航天器轨道理论在空间目标编目管理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对空间目标的编目管理可以追溯到1957年第一颗人造地球卫星的发射升空。随着空间科学的日益发展,空间目标编目管理的应用范围已经从起初的军事领域扩展到了民用领域,并且贯穿从卫星发射、在轨运行到陨落返回的整个卫星生命周期。尤其是近年来随着空间碎片对航天活动的威胁正在逐渐增大,为了有效的减小空间碎片与在轨卫星的碰撞风险,对空间目标编目管理的需求愈加迫切。这是因为,编目管理的工作不仅可以保证航天任务的顺利进行,而且可以降低空间碎片环境进一步恶化的风险。
     这篇论文主要论述的是航天器轨道理论在空间目标编目管理中的应用。涉及编目管理中包括精密定轨、新目标编目和轨道预报在内的多个数据处理环节。
     文章的绪论部分主要是关于空间目标编目管理系统的介绍。重点描述了编目管理的数据处理流程,以及相应的数据处理方法。其目的在于从整体上介绍空间目标编目管理系统的运行方式,描述各个数据处理环节中的技术方法和难点,为论文主体内容的阐述做铺垫。
     第一章是对SGP4/SDP4轨道原理及其计算方法的深入分析。SGP4/SDP4是与美国空间监测网发布的两行根数(TLE)相匹配的轨道预报模型。由于TLE数据是目前全球公开发布的编目数量最多并且应用最为广泛的空间目标编目数据,因此有必要通过对SGP4/SDP4模型的研究从原理上分析TLE数据预报的精度。本章全面深入的阐述了SGP4/SDP4模型中构造受摄运动方程分析解的数学方法。具体而言,对于适用于低轨空间目标轨道预报的SGP4模型,描述了在保守力作用下通过正则变换构造运动分析解的方法,并且将其扩展到非保守系统,进而建立加入了大气阻力摄动作用情况下的轨道预报模型。对于适用于中高轨空间目标轨道预报的SDP4模型,文章描述了第三体摄动力分析解的构造方法,并且分析了在共振条件下地球非球形引力田谐项摄动分析解的构造过程。对两个模型涉及的坐标系和平均根数(特别是轨道半长径)的确切含义作了相应的阐述。
     第二章是对精密定轨理论及其应用的研究。本章的第一部分是对精密定轨基本理论的阐述,包括非线性系统的线性化过程,测量矩阵、状态转移矩阵的计算方法,并且描述了两种最优估计方法。第二部分是对精密定轨中星历计算方法的描述,包括数值法和分析法两种方法。阐述了利用拟平均根数法构造分析法星历计算模型的过程。通过构造地球同步轨道空间目标在J2项和J22项作用下的运动分析解,分析了由于拟平均根数法中对积分函数的近似所造成的补偿项对星历计算精度的影响。第三部分是精密定轨理论在实测数据处理中的应用。采用的是神舟六号的实测数据,分别利用数值法和分析法两种模型进行精密定轨,并且通过GPS数据对精密定轨的精度进行了分析。其中在分析法精密定轨中采用的是利用拟平均根数法构造的百米级精度分析法星历计算模型。
     第三章是对空间口标编目管理中新目标编目确认方法的研究。在没有外来引导数据的情况下,增加空间口标编口数量的主要途径就是通过对未关联目标的数据处理实现新口标的编目和确认。本章主要是对未关联数据处理方法的论述,其中包括初轨计算、轨道关联、精密定轨三个环节。初轨计算采用的是经典的Laplace方法。在轨道关联中考虑到初轨计算的误差特征,选取近地点高度、轨道倾角和升交点赤经作为用于关联的轨道量。在精密定轨中,为了避免由于轨道初值误差过大导致的定轨失败,采取了减少待估参数的办法。这一方面可以扩大精密定轨中多变元迭代的收敛范围,另一方面可以对定轨初值进行很好的修正。本章的最后一个部分,通过对观测设备产生的未关联数据进行处理,证实了本章建立的方法能够对未关联数据进行有效的利用,实现新目标的编目和确认。
It has been over50years since the beginning of the space object cataloging (SOC) when it only served for military purpose. As the development of space science, nowadays the SOC serves for many peacetime uses. As the increase of the number of space debris, the application of the SOC has become critical to avoid the collision of space debris in order to guarantee the success of space mission and mitigate the increase of the number of space debris.
