空间机器人在轨自主装配动力学与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际空间站等结构复杂、功能众多的大型化航天器的广泛应用,其在轨组装、检修、维护成为航天界的焦点问题,在轨服务技术应运而生。由于航天器所处的空间环境特殊,有航天员参与的在轨服务面临诸多困难,因此空间机器人在轨自主装配体现出了明显优势。本文针对空间机器人在轨自主装配的动力学与控制问题展开研究。
     本文以漂浮基体携带六自由度空间机械臂系统为研究对象,应用DH方法建立机械臂系统各关节坐标系与转换关系,利用递推法进行系统运动学建模,并基于第二类拉格朗日方程对该多体系统进行动力学建模,通过MATLAB编程仿真与商业软件ADAMS进行对比,验证动力学模型的正确性。
     对空间机械臂系统在轨自主装配过程进行碰撞模型分析与控制模型设计,首先应用末端质量点替代方形可更换模块,用锥形槽等效带楔形角的方形安装孔,简化碰撞模型,并进行碰撞检测分析,引入赫兹弹性模型并计及摩擦力对碰撞力进行计算。应用机械臂操作空间理论进行控制器设计,并进行模块安装与拆卸过程仿真分析,验证了碰撞模型、控制模型的有效性。
     对自主装配过程的影响因素进行枚举,并应用控制因素法针对引导速度系数、阻尼速度系数、碰撞刚度系数、碰撞阻尼系数、摩擦系数、楔形角度等六个主要影响因素分别进行多组仿真,以装配位置误差、末端碰撞力及基体姿态控制力矩为评价指标,分析各参数对装配过程的影响形式与程度。
     本文对空间机器人在轨自主装配动力学与控制进行了设计与分析,所得结果可对今后空间机械臂在轨服务等方面提供理论参考,且具有一定的工程应用价值。
With the wide application of large spacecrafts such as international space station having complicated structure and numerous functions, on-orbit assembly, examine and repair, preserve have become focus problems in the astronautics field, and the on-orbit service technology develops. For the special space condition of the spacecraft, manned on-orbit service faces many problems, so the on-orbit self-assembling based on space robot shows its obvious advantages. The dynamics and control problems of space robot in self-assembling on orbit are researched in this paper.
     It is chosen as the research object, a floating spacecraft base bringing a space manipulator with six degrees of freedom. The DH method is used to establish the coordinate systems of the manipulator joints and their conversion relationships. The recursion method is applied for kinematics modeling, and the dynamics model of this multi-body system is established based on the second kind of Lagrange equation. The dynamics model is written to MATLAB program, and the simulation results are compared with the commercial software ADAMS to verify the correctness of the dynamics model.
     The collision model and control model used in the space manipulator on-orbit self-assembling process are designed. The end mass point is used to replace the square interchangeable module, and the taper slot is equivalent with the square assembling hole with wedge angle, for simplify and collision detection analysis. Hertz elastic model is introduced to calculate the collision force considering the friction force meanwhile. The controller is designed based on the manipulator operation space theory. The validity of the collision model and control model is verified via simulation and analysis of assembling and disassembling process.
     The influence factors in the self-assembling process are listed. The control factor method is applied on the six main influence factors including leading speed coefficient, damping speed coefficient, collision stiffness coefficient, collision damping coefficient, friction coefficient, wedge angle, to simulate respectively. The assembly position error, the end collision force and the base attitude control torque are considered as evaluation indexes. The influence form and the extent of each factor is analyzed.
     The dynamics and control of space robot in self-assembling on orbit are designed and analyzed in this paper. The results can provide theoretical reference to the space manipulator technology in on-orbit service in the future, and is of certain value for engineering application.
引文
1 Stephens S K, Willenberg H J. Metrics for in-Space Telescope Assembly Techniques//2003 IEEE Aerospace Conference. 2003
    2 Leipold M, Seboldt W, Lingner S, et al. Mercury Sun-Synchronous Polar Orbiter with a Solar Sail. Acta Astronautica, 1996, 39(1): 143-151.
    3 Madison R W. Micro-Satellite Based, on-Orbit Servicing Work at the Air Force Research Laboratory//Aerospace Conference Proceedings, 2000 IEEE. 2000: 215-226 vol.214.
    4林来兴.美国“轨道快车”计划中的自主空间交会对接技术.国际太空, 2005, (02): 23-27.
    5陈统,徐世杰.航天器附件展开动力学仿真.航天控制, 2005, (01): 79-83.
    6王存恩. Ets-Vii在轨实验成果显著.控制工程, 1999, 2: 64.
    7 Woo-Keun Y, Goshozono T, Kawabe H, et al. Model-Based Space Robot Teleoperation of Ets-Vii Manipulator. Robotics and Automation, IEEE Transactions on, 2004, 20(3): 602-612.
