防治煤自燃的凝胶泡沫及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭自燃是煤矿生产中的主要自然灾害之一,它不仅烧毁或冻结大量煤炭资源,而且常会引发重特大瓦斯爆炸灾害事故,造成重大的人员伤亡和经济损失。目前用于矿井煤自燃防治的方法主要有注浆、注惰气、注阻化剂、注凝胶和注泡沫等,这些技术在矿井煤自燃防治中起到了重要的作用,但也还存在一些不足,难以满足矿井持续堵漏控风与惰化降温的防灭火需要。为了高效防治矿井煤自燃,结合矿井注凝胶和注泡沫防灭火方法,提出了凝胶泡沫防灭火技术。为此,论文对凝胶泡沫的形成机理及相关特性进行了系统研究,在聚合物胶凝机制与形成化学动力学过程、发泡剂与聚合物研制、采空区流动特性、成膜特性、防灭火性能与现场应用等方面都取得了系列的成果。
     应用界面化学、胶体化学和高分子材料化学等较系统地提出了凝胶泡沫形成化学动力学过程和胶凝机理。凝胶泡沫是一种介于整体凝胶和胶态分散凝胶之间弱凝胶体系,是由低浓度聚合物以分子间交联为主,分子内交联为辅的高分子体系。浆液在表面活性剂的作用下,通过物理机械搅拌方式形成泡沫,泡沫体系内稠化剂和交联剂通过延迟胶凝作用最终形成凝胶泡沫。其胶凝机理是稠化剂溶于水后,分子链间形成螺旋网状聚合体或双螺旋缔合体,聚合体或缔合体结构中的活性基团与交联剂主链结构中的活性基团充分碰撞接触,从而交联形成立体三维网状结构。
     针对凝胶泡沫交联特征及发泡工艺对交联聚合物的要求,研制出适合制备凝胶泡沫的稠化剂和交联剂;同时,依据稠化剂和交联剂对表面活性剂的作用特点,复配出一种发泡倍数高的凝胶泡沫发泡剂。对凝胶泡沫的成胶时间以及稳定性进行了实验研究,得出凝胶泡沫成胶时间在10~20min可调,泡沫静置24h仍能稳定存在。在实验室构建了制备凝胶泡沫的系统并确定了其制备的工艺流程,通过大量实验研究,当溶液复配发泡剂质量浓度为4‰、稠化剂和交联剂质量浓度均为3‰,pH值为7~9时,所形成的凝胶泡沫性能最佳。
     研究了凝胶泡沫的流变学特性,结果表明凝胶泡沫具有剪切变稀的性质。即随着剪切速率的增大,凝胶泡沫的表观黏度降低;依据表观黏度和屈服应力测定结果,分别得到了剪切应力—剪切速率的曲线和公式模型。在此基础上,研究了凝胶泡沫在多孔介质中的渗透特性,采用Fluent软件对其在不同倾角采空区的流动扩散与堆积特性进行了数值模拟,弄清了凝胶泡沫在采空区的堆积高度、扩散宽度和扩散长度等参数。
     研究了凝胶泡沫的成膜特性,包括成膜微观形貌、水蒸气透过性、吸水性、热辐射阻隔性和堵漏性等。利用AFM观测了凝胶泡沫所成膜的微观形貌,探讨了不同聚合物配比对成膜形貌及性能的影响,实验发现有且仅当稠化剂和交联剂按质量比1:1共混使用时才能够充分交联形成致密平坦的薄膜;同时共混聚合物浓度越大,成膜性越好。通过对薄膜水蒸气透过率、吸水性、热辐射阻隔性和封堵性进行了测试,结果表明,凝胶泡沫表面膜的阻水性能优良,在持续一周内水蒸气透过率均为零;膜吸水重量为自身重量的60~70倍;同时膜能够显著降低外界对可燃物的热辐射,使可燃物表面温度下降40℃以上;且表面膜能承受2500Pa以上的风压,对采空区具有一定的封堵漏风能力。
     实验研究了凝胶泡沫的防灭火特性,包括抗温性、抗烧性、凝结堵漏性和阻化性等。结果表明凝胶泡沫抗温性较普通两相泡沫显著提高,随稠化剂和交联剂质量浓度的提高,抗温时间增长,随发泡倍数的提高,抗温时间缩短;抗烧时间为347min,是水的13.88倍、两相泡沫的6.20倍;凝结碎煤比重占原煤样的57%~93.8%(1d后),10d后仍高达13.4%~52.6%;加了1%凝胶泡沫的煤样释放CO速率比原始煤样要推迟20~30℃,100℃时阻化率高达68.89%。并对凝胶泡沫扑灭煤火有效性进行了研究,得出扑灭相同大小的煤火,体积使用量仅为普通泡沫的九分之一,灭火时间不到普通泡沫的一半。灭火时间随稠化剂和交联剂质量浓度的提高,先缩短后增长,当质量浓度均为3‰时,灭火时间最短,效率最高。
     最后,采用凝胶泡沫防灭火技术对新集二矿采空区、高冒区等隐蔽位置火源进行了治理,现场的工程应用效果表明,凝胶泡沫技术防灭火以及充填高冒区效果显著,优点突出,特别适用于采空区不明位置火源和高冒区煤炭自燃的防治,是一种具有广阔应用前景和推广价值的新型矿用防灭火材料。
Coal spontaneous combustion, one of the natural disasters in coal mineproduction, not only can burn down or freeze a great deal of coal resources, but alsocommonly triggers severe accidents of gas explosion, causing heavy casualties andeconomic loss. At present, the major control technologies at home and abroad aregrouting, insert gas, inhibitor, gel and foam, etc. Although these techniques haveplayed an important role in preventing coal spontaneous combustion, someshortcomings are obviously existed. For instance, it is difficult to meet the needs ofcontinuous plugging and controlling wind in mine and inserting cooling for coal fire.In order to prevent coal spontaneous combustion effectively, combining with the geland foam, the technology of foamed gel is brought out to prevent the spontaneouscombustion of coal. Consequently, the formation mechanism and correlatedcharacteristics of foamed gel have been systematically studied in this thesis and a lotof results in many aspects are achieved, such as in crosslinking mechanism andforming chemical kinetics, development of foaming agent and polymer, flowcharacteristics in goaf, film forming ability, fire extinguishing and preventing propertyand field application, etc.
