouga E, Tamstorf R, et al. Robust treatment of simultaneous collisions [J]. ACM Transactions on Graphics (ACM SIGGRAPH 2008),2008,27(3):1-4.
    [102]Selle A, Su J, Irving G, et al. Robust high-resolution cloth using parallelism, history-based collisions and accurate friction [J]. IEEE Transactions on Visualization and Computer Graphic,2009,15(2):339-350.
    [103]Suri S, Hubbard P M, Hughes J F. Analyzing bounding box for object intersection [J]. ACM Transactions on Graphics,1999,18(3):257-277.
    [104]Zang M, GAO W, Lei Z. A contact algorithm for 3D discrete and finite element contact problems based on penalty function method [J]. Computational Mechanics,2011,48(5): 541-550.
    [105]姜清辉,周创兵,张煜.三维数值流形方法的点-面接触模型[J].计算力学学报,2006, 23(5):569-572.
    [106]赵隆茂.结构动力响应分析中接触-碰撞界面算法研究[J].太原理工大学学报,2001,32(5):459-462.
    [107]武岳,胥传喜.膜结构设计(3)-膜结构的荷载态分析与结构设计[J].工业建筑,2004,34(8):73-77.
    [108]吴明儿,戴璐,慕全.ePTFE膜材力学性能试验研究[J].建筑材料学报,2010,13(5):632-635.
    [109]陈国华.机织物拉伸断裂过程模拟及强度预测[D].上海:东华大学,2006.
    [110]Giles A S, Nigel J, Jonathan H. Adhesion of thin coatings:the VAMAS (TWA 22-2) Inter laboratory Exercise [J]. Surface and Coatings Technology,2005,197(2):336-344.
    [111]杨班权,李朋.残余应力作用下脆性膜/基材料的断裂行为[J].装甲兵工程学院学报,2011,25(1):88-91.
    [112]Clough R W, Tocher J L. Finite element stiffness matrices for analysis of plate bending [C]. In Proceedings of the Conference on Matrix Methods in Structural Mechanics, in AFFDL TR 66-80,1966:515-545.
    [113]Bazeley G P, Cheung Y K, Irons B M, Zienkiewicz O C. Triangular elements in plate bending, conforming and non-conforming solutions [C]. In Proceedings of 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson AFB,1965:547-576.
    [114]Batos J, Bathe K, Ho L. A study of three-node triangular plate bending elements [J]. International Journal for Numerical Methods in Engineering,1980,15(12):1771-1812.
    [115]Batos J. An explicit formulation for efficient triangular plate-bending element [J]. International Journal for Numerical Methods in Engineering,1982,18(7):1077-1089.
    [116]Soh A K, Ling C. An improved discrete Kirchhoff triangular element for bending, vibration and buckling analyses [J]. European Journal of Mechanics A-Solids,2000,19(5):891-910.
    [117]王勖成.有限单元法[M].北京:清华大学出版社,2003:150-152.
    [118]王勖成,邵敏.有限单元法基本原理和数值方法[M].第二版.北京:清华大学出版社,1997:144-155.
    [119]何东升,唐立民.弱连续条件下的九参三角形板元[J].力学学报,2002,34(6):924-934.
    [120]Green B E, Strome D R, Weikel R C. Application of the stiffness method to the analysis of shell structures [C]. Procedures on Aviation Conference, American Society of Mechanical Engineers, Los Angeles, March,1961.
    [121]Zienkiewicz O C. The finite element method in engineering science [M],2nd ed., McGraw-Hill,1971.
    [122]Bathe K J, Ho L W. A simple and effective element for analysis of general shell structures [J]. Computers and Structures,1981,13(5):673-681.
    [123]Knight N F. Raasch challenge for shell elements [J]. AIAA Journal,1997,35(2):375-388.
    [124]McNeal R H. A simple quadrilateral shell element [J]. Computers and Structures,1978,8(2): 175-183.