    8 Imaida T, Yokokohji Y, Doi T, et al. Ground-Space Bilateral Teleoperation of Ets-Vii Robot Arm by Direct Bilateral Coupling under 7-S Time Delay Condition. Robotics and Automation, IEEE Transactions on, 2004, 20(3): 499-511.
    9 Macdonald M, McInnes C, Alexander D, et al. Geosail: Exploring the Magnetosphere Using a Low-Cost Solar Sail. Acta Astronautica, 2006, 59(8): 757-767.
    10 Quadrelli M B, West J. Sensitivity Studies of the Deployment of a Square Inflatable Solar Sail with Vanes. Acta Astronautica, 2009, 65(7): 1007-1027.
    11 G H. Multisensory Shared Autonomy and Tele-Sensor Programming Key Issues in Space Robotics. Robotics and Autonomous Systems, 1993, 11(3-4): 141-162.
    12 Hirzinger G, Brunner B, Dietrich J, et al. Sensor-Based Space Robotics-Rotex and Its Telerobotic Features. Robotics and Automation, IEEE Transactions on, 1993, 9(5): 649-663.
    13 Albu-Schaffer, Bertleff W, Rebele B, et al. Rokviss-Current Experimental Results on Parameter Identification//Proceedings of IEEE Robotics and Automation. 2006: 3879-3885.
    14 Preusche C, Reintsema D, Landzettel K, et al. Robotics Component Verification on Iss Rokviss - Preliminary Results for Telepresence//Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. 2006: 4595-4601.
    15 Yamakawa H, Funaki I, Nakayama Y, et al. Magneto-Plasma Sail: An EngineeringSatellite Concept and Its Application for Outer Planet Missions. Acta Astronautica, 2006, 59(8): 777-784.
    16 Mengali G, Quarta A A. Solar Sail Trajectories with Piecewise-Constant Steering Laws. Aerospace Science and Technology, 2009, 13(8): 431-441.
    17丹宁.加拿大为国际空间站建造机械臂.中国航天, 1998, (04)
    18潘科炎.加拿大的空间机器人——从国际空间站的灵敏作业机器人到行星探测机器人.控制工程, 2001, 2: 22-29.
    19 Fax J A, Murray R M. Information Flow and Cooperative Control of Vehicle Formations. Automatic Control, IEEE Transactions on, 2004, 49(9): 1465-1476.
    20洪嘉振,梁敏.多刚体系统内碰撞数学模型及计算程序.力学学报, 1989, (04): 509-512.
    21 Yeong-Chan C. Robust Tracking Control for Nonlinear Mimo Systems Via Fuzzy Approaches. Automatica, 2000, 36(10): 1535-1545.
    22 Draeger A, Engell S, Ranke H. Model Predictive Control Using Neural Networks. Control Systems, IEEE, 1995, 15(5): 61-66.
    23 Basso M, Rotunno M. Robust Attitude Orbit Control for Large Flimsy Appendages//Decision and Control, 2004. CDC. 43rd IEEE Conference on. 2004: 278-283 Vol.271.
    24王琪,陆启韶.多体系统lagrange方程数值算法的研究进展.力学进展, 2001, (01): 9-17.
    25刘锦阳,洪嘉振.卫星太阳电池阵在板展开阶段的撞击特性研究.空间科学学报, 2000, (01): 61-68.
    26 Pritchard W S, Duke D W, Coburn K L, et al. Eeg-Based, Neural-Net Predictive Classification of Alzheimer's Disease Versus Control Subjects Is Augmented by Non-Linear Eeg Measures. Electroencephalography and Clinical Neurophysiology, 1994, 91(2): 118-130.
    27刘暾,杨大明.挠性卫星动力学及姿态控制模型的建立.哈尔滨工业大学学报, 1985, (A8): 1-17.
    28 Murakami T, Yu F, Ohnishi K. Torque Sensorless Control in Multidegree-of-Freedom Manipulator. Industrial Electronics, IEEE Transactions on, 1993, 40(2): 259-265.
    29 Wang J T. A Conservation Theorem for Constrained Multibody Systems. Journal of Applied Mechanics, 1993, 60(4): 962-969.
    30 Lankarani H M, Nikravesh P E. A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems. Journal of Mechanical Design, 1990, 112(3): 369-376.
    31 Yansheng Y, Gang F, Junsheng R. A Combined Backstepping and Small-Gain Approach to Robust Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 2004, 34(3): 406-420.
    32熊启家.基于空间算子代数理论的链式多体系统递推动力学研究.南京航空航天大学博士论文, 2003
    33 Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid Registration Using Free-Form Deformations: Application to Breast Mr Images. Medical Imaging, IEEE Transactions on, 1999, 18(8): 712-721.
    34 Lewis F L, Liu K, Yesildirek A. Neural Net Robot Controller with Guaranteed Tracking Performance. Neural Networks, IEEE Transactions on, 1995, 6(3): 703-715.
    35 Joslin R D, Thomas R H, Choudhari M M. Synergism of Flow and Noise Control Technologies. Progress in Aerospace Sciences, 2005, 41(5): 363-417.