     The article is about the application of satellite orbit theory in maintaining the space object catalogue, which covers main aspects of cataloging, including orbit propagation, precise orbit determination (POD), correlation and the cataloging of new objects.
     The first part of the article is an introduction of the cataloging system, in order to show the flow of data process and the main methods of the SOC. The main area of the research in maintaining the space object catalogue is also introduced in this part of the article.
     Chapter1is an in-depth research on the SGP4/SDP4model which is used for the propagation of TLE data. It is important to analyze the propagation accuracy of TLE since it is the largest and most widely used space object catalog in the world. The details of formulating the analytical propagation model are described in this chapter. The method of von Zeipel is introduced to formulate the conservative part of SGP4model which is used for the propagation of LEO objects. Some modification is also introduced in order to formulate the non-conservative part of the model caused by atmosphere perturbation. For the SDP4model which is usually used for the propagation of MEO and GEO objects, the formulation of the third body gravitation and the resonance effect caused tesseral harmonic part of the Earth gravity is also analyzed in this chapter.
     Chapter2is about the theory and application of POD. In the first part, the POD theory is introduced, including the linearization of the nonlinear system, the formulation of computing the observation and state transition matrix, and the method of optima estimation. In the second part, two methods of ephemeris computation are introduced, including the numerical integration and analytical method. The method of quasi-analytical average is introduced to formulate the analytical model. In order to show the effect of compensation terms induced by the approximation of integrated functions when using the quasi-analytical average method, the propagation model of GEO objects is formulated under the influence of J2and J22 terms. The last part of this chapter is about the application of POD theory based on the observations of Shenzhou-6. Both numerical and analytical methods are applied in the POD and GPS data is introduced to show the accuracy of the results.
     Chapter3is about the research of new object cataloging. New object cataloging can be considered as the main approach to increase the number of catalog object. The new object cataloging can be realized by processing the uncorrelated observation data, which includes3parts. The first part is about the initial orbit determination (IOD) using method Laplace. The second part is about orbit correlation. The height of perigee, inclination and right ascension of ascending node (RAAN) are chosen as characteristic quantity in the orbit correlation considering the character of the error of IOD process. The third part is about the POD process. In order to enlarge the convergence area and to modify the initial value of the orbit elements, two strategies of reducing the number of estimation parameters is investigated. The last part of this chapter is about the application of new object cataloging which shows the effectiveness of the method of uncorrelated data process.
引文
刘林(1974),人造地球卫星在临界倾角附近运动的解,天文学报,15(2):230-240
    刘林(1992),人造地球卫星轨道力学,高等教育出版社.
    刘林,张强,廖新浩(1998),人卫精密定轨中的算法问题,中国科学(A辑),28(9):848-856.
    刘林(2000),航天器轨道理论,国防工业出版社.
    刘林,胡松杰,王歆(2006),航天动力学引论,南京大学出版社
    汤靖师,刘林(2010),近地卫星运动的坐标系附加摄动在拟平均根数法中的处理,天文学报,51(1)
    Akins, K., Healy, L. M., Coffey, S. L., Picone, J. M.(2003), Comparison of MSIS and Jacchia atmospheric density models for orbit determination and propagation,13th AAS/AIAA Space Flight Mechanics Meeting., AAS:03-165, Ponce, Puerto Rico
    Allen, T. (1997), US Naval Space Command Space Surveillance System., available online: http://www.globalsecurity.org/space/library/report/1997/spasur_at.htm
    Boers, J., Coffey, S., Barnds, W. J., Johns, D., Davis, M., Seago, J. (2000), Accuracy Assessment of the Naval Space Command Special Perturbation Cataloging System., AAS/AIAA Space Flight Mechanics Meeting, Clearwater,23-26 January, AAS Paper 00-183.
    Bowman, B., A First Order Semi-Analytic Perturbation Theory for Highly Eccentric 12 Hour Resonating Satellite Orbits, 1st Aero space Control Squadron Report, Colorado Springs, CO, Nov.1971
    Brouwer, D., Solution of the Problem of Artificial Satellite Theory Without Drag, U.S Air Force Cambridge Research Center, Geophysics Research Directorate, AFCRC-TN-59-638, Bedford, MA, Oct,1959.
