滑移装载机工作装置减振系统设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑移装载机作为一种应用于基础设施建设并需频繁进行转场作业的工程车辆,在运输作业过程中工作装置的行驶平顺性成为保持铲斗内物料完整性和提高工作效率的关键。本文以ZHL3210型滑移装载机为研究对象,针对工作装置行驶平顺性的改善进行理论、仿真与实验研究。主要完成的工作如下:
     1、论述了振动控制技术和国内外工程车辆减振技术的研究现状,根据滑移装载机的作业特点,分析了运输工况下工作装置振动产生的原因,在明确了主要激振因素和振动传递过程的基础上,提出了基于改变阻尼的工作装置半主动油气减振方案,并建立了工作装置油气减振系统。
     2、基于油气减振系统的分析,建立了系统的数学模型,在此基础上推导出了减振系统的非线性刚度特性和阻尼特性,得出了影响系统减振性能的主要结构参数为蓄能器的初始充气压力、初始充气容积、比例节流阀的阀口开度和单向节流阀的通流截面积,并通过对输出特性进行编程运算,分析了系统减振原理。
     3、基于减振系统原理和输出刚度、阻尼特性,构建了加入减振系统前、后整机振动系统的物理模型,并应用拉格朗日方程法建立了振动系统的动力学数学模型;根据作业环境的特点,建立了常规工况下的D级随机工程路面模型和特殊工况下的冲击型横向铁路轨道路面模型,以此作为振动系统的激励输入。
     4、根据振动系统动力学模型,应用Matlab-Simulink仿真软件分析了减振系统各主要参数对工作装置行驶平顺性的影响规律;以D级工程路面进行系统工况仿真分析,在得出的油气减振系统动力学参数基础上,确定了系统结构参数及元件选型;基于确定参数的减振系统,在D级路况和轨道路况下对工作装置行驶平顺性进行仿真,表明了在D级路况下减振系统能很好的满足系统平顺性要求,但在轨道路况下,其隔振效果较差,提出了针对某一路况设计的固定参数减振系统存在的缺陷。
     5、针对固定参数减振系统的不足和实际运输工况下路面的多变和复杂性,采用了基于模糊控制的半主动减振控制方法,结合系统动力学模型建立了半主动减振模糊控制系统,并应用MATLAB-Fuzzy工具箱设计了模糊控制器;根据随机路况和轨道路况建立了分段路面模型,通过仿真评价了不加减振系统、加入固定参数的减振系统和采用模糊控制的半主动减振系统对工作装置行驶平顺性的影响,验证了半主动减振模糊控制方案的有效性。
     6、以ZHL3210型滑移装载机为平台进行实车道路试验,验证了油气减振系统对工作装置振动控制的有效性、减振系统和整车振动系统数学模型的正确性以及基于改变系统阻尼的半主动减振控制方案的合理性。
Skid Steer Loader, as a construction vehicle, is applied to infrastructure construction and required frequent transition. Riding comfort of working device is the key to maintain the integrity of the material within the bucket and improve efficiency in the process of transport operations. Taking ZHL3210-type skid steer loader as research object, a way to improve riding comfort of attachment is proved out by means of theoretical studies, simulation analysis, experiment evaluation. The main research works are as follows:
     1. Vibration control technology and the current researches about construction vehicle damping technology at home and abroad are investigated and summarized. According to the operating characteristics of skid steer loader, the causes of attachment vibration are analyzed in transport conditions. On the basis of clearly the main excitation factor and vibration transfer process, semi-active hydro-pneumatic damping solution of working device, based on changes in damping, is proposed. And hydro-pneumatic damping system of working device is established.
     2. Based on the analysis of hydro-pneumatic damping system, mathematical model of the system is established. Based on the model, nonlinear stiffness and damping characteristics of damping system are derived. It shows that the main structure parameters affecting damping performance of the system are the initial inflation pressure and volume of accumulator, the valve opening of proportional throttle valve, the flow cross-sectional area of one-way throttle valve. And the principle of system damping is analyzed through operating the output characteristics.
     3. According to damping system principle and output stiffness, damping characteristics, physical models of whole machine vibration system of adding damping system before and after are built. And dynamic mathematical models of vibration system are deduced by Lagrange equation. Based on the characteristics of working environment, D-level road surface model of random construction in general conditions and shock type road surface model of cross railway tracks in special conditions are constructed as excitation inputs of vibration system.