     The formation of chemical kinetics and gelatinization mechanism of foamed gelwere systematically proposed by interface chemistry, colloid chemistry, polymermaterials chemistry, etc. Foamed gel, a weak gel system between bulk gel andcolloidal dispersion gel, is a kind of polymer system formed by polymer with lowconcentration which are intermolecular crosslinking mainly and intramolecularcrosslinking auxiliarily. With the help of surfactant, the foam is formed by physicaland mechanical stirring. After foaming, the thickener and crosslinker react with eachother and form foamed gel by delayed gelation. The gelatinization mechanism is whenthe thickener dissolved in water, the helical mesh polymer or double helix cluster areformed by molecular chains, besides, active group in polymer or cluster fully collidewith that in the main chain structure of crosslinker, thereby the three-dimensionalnetwork structures are formed.
     According to crosslinking characteristics of foamed gel and the requirement offoaming process to crosslinking polymer, the thickener and crosslinker which aresuitable to prepare foamed gel are developed. Meanwhile, depends on the functioncharacteristics that the thickener and crosslinker have on the surfactant, a new kind of foaming agent with high foam expansion has been compounded. Experimental studywas conducted on the gelation time and stability of foamed gel. The results show thatthe gelation time of foamed gel is between10to20min, and the foam is still stableafter standing for24h. In the lab, the system used to develop the foamed gel wasestablished and its technological process was confirmed. After massive experimentalstudies, it turns out that when the mass concentration of compounded foaming agent is4‰, the thickener and crosslinking agent are both3‰, and the pH value is7to9, thefoamed gel with best performance can be formed.
     The rheological properties of foamed gel had also been researched. The resultsindicate that it has the shear thinning nature. That is, with the increase of shear rate,the apparent viscosity of foamed gel decreases. Depends on the analysis results of theapparent viscosity and yield stress, the curve and formula model of shear stress-shearrate are obtained respectively. On this basis, the permeability characteristic of foamedgel was studied on the porous media. The Fluent software was adopted to numericallysimulate the characteristics of flowing diffusion and accumulation in goaf withdifferent angles. And the parameters are figured out such as stack height, diffusionwidth and diffusion length.
     Researches had also been made on the film forming ability of foamed gel,including film micro-morphology, vapor penetrability, water absorption, radiationbarrier property and leaking stoppage, etc. AFM was employed to observe the filmmicro-morphology and the effects of different proportions of polymers on filmmorphology and characteristics were discussed. The study finds that only when thethickener and crosslinker blending used as well as their mass ratio is1:1, can theycrosslink into tight and smooth film. At the same time, the higher the concentration ofblending polymer is, the better the property of film forming is. After investigating thevapor penetrability, water absorption, radiation barrier property and leaking stoppageof film, the experimental results state that the surface film has a good performance ofwater blocking, the vapor penetrability is zero within a lasted week. After absorbingwater, the weight of film is60~70times of its own weight. Moreover, the film cansignificantly reduce the radiation from outside on the combustible, and therebydecrease the surface temperature of combustible more than40℃. Furthermore, thesurface film can bear the wind pressure of at least2500Pa, thus it has certain ability ofblock air leakage in goaf.