    Brouwer, D., Solution of the Problem of Artificial Satellite Theory without Drag,1959, Astronomical Journal,64:378-397.
    Brouwer, D. and Hori, G., Theoretical evaluation of atmospheric drag effects in the motion of an artificial satellite,1961, Astronomical Journal,66:193-265.
    Capitaine, N., J.G. Willianms, P.K. Seidelmann (1985), Clarifications concerning the definition and determination of the celestial ephemeris pole., Astron. Astrophys.146, pp.381-383.
    Coffey, S. L., Jenkins, E., Neal, H. L., Reynolds, H. (1996), Parallel Processing of Uncorrelated Observations into Satellite Orbits., AAS/AIAA Space Flight Mechanics Meeting, Austin, TX,12-15 February, AAS Paper 96-146.
    Coffey, S. L., Neal, H. L., Vissel, C. L.. Conolly, P.. Demonstration of a Special-Perturbations-Based Catalog in the Naval Space Command System., AAS/AIAA Space Flight Mechanics Conference, Breckenridge, CO,21-25 January. AAS Paper 98-113.
    Deutsch, R. (1965), Estimation Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ.
    Flohrer, T., Schildknecht, R., Musci, R., Stoveken, E. (2005), Performance estimation for GEO space surveillance., Advances in Space Research, Volume 35, Issue 7, pp.1226-1235.
    Folkner, W.M., P. Chariot, M.H. Finger, J.G. Williams, O.J. Sovers, XX Newhall, E.M. Standish (1994), Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements., Astron. Astrophys.287, pp.279-289.
    Gambis, D.(1997),1997 IERS Annual Report., International Earth Rotation Service, Central Bureau, Observatoire de Paris, July,1998.
    Gauss, K. F. (1809), Theoria Motus Corporum Coelestium, (Translated into English:Davis, C. H., Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, Dover, New York, 1963)
    Gill, S., Wilkes, M. V. (1950), A Process for the Step-by-Step Integration of Differential Equations in an Automatic Digital Computing Machine., Proceedings of the Cambridge Philosophical Society, Vol. 47, pp.96-108.
    Groves, G. V. (1970), Seasonal and Latitudinal Models of Atmospheric Temperature, Pressure, and Density, 25 to 110km., Air Force Cambridge Laboratories Report 70-2061.
    Harris, I., Priester, W. (1965), Atmospheric Structure and Its Variations in the Region from 120 to 800km., COSPAR International Reference Atmosphere, Space Research IV, North Holland Publishing Co., Amsterdam.
    Hilton, C. G. and Kuhlman, J. R., Mathematical Models for the Space Defense Center, Philcao-Ford Corp., Publ. U-3871, Newport Beach, CA, Nov.1966, pp.17-28.
    Hoots, F.R., Reformulation of the Brouwer Geopotential Theory for Improved Computational Efficiency, 1981, Celestial Mechanics, vol.24:367-375
    Hoots, F. R. and Glover, R. A., History of Analytical Orbit Modeling in the U.S. Space Surveillance System,2004, Journal of Guidance Control and Dynamics, Vol.27, No.2.
    Hoots, F. R. and Roehrich, R. L., Models for propagation of NORAD element sets., Spacetrack Report NO. 3, Peterson Air Force Base,1980.
    Hriadil, F. (1975), Solution of a Special Class of Second-Order Differential Equations through the use of Higher Order Runge-Kutta-Nystrom Techniques., MIT, M.S. Thesis.
    Hujsak, R.S., A restricted four-body solution for resonating satellites without drag, Spacetrack Report NO. 1, Peterson Air Force Base,1979.
    Jacchia, L. G. (1970), New static models of the thermosphere and exosphere with empirical temperature models. SAO Special Report NO.313.
    Jacchia, L. G. (1971), Revised Static Models for the Thermosphere and Exosphere with Empirical Temperature Profiles, SAO Special Report NO.332.
    Kaplan, G. H. (1981), The IAU Resolution on Astronomical Constants, Time Scales, and the Fundamental Reference Frame., Circular No.163, U.S. Naval Observatory, Washington DC, December 10
    Kaula, W. M., Theory of Satellite Geodesy, Blaisdell Publishing, Mass.,1966.