     4. The law of the main parameters of damping system affecting riding comfort of working device, combining dynamics model of vibration system and applying Matlab-Simulink simulation software, are abtained. The kinetic parameters of hydro-pneumatic damping system are derived by simulation analysis of system conditions of D-level road model. Then system parameters and component selection are identified by the simulation parameters. Based on the damping system with determined parameters, riding comfort of working device, with D-level and cross railway tracks road surface models, is simulated and researched. The results show that damping system can well meet the requirements of smooth in D-level road conditions, but its isolation are less effective in railway tracks road conditions. So damping system of fixed parameters designed by a kind of road exists some shortcomings.
     5. For the lack of fixed-parameter damping system and ever-changing and complex nature of road surface in actual transport conditions, semi-active vibration control with fuzzy control is used. Then semi-active fuzzy vibration control system is established through combining with system dynamics model. And fuzzy controller is designed by MATLAB-Fuzzy tool box. Based on random road conditions and railway tracks conditions, subparagraph road surface model is built. Finally, with system without damping, fixed parameters of damping system added and semi-active vibration control system with fuzzy control, riding comfort of working device are evaluated through simulation analysis. And semi-active vibration fuzzy control system is verified effectiveness.
     6. Vehicle road test is carried out with ZHL3210-type skid steer loader. The results show that hydro-pneumatic damping system can work effectively in working device vibration control, the mathematical models of damping system and vehicle vibration system are correct, and semi-active vibration control scheme based on changing the system damping is reasonable.
引文
[1]苑红连,蔡海霄.百变金刚——滑移转向装载机的诞生及发展[J].交通世界(建养机械),2006,134(8):28-32
    [2]司癸卯,张健,王玉柱等.滑移转向装载机设计计算[J].筑路机械与施工机械化,2008,4:45~50
    [3]廖冬香,张润利,杨戈.工程机械专利信息之滑移装载机[J].工程机械文摘,2007,6:23~28
    [4]Piotr A. Dudzinski.Design characteristics of steering systems for mobile wheeled earthmoving equipment.Journal of Terramechanics,Volume 26,Issue 1,1989,P25~82
    [5]林明智.国产滑移装载机发展之路[J].工程机械与维修,2005,11:73-73
    [6]刘庆东.浅谈滑移装载机[J].工程机械,1999,10:32-34
    [7]苑红连.中国工程机械出国参展情况的回顾与展望[J].工程机械,2005,36(10):48~51
    [8]罗艳蕾,何清华等.滑移式装载机静压传动系统原理及特性分析[J].建筑机械,2001,9:64~67
    [9]饶俊良.虚拟样机在铲运机工作装置设计中的应用:[硕士学位论文].南昌:南昌大学,2009
    [10]陈章位,于慧君.振动控制技术现状与进展[J].振动与冲击,2009,28(3):73-77
    [11]Shu-Yong Liu, Xiang Yu, Shi-Jian Zhu. Study on the chaos anti-control technology in nonlinear vibration isolation system. Journal of Sound and Vibration, Volume 310, Issues 4-5,2008, P855~864
    [12]F. Kerber, S. Hurlebaus, B.M. Beadle. Control concepts for an active vibration isolation system. Mechanical Systems and Signal Processing, Volume 21, Issue 8,2007, P3042~3059
    [13]唐委校,黄永强,陈树勋.机械振动理论[M].北京:机械工业出版社,2000
    [14]Ivan M. Diaz, Paul Reynolds. On-off nonlinear active control of floor vibration. Mechanical Systems and Signal Processing, Volume 24, Issue 6,2010, P1711~ 1726
    [15]Wen-Hong Zhu, Bjarni Tryggvason, Jean-Claude Piedboeuf. On active acceleration control of vibration isolation systems. Control Engineering Practive, Volume 14, Issue 8,2006, P863~873