     Comprehensive studies were conducted on the fire extinguishing and preventing property of foamed gel, including temperature resistance, burn resistance, coagulationand leaking stoppage, and inhibitation, etc. The results show that the temperatureresistance of foamed gel is significantly improved comparing to two-phase foam,withthe increase of the mass concentration of thickener and crosslinker, the temperatureresistance time grows, moreover, as the increasing of foaming expansion, the time oftemperature resistance decreases. The burn resistance time is347min, which is13.88times of water’s and6.20times of two-phase foam. The proportion that the foamedgel coagulates slack coal is57%~93.8%(1d later) of the coal sample.10d later still upto13.4%~52.6%. When adding1%foamed gel, the coal sample releases CO prolong20~30℃than the original coal sample, when100℃, the inhibition rate reach up to68.89%. This thesis also carried on a research on the effectiveness of foamed gel toputting out coal fire, and it turns out that if puting out the same size of coal fire, onlyuse one ninth of the amount of common foam, less than half of the fire-extinguishingtime of two-phase foam. The time of preventing fire first decreases then increaseswith the increase of mass concentration of thickener and crosslinker, when the massconcentration is3‰, the time is the least and the fire extinguishing effectiveness isthe highest.
     Finally, the foamed gel was adopted to prevent and distinguish fire in goaf,top-coal falling region and other concealed locations in Xinji No.2Coal Mine. Theapplication results show that the technology of foamed gel has a significantly effectand outstanding merits in fire preventing and distinguishing and filling top-coalfalling region, which is especially suitable for unknown fire location and coalspontaneous combustion in top-coal falling region. Furthermore, it is a kind of newtype of fire extinguishing and preventing material which has wide applicationprospect and popularization value.
引文
[1]刘慧媛.能源、环境与区域经济增长研究[D].上海交通大学,2013.
    [2]倪斌.中国的煤炭资源及其对优化能源结构的基础性作用[J].中国煤田地质,2003(06):8-11.
    [3]滕吉文,张雪梅,杨辉.中国主体能源——煤炭的第二深度空间勘探、开发和高效利用[J].地球物理学进展,2008(04):972-992.
    [4] Apergis, N., Payne, J.E. The causal dynamics between coal consumption and growth: Evidencefrom emerging market economies[J]. Applied Energy,2010,87(6):1972-1977.
    [5] Yilmaz, A.O., Uslu, T. The role of coal in energy production-Consumption and sustainabledevelopment of Turkey[J]. Energy Policy,2007,35(2):1117-1128.
    [6]乌兰.我国煤炭矿区可持续协调发展研究[M].北京:经济管理出版社,2010:49-55.
    [7] Greb, S.F. Coal more than a resource:Critical data for understanding a variety of earth-scienceconcepts[J]. International Journal of Coal Geology,2013,118:15-32.
    [8]韩可琦,王玉浚.中国能源消费的发展趋势与前景展望[J].中国矿业大学学报,2004(01):4-8.
    [9]梁运涛,罗海珠.中国煤矿火灾防治技术现状与趋势[J].煤炭学报,2008(02):126-130.
    [10]牛会永,邓军,周心权等.矿井火灾事故调查综合分析技术[J].中南大学学报(自然科学版),2012(12):4812-4818.
    [11]秦波涛.防治煤炭自燃的三相泡沫理论与技术研究[J].中国矿业大学学报,2008(04):585-586.
    [12] Kuenzer, C., Zhang, J.Z., Sun, Y.L., et al. Coal fires revisited:The Wuda coal field in theaftermath of extensive coal fire research and accelerating extinguishing activities[J].International of Journal of Coal Geology,2012,102:75-86.
    [13] Qi, X.Y., Wang, D.M, Xin, H.H., et al. ENnvironmental Hazards of Coal Fire and TheirPrevention in China[J]. Environmental Engineering and Management Journal,2013,12(10):1915-1919.
    [14]钟茂华,陈宝智,许开立.矿井内因火灾的突变分析[J].东北大学学报,1999(01):71-73.
    [15]王凯,蒋曙光,张卫青等.矿井火灾应急救援系统的数值模拟及应用研究[J].煤炭学报,2012(05):857-862.
    [16]张人伟,李增华.新型凝胶阻化剂的研究与应用[J].中国矿业大学学报,1995(04):46-51.
    [17] Singh, A.K., Singh, R., Singh, M.P., et al. Mine fire gas indices and their application toIndian underground coal mine fires[J]. International Journal of Coal Geology,2007,69(3):192-204.
    [18] Wu, J.J., Liu, X.C. Risk assessment of underground coal fire development at regional scale[J].International Journal of Coal Geology,2011,86(1SI):87-94.