    36魏承.空间柔性机器人在轨抓取与转移目标动力学与控制.哈尔滨工业大学博士论文, 2010
    37刘锦阳,洪嘉振.空间伸展机构接触碰撞的动力学分析.宇航学报, 1997, (03): 15-20, 26.
    38 Jain A, Rodriguez G. Diagonalized Lagrangian Robot Dynamics. Robotics and Automation, IEEE Transactions on, 1995, 11(4): 571-584.
    39 Vanecek G, Brep-index J. A Multidimensional Space Partitioning Tree. Internet. J. Comput. Geom.Appl, 1, 1991, 3: 243-261.
    40 Johnson L, Young R M, Montgomery Iv E E. Recent Advances in Solar Sail Propulsion Systems at Nasa. Acta Astronautica, 2007, 61(1): 376-382.
    41 Leipold M, Eiden M, Garner C E, et al. Solar Sail Technology Development and Demonstration. Acta Astronautica, 2003, 52(2): 317-326.
    42 Moore M, Wilhelms J. Collision Detection and Response for Computer Animation. SIGGRAPH Comput. Graph., 1988, 22(4): 289-298.
    43 Geiger B. Real-Time Collision Detection and Response for Complex Environments//Computer Graphics International, 2000. Proceedings. 2000: 105-113.
    44 Reggiani M, Mazzoli M, Caselli S. An Experimental Evaluation of Collision Detection Packages for Robot Motion Planning//Lausanne, Switzerland: Proceedings of the 2002 IEEE/RSJ Conference on Intelligent Robots and System, 2002. 2002: 2329-2334.
    45 Benitez A, Ramirez M d C, Vallejo D. Collision Detection Using Sphere-Tree Construction//Proceedings of the 15th International Conference on Electronics,Communications and Computers, 2005
    46 Jung Hua Y, Feng Li L, Li Chen F. Nonlinear Adaptive Control for Flexible-Link Manipulators. Robotics and Automation, IEEE Transactions on, 1997, 13(1): 140-148.
    47 Sugar T G, Kumar V. Control of Cooperating Mobile Manipulators. Robotics and Automation, IEEE Transactions on, 2002, 18(1): 94-103.
    48 Raymond M B. Formulation of Rigid Body Impact Problems Using Generalized Coefficients. International Journal of Engineering Science, 1998, 36(1): 61-71.
    49 Rodriguez G. Random Field Estimation Approach to Robot Dynamics. Systems, Man and Cybernetics, IEEE Transactions on, 1990, 20(5): 1081-1093.
    50 Riley W F, Sturges L D. Engineering Mechanics Dynamics: 1996
    51樊晓平,徐建闽,毛宗源等.受限柔性机器人臂的鲁棒变结构混合位置/力控制.自动化学报, 2000, (02): 176-183.
    52 Kazerooni H. Automated Robotic Deburring Using Impedance Control. Control Systems Magazine, IEEE, 1988, 8(1): 21-25.
    53 Kazerooni H. Automated Roboting Deburring Using Electronic Compliancy; Impedance Control//Robotics and Automation. Proceedings. 1987 IEEE International Conference on. 1987: 1025-1032.
    54 Raibert M H, Craig J J. Hybrid Position/Force Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2): 126-133.
    55 Hoshikawa T, Sudou A. Dynamic Hybrid Position/Force Control of Robot Manipulators: Online Estimation of Unknown Constraint//Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on. 1990: 1231-1236 vol.1232.
    56陈文楷,石英,崔刚等.基于模糊神经的柔性臂变负载控制方法.控制工程, 2009, (06): 717-719, 786.
    57董文彬,肖利红.基于fuzzy—Pid控制的变负载模拟技术的研究.航天控制, 2010, (02): 63-69.
    58 Liang L, Liu T X, Wei C, et al. Space Robot Self-Assembling Dynamics and Control//2nd International Conference on Manufacturing Science and Engineering, ICMSE 2011. 2011: 2062-2066.
    59 Liu T X, Liang L, Wei C, et al. Space Robot Self-Assembling Parameter Analysis. Advanced Materials Research, 2011, 308-310: 1975-1980.
    60 Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix. Robotics and Automation, IEEE Transactions on, 1989, 5(3): 303-314.
    61 Oda M. Motion Control of the Satellite Mounted Robot Arm Which AssuresSatellite Attitude Stability. Acta Astronautica, 1997, 41(11): 739-750.
    62 Papadopoulos E, Dubowsky S. Coordinated Manipulator/Spacecraft Motion Control for Space Robotic Systems//Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on. 1991: 1696-1701 vol.1692.
    63 Wei C, Liu T X, Zhao Y. Grasping Strategy in Space Robot Capturing Floating Target. Chinese Journal of Aeronautics, 2010, 23(5): 591-598.
    64刘天喜.浅层月壤采样过程的机土耦合作用研究.哈尔滨工业大学硕士论文, 2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700