    [16]Y. Zhang. A. G. Alleyne, D. Zheng. A hybrid control strategy for active vibration isolation with electrohydraulic actuators. Control Engineering Practice. Volume 13, Issue 3,2005, P279~289
    [17]张金柱.悬架系统[M].北京:化学工业出版社,2005
    [18]A. F. Naude, J. A. Snyman. Optimisation of road vehicle passive suspension systems. Part 1. optimization algorithm and vehicle model. Applied Mathematical Modelling, Volume 27, Issue 4,2003, P249~261
    [19]FederSpiel-Labrosse J M. Beitrag zum stadium und zur ver-vollkommung deraufhangung der fahrzeuge. ATZ Marz, Volume 3, Issue 2,1955, P57~ 72
    [20]周云山,钟勇等.汽车电子控制技术[M].北京:机械工业出版社,2004
    [21]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005,7
    [22]Daniel Fischer, Rolf Isermann. Mechatronic semi-active and active vehicle suspensions. Control Engineering Practice, Volume 12, Issue 11,2004, P1353~ 1367
    [23]Chiou-Jye Huang, Jung-Shan Lin, Chung-Cheng Chen. Road-adaptive algorithm design of half-car active suspension system. Expert Systems with Applications, Volume 37, Issue 6,2010, P4392~4402
    [24]Karnopp D C, Croby M J,Harwood R A. Vibration Control Using Semi-active Force Generatorrs J. Engineering for Industry, Volume 96, Issue 2,1974, P619-626
    [25]Margolis D L, Tyle J L, Hrovat D. Heave Mode Dynamics of a Tracked Air Custion Vehicle with Semi-active Airbag Secondary Suspension. ASME J Dynamic System, Measurement and Control, Volume 119, Issue 4,1997, P399~407
    [26]C.L. Giliomee, P.S. Els.Semi-active hydropneumatic spring and damper system.Journal of Terramechanics, Volume 35,1998, P109~117
    [27]A. Giua, M. Melas, C. Seatzu etal.Design of a predictive semiactive suspention system.Vehicle System Dynamics,Vol.41,No.4,Apr 2004,P277~300
    [28]M. Witters,J. Swevers. Black-box model identification for a continuously variable,electro-hydraulic semi-active damper.Mechanical Systems and Signal Processing, Volume 24,2010, P4~18
    [29]C. Poussot-Vassal, O. Sename, L. Dugard. A new semi-active suspension control strategy through LPV technique. Control Engineering Practice, Volume 16, Issue 12,2008, P1519~1534
    [30]王昊,胡海岩.基于磁流变阻尼器整车半主动悬架的开关控制[J].动力学与控制学报,2004,2(4):71-76
    [31]陈兵,曾鸣,尹忠俊.车辆半主动悬架的模糊控制策略设计与仿真研究[J].系统仿真学报,2008,20(2):420~424
    [32]董小闵,余淼,廖昌荣等.汽车磁流变半主动悬架频域加权次优控制研究[J].系统仿真学报,2006,18(11):3183-3186
    [33]喻凡,Dave Crolla.车辆动力学及其控制[M].北京:人民交通出版社,2004
    [34]Xun Wang,Si-zhong Chen.A Study on the Outside Sensitive Damping Valve of Hydro-pneumatic Suspension for Vehicles.Proceedings of the 2010 International Conference on Optoelectronics and Image Processing, Nov,2010
    [35]U. Solomon, Chandramouli Padmanabhan. Semi-active hydro-gas suspension system for a tracked vehicle. Journal of Terramechanics, Volume 48, Issue 3, 2011,P225~239
    [36]孙建民.油气悬架在工程车辆中的应用及关键技术[J].噪声与振动控制,2007,4:50~53
    [37]A E Moulton, A Best. Hydragas suspension. SAE paper,790374,1997, P1307-1327
    [38]A.J. Nieto, A.L. Morales, J.R. Trapero. An adaptive pneumatic suspension based on the estimation of the excitation frequency. Journal of Sound and Vibration, Volume 330, Issue 9,2011, P1891~1903
    [39]G.D. Jokhadze. The efficient use of vehicles with pneumatic suspensions in bad road conditions. Journal of Terramechanics, Volume 25, Issue 3,1988, P223~ 229
    [40]A.J. Nieto, A.L. Morales, J.M. Chicharro. Unbalanced machinery vibration isolation with a semi-active pneumatic suspension. Journal of Sound and Vibration, Volume 329, Issue 1,2010, P3~12