    [19] Singh, R., Tripathi, D.D., Singh, V.K. Evaluation of suitable technology for prevention andcontrol of spontaneous heating/fire in coal mines[J]. Archives of Mining Sciences,2008,53(4):555-564.
    [20] Zhou, F.B., Ren, W.X., Wang, D.M., et al. Application of three-phase foam to fight anextraordinarily serious coal mine fire[J]. International Journal of Coal Geology,2006,67(1-2):95-100.
    [21]王德明.矿井火灾学[M].徐州:中国矿业大学出版物,2008:158-241.
    [22]靳建伟,吕智海等.煤矿安全[M].北京:煤炭工业出版社,2005:94-120.
    [23]李胜.新型防灭火封堵材料——固体泡沫特性参数实验研究[D].辽宁工程技术大学,2009.
    [24]时国庆.防灭火三相泡沫在采空区中的流动特性与应用[D].中国矿业大学,2010.
    [25] Ran Vijay Kumar Singh. Spontaneous heating and fire in coal mines[J]. Prodedia Engineering,2013,62:78-90.
    [26]张纯如,汪峰荣,杨东生.谢桥矿应用均压技术防治采空区自然发火[J].煤矿安全,2002,33(03):43-44.
    [27] Sun Chundong, Liz Hantao, Chen li, Guo xinhe. Inert technology application for firetreatment in dead and referred to high gassy mine[J]. Procedia Engineering,2011,26:712-716.
    [28] Carlos Leiva, Luis F. Vilches, Jose Vale, Joaquin Olivares, Constantino Fernandez-Pereira.Effecet of carbonaceous matter contents on the fire resistance and mechanical properties ofcoal fly ash enriches mortars[J]. Fuel,2008,87(13-14):2977-2982.
    [29] Yong-liang Xu, De-ming Wang, Lan-yun Wang, Xiao-xing Zhong, Ting-xiang Chu.Experimental research on inhibition performances of the sand-suspended colloid for coalspontaneous combustion[J]. Safety Science,2012,50(4):822-827.
    [30]邓军,孙宝亮,费金彪等.胶体防灭火技术在煤层露头火灾治理中的应用[J].煤炭科学技术,2007,35(11):58-60.
    [31]邱春亮,张雪涛.罗克休泡沫产品在济宁二号煤矿中的应用[J].煤炭科学技术,2003,31(6):59-60.
    [32]周福宝,宋体良,王德明等.特大型火区的地面钻孔注三相泡沫灭火技术[J].煤炭科学技术,2005(07):1-3.
    [33]田兆君,王德明,徐永亮等.矿用防灭火凝胶泡沫的研究[J].中国矿业大学学报,2010(02):169-172.
    [34] Matthew, J.Miller, H. Scott Fogler. Prediction of fluid distribution in porous media treatedwith foamed gel[J]. Chemical Engineering Science,1995,50(20):3274-3561.
    [35] Matthew, J. Miller, Kartic Khilar and H. Scott Flogler. Aging of foamed gel for subsurfacepermeability reduction[J]. Journal of colloid And Interface Science,1995,175:88-96.
    [36]田兆君.煤矿防灭火凝胶泡沫的理论与技术研究[D].徐州:中国矿业大学,2009.
    [37]秦波涛,张雷林.防治煤炭自燃的多相凝胶泡沫制备实验研究[J].中南大学学报(自然科学版),2013,44(11):4652-4657.
    [38]秦波涛,王德明,陈建华等.高性能防灭火三相泡沫的实验研究[J].中国矿业大学学报,2005(01):14-18.
    [39] Jinwen Wang, Yibing Mo, Shaily Mahendra, Eric M.V. Hoek. Effects of water chemistry onstructure and performance of polyamide composite membranes[J]. Journal of MembranceScience,2014,452:415-425.
    [40]王世荣,李祥高,刘东志.表面活性剂化学[M].北京:化学工业出版社,2010:29-72.
    [41]尹忠,陈馥,梁发书等.泡沫评价及发泡剂复配的实验研究[J].西南石油学院学报,2004(04):56-58.
    [42]王军.功能性表面活性剂制备与应用[M].北京:化学工业出版社,2009:3-4.
    [43] D.K. Panesar. Cellular concrete properties and the effect of synthetic and protein foamingagent[J]. Construction and Buidling Materials,2013,44:575-584.
    [44] Bu Gi Kim, Dai Gil Lee. Development of microwave foaming method for phenolic insulationfoams[J]. Journal of Materials Processing Technology,2008,201(1-3):716-719.
    [45] Xingjun Chen, Anxian Lu, Gao Qu. Preparation and characterization of foam ceramics fromred mud and fly ash using sodium silicates foaming agent[J]. Ceramics International,2013,39(2):1923-1929.