    [125]Yang H T, Saigal S, Masud A, Kapania R. A survey of recent shell finite elements [J]. International Journal of Numerical Methods in Engineering,2000,47(1-3):101-127.
    [126]王勖成.有限单元法[M].北京:清华大学出版社,2003:143-152,545-616.
    [127]Noguchi H, Kawashima T, Miyamura T. Element free analysis of shell and spatial structures [J]. International Journal for Numerical Method in Engineering,2000,47(6):1215-1240.
    [128]Chen H, Liew J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics,2005,131(6):606-616.
    [129]李忠献,刘志侠,Hao Hong.爆炸荷载作用下钢结构的动力反应分析[J].建筑结构,2006,36(S1):97-101.
    [130]G. Horrigmoe, P. G Bergan. Nonlinear analysis of free-form shells by flat finite element [J]. Computer Methods in Applied Mechanics and Engineering,1978,16(1):11-35.
    [131]邢小东,侯飞.轴向冲击载荷下圆柱壳动力屈曲的计算机仿真[J].机械管理开发,2008,23(1):77-78.
    [132]范峰,王多智,支旭东,等.K8型单层球面网壳抗冲击荷载性能研究[J].工程力学,2009,26(6):75-81.
    [133]高重阳.内部爆炸荷载下柱壳结构破裂问题的研究[D].北京:清华大学,2001.
    [134]赵衡阳,王廷增,卢晓勇.贮油罐的爆炸模拟试验.北京理工大学学报,1990,10(3):16-21.
    [135]陈思维,杜扬,王博.油罐中油气爆炸规律研究.安全与环境学报,2007,7(3):102-104.
    [136]高建丰,杜扬,蒋新生,等.模拟油罐油气混合物爆炸实验与数值仿真研究.后勤工程学院学报,2007,23(1):79-83.
    [137]Tauseef S M, Rashtchian D, Abbasi T, et al. A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD) [J]. Journal of Loss Prevention in the Process Industries,2011,24(5):638-647.
    [138]Wharton R K, Formby S A, Merrifield R. Airblast TNT equivalence for a range of commercial blasting explosives [J]. Journal of Hazardous Materials,2000,79(1):31-39.
    [139]潘旭海,徐进,蒋军成.圆柱形薄壁储罐对爆炸冲击波动力学响应的模拟分析[J].化工学报,2008,59(3):796-801.
    [140]Lu Z, Swenson DV, Fenton DL. Frangible roof joint behavior of cylindrical oil storage tanks designed to API 650 rules [J]. Journal of Pressure Vessel Technology, ASME,1996,118(3): 326-331.
    [141]路胜卓,王伟,张博一.大型浮顶式储油罐的爆炸破坏机理实验[J].爆炸与冲击,2011,31(2):158-164.
    [142]路胜卓,张博一,王伟,等.爆炸作用下薄壁柱壳结构动力响应实验研究[J].南京理工大学学报,2011,35(5):621-626.
    [143]路胜卓,王伟,张博一,等.可燃气体爆炸对刚壁冲击特性的实验研究[J].哈尔滨工程大学学报,2011,32(8):1001-1006.
    [144]马圆圆.圆柱形爆炸容器壳体动力响应的研究[D].杭州:浙江大学硕士论文,2008.
    [145]张玉若.特殊工况下可燃蒸气云爆炸的动力学过程模拟及其事故后果分析[D].太原:中北大学硕士论文,2007.
    [146]LS-DYNA Theoreetical manual.1998.
    [147]王定贤,王万鹏,石培杰,等.柱形爆炸容器动力学响应的有限元模拟与实验检验[J].压力容器,2008,25(7):13-16.
    [148]N. Jones. Structure impact [M]. Cambridge:Cambridge University Press,1989,211-247.
    [149]Chen Z J, Yuan J H, Zhao Y. Impact experiment study of ship building steel at 450MPa level and constitutive model of cowper-symonds [J]. Journal of Ship Mechanics,2007,11(6): 933-941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700