    [41]甄龙信,张文明,王国彪.油气悬架综述[J].有色金属:矿山部分,2004,56(4):36~38
    [42]张爱武.高速轮式推土机油气悬架系统特性分析[J].建筑机械,2008,3:95-99
    [43]秦家升,安静,单海燕等.油气悬架的特征及其结构原理分析[J].工程机械,2003,11:7~10
    [44]封士彩,王国彪.起重机油气悬挂系统非线性刚度和阻尼特性的研究[J]. 非线性动力学学报,2001,8(2):171~175
    [45]马国清,王树新,檀润华.汽车油气悬挂系统数学模型与计算机仿真研究[J].中国机械工程,2003,14(11):978~98 1
    [46]庄德军,柳江,喻凡等.汽车油气弹簧非线性数学模型及特性[J].上海交通大学学报,2005,39(9):1441~1444
    [47]Citroen.Hydro-active suspension.Technical Leaflet,1989
    [48]Crolla D.A, Horton D.N.L, Pitcher,J.A etal.Active suspension control for an off-road vehicle Proc Instn Mech.Engrs.Journal of Automobile Engineering, Volume 201, Issue D,1987, P1~10
    [49]陈志林,金达锋,黄兴惠等.油气主动悬架车身高度非线性控制仿真和试验研究[J].中国机械工程,2000,39(8):72~75
    [50]孙建民.油气悬架的应用及性能控制研究进展[J].起重运输机械,2007,6:7-10
    [51]刘杰.工程车辆耦合减振控制系统研究:[硕士学位论文].太原:太原科技大学,2007
    [52]林慕义,孙大刚.轮式工程机械的行驶稳定系统[J].工程机械,2005,10:70-72
    [53]柏红专.国外轮式装载机的发展趋势[J],建筑机械,1994,1:37-40
    [54]Rexroth Bosch Group.装载机稳定模块样本.RSM2 RC 64617/05.04
    [55]梁树英.国外轮式装载机新产品特点分析[J].工程机械,2001,4:30-33
    [56]高昱.新型组合模块式减振器[J].机械工程与自动化,2008,5:195-196
    [57]封士彩,王国彪.工程车辆油气悬架的现状与发展[J].矿山机械,2000,12:32-33
    [58]U. Solomon, Chandramouli Padmanabhan. Hydro-gas suspension system for a tracked vehicle:Modeling and analysis. Journal of Terramechanics, Volume 48, Issue 2,2011, P125~137
    [59]杨学良.轮式装载机油气减振模块及其评价[J].工程机械,1997,10
    [60]王同建,张子达,罗士军等.线控转向技术在装载机上的应用[J].机床与液压,2006,5:83-85
    [61]周长华.五层框架结构的吸振研究[J].计量与测试技术,2008,1:33-34
    [62]王莲花,龚兴龙,邓华夏等.磁流变弹性体自调谐式吸振器及其优化控制[J].实验力学,2007,22(3-4):429~434
    [63]杨智春,李泽江.颗粒碰撞阻尼动力吸振器的设计及实验研究[J].振动与冲击,2010,29(6):69-71
    [64]刘云,钱振东.路面平整度及乍辆振动模型的研究综述[J].公路交通科技,2008,25(1):51~57
    [65]广西柳工机械股份有限公司.滑移式装载机工作装置.中国专利,CN2687076,2005-03-23
    [66]段虎明,石峰,谢飞等.路面不平度研究综述[J].振动与冲击,2009,28(9):95-101
    [67]段虎明,石峰,张开斌等.中国典型汽车道路谱研究的构建及应用[J].中国测试,2009,35(4):76-79
    [68]陈兆俊.汽车常见振动的原因分析——发动机振动分析[J].中国高新技术企业,2008,5:83~83
    [69]李洪岩.浅谈降低链传动噪声的方法[J].佳木斯大学学报:自然科学版,2007,25(2):178~179
    [70]秦宇,蔡敢为,郑战光等.轮式装载机行驶中振动对物料完整性的影响[J].机械设计与制造,2009,5:211~213
    [71]张立军,余卓平.悬架中橡胶弹性元件隔振设计方法研究[J].振动与冲击,2003,22(3):46~49
    [72]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2003:121-123
    [73]Benno Stein, Elmar Vier. Structural analysis in control systems design of hydraulic drives. Engineering Applications of Artificial Intelligence, Volume 13, Issue 6,2000, P741~750
    [74]高亮,杨铭.车辆减振器技术刍议[J].科技信息,2007,9:96-96
    [75]张利平.液压阀原理、使用与维护(第二版)[M].北京:化学工业出版社,2005
    [76]兰箭,穆希辉,马振书等.管道对液压系统的影响[J].科学技术与工程,2007,7(21):5513~5516
    [77]马雅丽,黄志坚.蓄能器实用技术[M].北京:化学工业出版社,2007
    [78]柳波,陆江斌,黄杰.滑移装载机行驶减振系统设计与建模仿真研究[J].郑州大学学报,2011,32(1):80-84
    [79]陆明万,张雄.从动能定理到第二类拉格朗日方程[J].力学与实践,2003,25(5):66~68
    [80]Jian Fan,Xihong Wang,Minrui Fei.Research of parallel-type double inverted pendulum model based on Lagrange equation and LQR controller.Proceedings of the 2010 international conference on Life system modeling and intelligent computing,Sep.2010
    [81]J.D. Robson. Deductions from the spectra of vehicle response due to road profile excitation. Journal of Sound and Vibration, Volume 7, Issue 2,1968, P156~158
    [82]刘献栋,邓志党,高峰.基于逆变换的路面不平度仿真研究[J].中国公路学报,2005,18(1):122-126
    [83]陈宪麦,王澜,陶夏新等.我国干线铁路轨道平顺性评判方法的研究[J].中国铁道科学,2008,29(4):21-27
    [84]K.P.S. Rana. Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing. Expert Systems with Applications, Volume 38, Issue 9,2011, P11335~11346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700