    [46]穆枭.三相泡沫稳定性与消泡研究[D].长沙:中南大学,2005.
    [47]张坤.溶胀型高分子聚集体的制备与其特性研究[D].无锡:江南大学,2005.
    [48] M. Benhanmou, M. Boughou, H. Kaidi, M. Ei Yaznasni, H. Ridouane. Critical adsorption ofcrosslinked polymer blends[J]. Physica A: Statistical Mechanics and its Applications,2007,379(1):41-51.
    [49]黄韵,马晓燕,林元华等.交联聚合物P(MMA-MAh)-PEG1500基凝胶电解质锂离子键合极性基团作用FTIR研究[J].化学学报,2012(05):591-598.
    [50]朱怀江,朱颖,孙尚如等.预交联聚合物微凝胶调驱剂的应用性能[J].石油勘探与开发,2004(02):115-118.
    [51] K. Saravanakumar, B.V.R. Tata, V.K. Aswal. Thermoreversible Viscoelastic to weak geltransition in a micellar ionic liquid with salt[J]. Colloids and Surface A: Physicochemical andEngineering Aspects,2012,414:359-365.
    [52]张坤玲,李振泉,刘坤等.部分水解聚丙烯酰胺弱凝胶交联动力学的流变学分析[J].高分子学报,2006(03):516-522.
    [53] Siu N. Leung, Anson Wong, Lilac Cuiling Wang, Chui B. Park. Mechanism of extensionalstress-induced cell formation in polymeric foaming processes with the presence of nucleatingagents[J]. The Journal of Supercritical Fluids,2012,63:187-198.
    [54] Lin Zhao, Aifen Li, Kai Chen, Jianjian Tang, Shuaishi Fu. Development and evaluation offoaming agents for high salinity tolerance[J]. Journal of Petroleum Science and Engineering,2012,81:18-23.
    [55]王立军.聚合物溶液粘弹性对提高驱油效率的作用[D].大庆:大庆石油学院,2003.
    [56]黄成栋,白雪芳,杜昱光.黄原胶(Xanthan Gum)的特性、生产及应用[J].微生物学通报,2005(02):91-98.
    [57] Jimin Guo, Liming Ge, Xinying Li, Changdao Mu, Defu Li. Periodate oxidation of xanthangum and its crosslinking effects on gelatin-based edible film. Food Hydrocolloids,2014,39:243-250.
    [58] Severine Desplanques, Michel Grisel, Catherine Malhiac, Frederic Renou. Stabilizing effectof acacia gum on the xanthan helical conformation in aqueous solution[J]. Food Hydrocolloids,2014,35:181-188.
    [59]孙华吉.水解瓜尔豆胶——新一代水溶性膳食纤维[J].中国食品添加剂,1995(02):51-54.
    [60] Chen Wang, Xiaorui Li, Peizhi Li, Yuhua Niu. Interactions between fluorinated cationic guargum and surfactants in the dilute and semi-dilute solutions[J]. Carbohydrate Polymers,2014,99:638-645.
    [61]赵国庆.泡沫表观性能研究及在稠油开采中的应用[D].济南:山东大学,2007.
    [62] Haesche, M., Lehmhus, D., Weise, J., et al. Carbonates as foaming agent in chip-basedaluminium foam precursor[J]. Journal of Materials Science&Technology,2010,26(9):845-850.
    [63]黄晋,孙其诚.液态泡沫渗流的机理研究进展[J].力学进展,2007(02):269-278.
    [64]孙其诚,黄晋.液态泡沫结构及其稳定性[J].物理,2006(12):1050-1054.
    [65] Lee, J., Nikolov, A., Wasan, D. Surfactant micelles containing solubilized oil decrease foamfilm thickness stability[J]. Journal of Colloid and Interface Science,2014,415:18-25.
    [66] Bo Chen, Juan Han, Yun Wang, Chengzhuo Sheng, Yu Liu, Guocai Zhang, Yongsheng Yan.Separation, enrichment and determination of ciprofloxacin using thermoseparating polymeraqueous two-phase system combined with high performance liquid chromatography in milk,egg, and shrimp samples[J]. Food Chemistry,2014,148:105-111.
    [67]蔡业彬,国明成,彭玉成等.泡沫塑料加工过程中的气泡成核理论(Ⅰ)[J].塑料科技,2005,167(3):11-17.
    [68] D.Y. Kwok, L.K. Cheung, C.B. Park, et al. Study on the surface tensions of polymer meltsusing axisymmetric drop shape analysis[J]. Polymer Engineering and Science,1998,38(5):757-764.
    [69] Sumarno, T.Sunada, Y. Sato, S. Takishima, et al. Polystyrene microcellular plastic generationby quick heating process at high temperature[J]. Polymer Engineering and Science,2000,40(7):1510-1521.
    [70] Bart Heyman, Winnok H. De Vos, Frederic Depypere, Paul Van der Meeren, KoenDewettinck. Guar and xanthan gum differentially affect shear induced breakdown of nativewaxy maize starch[J]. Food Hydrocolloids,2014,35:546-556.
    [71] Bart Heyman, Winnok H.De Vos, Frederic Depypere, Paul Van der Meeren, KoenDewettinck. Gums tuning the rheological properties of modified maize starchpastes:Differences between guar and xanthan[J]. Food Hydrocolloids,2014,39:85-94.
    [72] Piyada Achayuthakan, Manop Suphantharika. Pasting and rheological properties of waxycorn starch as affected by guar gum and xanthan gum[J]. Carbohydrate Polymers,2008,71(1):9-17.
    [73]何东保,詹东风,张文举.魔芋精粉与黄原胶协同相互作用及其凝胶化的研究[J].高分子学报,1999(04):78-82.
    [74]何东保,杨朝云,詹东风.黄原胶与魔芋胶协同相互作用及其凝胶化的研究[J].武汉大学学报(自然科学版),1998(02):63-65.
    [75]何东保,黎丽华.阳离子瓜尔胶与黄原胶的凝胶化性能研究[J].武汉大学学报(理学版),2003(02):197-200.
    [76] Paquet, E., Hussain, R., Bazinet, L., et al. Effect of processing treatments and storageconditions on stability of fruit juice based beverages enriched with dietary fibers alone and inmixture with xanthan gum[J]. Lwt-Food Science and Technology,2014,55(1):131-138.
    [77] Matuda, T.G., Chevallier, S., Pessoa, P.D., et al. Impact of guar and xanthan gums onproofing and calorimetric parameters of frozen bread dough[J]. Journal of Ceal Science,2008,48(3):741-746.
    [78]何东保,彭学东,詹东风.黄原胶与魔芋葡甘聚糖马来酸酯的协同相互作用及其凝胶化的研究[J].武汉大学学报(自然科学版),2000(06):681-684.
    [79]张雅媛,洪雁,顾正彪等.玉米淀粉与黄原胶复配体系流变和凝胶特性分析[J].农业工程学报,2011(09):357-362.
    [80]夏凌云.发泡剂在轻质注浆材料中的应用[D].长沙:中南大学,2011.
    [81] Ratiya Thuwapanichayanan, Somkiat Prachayawarakorn, Somchart Soponronnarit. Effects offoaming agents and foam density on drying characteristics and textural property of bananafoams[J]. LWT-Food Sceience and Technology,2012,47(2):348-357.
    [82] Mark A. Engle, Ricardo A. Olea, Jennifer M.K. O. Keefe, James C. Hower, Nicholsa J.Geboy. Direct estimation of diffuse gaseous emissions from coal fires: Current methods andfuture and future directions[J]. International Journal of Coal Geology,2013,112:164-172.
    [83] Zhao, L., Li, A.F., Chen, K., et al. Development and evaluation of foaming agents for highsalinity tolerance[J]. Journal of Petroleum Science and Engineering,2012,81:18-23.
    [84] Zhong, H., Xi, Z.H., Liu, T., et al. In-situ polymerization-modification process and foamingof poly(ethylene terephthalate)[J]. Chinese Journal of Chemical Engineering,2013,21(12):1410-1418.
    [85] Jiang, X.L., Liu, T., Xu, Z.M., et al. Effects of crystal structure on the foaming of isotacticpolypropylene using supercritical carbon dioxide as a foaming agent[J]. The Journal ofSupercritical Fluids,2009,48(2):167-175.
    [86] Khouryieh, H.A., Herald, T.J., Aramouni, F., et al. Intrinsic viscosity and viscoelasticproperties of xanthan/guar mixtures in dilute solutions: Effect of salt concentration on thepolymer interactions[J]. Food Research International,2007,40(7):883-893.
    [87] Khouryieh, H. A., Herald, T.J., Aramouni, F., et al. Influence of mixing temperature onxanthan conformation and interaction of xanthan-guar gum in dilute aqueous solutions[J].Food Research International,2006,39(9):964-973.
    [88] Renou, F., Petibon, O., Malhiac, C., et al. Effect of xanthan structure on its interaction withlocust bean gum:Toward prediction of rheological properties[J]. Food Hydrocolloids,2013,32(2):331-340.
    [89] Makri, E.A., Doxastakis, G.I. Study of emulsions stabilized with Phaseolus vulgaris orPhaseolus coccineus with the addition of Arabic gum, locust bean gum and xanthan gum[J].Food Hydrocolloids,2006,20(8):1141-1152.
    [90] Mao, C.F., Zeng, Y.C., Chen, C.H. Enzyme-modified guar gum/xanthan gelation: An analysisbased on cascade model[J]. Food Hydrocolloids,2012,27(1):50-59.
    [91] Alquraishi, A.A., Alsewailem, F.D. Xanthan and guar polymer solutions for water shut off inhigh salinity reservoirs[J]. Carbohydrate Polymers,2012,88(3):859-863.
    [92]周明,蒲万芬,赵金洲等.微交联泡沫胶选择性堵气室内研究[J].石油钻采工艺,2004(01):65-68.
    [93]何东保,黎丽华.阳离子瓜尔胶与黄原胶的凝胶化性能研究[J].武汉大学学报(理学版),2003(02):197-200.
    [94] Shobha, M.S., Tharanathan, R.N. Rheological behaviour of pullulanase-treated guargalactomannan on co-gelation with xanthan[J]. Food Hydrocolloids,2009,23(3):749-754.
    [95]何东保,石毅,冯峰等.壳聚糖/黄原胶凝胶化性能的研究[J].武汉大学学报(理学版),2001(06):717-720.
    [96] Hyejung Choi, John R. Mitchell, Sanyasi R. Gaddipati, Sandra E. Hill, Bettina Wolf. Sheatrheology and filament stretching behavior of xanthan gum and carboxymethyl cellulosesolution in presence of saliva[J]. Food Hydrocolloids,2014,40:71-75.
    [97] Nuray Bekoz, Enver Oktay. High temperature mechanical properties of low alloy steel foamsproduced by powder metallurgy[J]. Material and Design,2014,53:482-489.
    [98] G.C. Valenzuela, K. Wong, D.E. Connor, M. Behnia, K.Parsi. Foam sclerosants are morestable at lower temperatures[J]. European Journal of Vascular and Endovascular Surgery,2013,46(5):593-599.
    [99]白家祉.带屈服值的假塑性流体的双曲模式方程与压降计算式[J].石油学报,1980(02):57-63.
    [100] J.W. Medcraft, C.W. New. False-positive Gram-stained smears of sterile body fluids due tocontamination of laboratory deionized water[J]. Journal of Hospital Infection,1990,16(1):75-80.
    [101]李兆敏,王渊,张琪.宾汉流体在环空中流动时的速度分布规律[J].石油学报,2002(02):87-91.
    [102]胡春波,尚莲英,蔡体敏.宾汉流体湍流流动的理论研究[J].西北工业大学学报,1998(04):589-593.
    [103]褚君达.宾汉流体的触变性及球体绕流阻力[J].水科学进展,1995(01):36-44.
    [104]刘存芳,赵新明,刘爱珍.二平行流之间幂率流体层流剪切流动的数学模型[J].水动力学研究与进展(A辑),1999(03):365-369.
    [105] B. Sreenivasulu, Bhadri Srinivas, K.V.Ramesh. Forced convection heat transfer from aspheroid to a power low fluid[J]. International Journal of Heat and Mass Transfer,2014,70:71-80.
    [106] Chiara Sandolo, Pietro Matricardi, Franco Alhaique, Tommasina Coviello.Dynamo-mechanical and rheological characterization of guar gum hydrogels[J]. EuropeanPolymer Journal,2007,43(8):3355-3367.
    [107]顾宏新.羧甲基羟丙基瓜尔胶的制备与表征[D].成都:四川大学,2007.
    [108]周建芳,张黎明,Perter S. Hui.两性瓜尔胶衍生物溶液的流变特征[J].物理化学学报,2003(11):1081-1084.
    [109] Kim, N.S., Kang, C.G. An investigation of flow characteristics considering the effect ofviscosity variation in the thixoforming process[J]. Journal of Materials Processing Technology,2000,103(2):237-246.
    [110] Iliuta, I., Larachi, F. Trickle bed mechanistic model for (non-)Newtonian power-lawfoaming liquids[J]. Chemical Engineering Science,2009,64(8):1654-1664.
    [111] Moncalvo, D., Friedel, L. A viscosity correction factor for shear-thinning liquid flows insafety valves[J]. Journal of Loss Prevention in the Process Industries,2010,23(2):289-293.
    [112] Jan Mewis, Norman J. Wagner. Thixotropy[J]. Advances in Colloid and Interface Science,2009,147-148:214-227.
    [113] Li XiaoBei, Fang Yapeng, Zhang Hongbin, Katsuyoshi Nishinari, Saphwan Al-Assaf, GlynO. Phillips. Rheological properties of gum arabic solution: From Newtonianism tothixotropy[J]. Food Hydrocolloids,2011,25(3):293-298.
    [114]陶蓉,崔伟,杨华等.保水性聚丙烯酰胺增稠剂的合成及评价[J].涂料工业,2009(09):18-20.
    [115] Shobha, M.S., Tharanathan, R.N. Rheological behaviour of pullulanase-treated guargalactomannan on co-gelation with xanthan[J]. Food Hydrocolloids,2009,23(3):749-754.
    [116] Grace, I., Pilipchuk, V., Ibrahim, R., et al. Temperature effect on non-stationarycompressive loading response of polymethacrylimide solid foam[J]. Composite Structures,2012,94(10):3052-3063.
    [117] Biro, S., Gandhi, T., Amirkhanian, S. Determination of zero shear viscosity of warm asphaltbinders[J]. Construction and Building Materials,2009,23(5):2080-2086.
    [118] A.Ya. Malkin. Non-Newtonian viscosity in steady-state shear flows[J]. Journal ofNon-Newtonian Fluid Mechanics,2013(192):48-65.
    [119] Juan M. Rodriguez-Diaz, M. Teresa Santos-Martin. Study of the best designs formodifications of the Arrhenius equation[J]. Chemometrics and Intelligent Laboratory Systems,2009,95(2):199-208.
    [120]李慧清.压缩空气泡沫系统(CAFS)泡沫性能的试验研究[D].北京林业大学,2000.
    [121]唐秋萍.壳聚糖—小檗碱复合膜制备及性能研究[D].北京:北京化工大学,2011.
    [122]曹文科.水乳聚合物室温交联体系的研究[D].天津:天津大学,2009.
    [123]林霖.多组分压缩空气泡沫特性表征及灭火有效性实验研究[D].中国科学技术大学,2007.
    [124]陈艳玲,杨问华,袁军华等.聚丙烯酰胺/醋酸铬与聚丙烯酰胺/酚醛胶态分散凝胶的纳米颗粒自组织分形结构[J].高分子学报,2002(05):592-597.
    [125]袁显永.核壳型胶乳的成膜及其涂膜性研究[D].郑州:郑州大学,2006.
    [126]叶丹滢.丙烯酸酯核壳乳液成膜机理及涂膜性能的研究[D].北京:北京化工大学,2009.
    [127]秦波涛.防治煤炭自燃的三相泡沫理论与技术研究[M].徐州:中国矿业大学出版社,2009:58-59.
    [128]徐永亮.防治煤自燃的悬砂胶体研究[D].徐州:中国矿业大学,2011.
    [129]叶兵.防止煤炭自燃的阻化机理及阻化特性研究[D].阜新:辽宁工程技术大学,2007.
    [130]彭本信.煤的自然发火阻化剂及其阻化机理[J].煤炭学报,1980(03):38-48.
    [131] Yong Jiang, Jiangtao An, Rong Qiu, Yong Hu, Ning Zhu. Improved understanding of firesuppression mechanism with an idealized extinguishing agent[J]. International Journal ofThermal Sciences,2013,64:22-28.
    [132]施春红,金龙哲,刘结友.新型防火抑尘剂的应用[J].煤炭学报,2007(06):608-611.
    [133] Jing Zhan, Haihui Wang, Shengnan Song, Yuan Hu, Jiao Li. Role of an additive in retardingcoal oxidation at moderate temperatures[J]. Proceedings of the Combustion Institute,2011,33(2):2515-2522.
    [134]雷磊.无机发泡胶凝材料防治采空区遗煤自燃研究[D].焦作:河南理工大学,2011.
    [135]蔡永乐.矿井防灭火技术[M].徐州:中国矿业大学出版社,2009:11-17.
    [136]杨桂炯.煤炭自燃气溶胶阻化性能实验研究[D].西安:西安科技大学,2011.
    [137]隋涛.粉煤灰凝胶防灭火技术在煤矿中的研究应用[D].太原:太原理工大学,2007.
    [138]吴会平.煤炭自燃气溶胶阻化防火技术研究[D].西安:西安科技大学,2012.
    [139] David Toledo, Urs P. Kreuter, Michael G. Sorice, Charles A. Taylor Jr. The role ofprescribed burn associations in the application of prescribed fires in rangeland ecosystems[J].Journal of Environmental Management,2014,132:323-328.
    [140] O.P. Korobeinichev, A.G. Shmakov, V.M. Shvartsberg, A.A. Chemov, S.A. Yakimov, K.P.Koutsenogii, V.I. Makarov. Fire suppression by low-volatile chemically active firesuppressants using aerosol technology[J]. Fire Safety Journal,2012,51:102-109.
    [141]陈萍萍.液滴与可燃物表面动力学现象研究[D].合肥:中国科学技术大,2011.
    [142] Purushotham Pakala, Venkatesh Kodur. System-level approach to predict the transient fireresponse of double angel connections[J].Journal of Constructional Steel Research,2013,89:132-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700