    Kovalevsky, J., L. Lindegren, M. A. C. Perryman, P. D. Hemenway, K. J. Johnston, V. S. Kislyuk, J. F. Lestrade, L.V. Morrison, I. Platais, S. Roser, E. Schilbach, H.-J. Tucholke, C. de Vegt, J. Vondrak, F. Arias, A. M. Gontier, F. Arenou, P. Brosche, D. R. Florkowski, S. T. Garrington, R. A. Preston, C. Ron, S. P. Rybka, R.-D. Scholz, N. Zacharias (1997), "The Hipparcos Catalogue as a realisation of the extragalactic reference system.", Astron. Astrophys.323,620-633.
    Kozai, Y., The Motion of a Close Earth Satellite, Astronomical Journal, Vol.64, No.1274,1959, pp. 367-377
    Kutta, W. Z. (1901), Math. Phys.,46,435.
    Kyner, W. T., Averaging Method in Celestial Mechanics, The Theory of Orbits in the Solar System and in Stellar Systems, edited by George ConTopoulous, Academic Press, London and New York,1966.
    Lane, M. H. The Development of an Artificial Satellite Theory Using Power-Law Atmospheric Density Representation, AIAA Paper 65-35, Jan.1965.
    Lane. M. H. and Cranford, K.H., An Improved Analytical Drag Theory for the Artificial Satellite Problem, 1969. AIAA Paper, NO.69-0925.
    Lane, M. H., Fitzpatrick, P. M., and Murphy, J. J., On the Representation of Air Density in Satellite Deceleration Equations by Power Functions with Integral Exponents,1962, Spacetrack Report NO. APGC-TDR-62-15.
    Lane, M. H. and Hoots, F. R., General Perturbations Theories Derived from the 1965 Lane Drag Theory, Project SPACETRACK, Rept.2, U.S. Air Force Aerospace Defense Command, Colorado Springs, CO, Dec.1979.
    Liou, J. C. (2010), A Parametric Study on Using Active Debris Removal for LEO Environment Remediation., Paper A6.2.5, International Astronautical Conference, Prague, Sep.
    Liu, J., Satellite Motion About an Oblate Earth, AIAA Journal, Vol 12, No.11, November 1974, pp 1511-1516.
    Lyddane, R., Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite,1963, Astronomical Journal, Vol.68:555-558.
    McCarthy, D. D., B.J. Luzum (1991), Prediction of Earth Orientation., Bulietin Geodesique,65, p.18-21.
    McCarthy, D. D. (ed.) (1996), IERS Conventions 1996., IERS Technical Note 21, U.S. Naval Observatory, Washington DC.
    Michal, Th., Eglizeaud, J. P., Bouchard, J. (2005), GRAVES:The new French System for Space Surveillance, Proceedings of the 4th European Conference on Space Debris (ESA SP-587), Darmstadt, Germany.
    Morrison, J.A., The Generalized Method of Averaging and the Von Zeipel Method,1966, AIAA Paper, NO. 65-687.
    Neal, H. L., Coffey, S. L., Knowles, S. (1997), Maintaining the Space Object Catalog with Special Perturbations., AAS/AIAA Astrodynamics Conference, Sun Valley, August, AAS Paper 97-687.
    Nicolet, M. (1959), Constitution of the Atmosphere at Ionospheric Levels, J. Geophys. Research,64, 2092-2101.
    Picone, J. M., Hedin, A. E., Drob D. P., Aikin, A. C. (2002), NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues. J. Geophys. Res.,107(A12):1468.
    Schumacher, P. W. (1991), NAVSPASUR Orbital Processing for Satellite Break-Up Events.,4th Annual Workshop on Space Operations Applications and Research, NASA CP-3103, pp.718.
    Schumacher, P. W. (1996), Prospects for Improving the Space Catalog. Paper AIAA 96-4290 AIAA/AAS Space Programs and Technology Conference, Huntsville AL 26-29 September.
    Seago, J., and Vallado, D.(2000), Coordinate Frames of the U.S. Space Object Catalogs., Paper AIAA 2000-4025 presented at the AIAA/AAS Astrodynamics Specialist Conference. Denver, CO.
    Rossi, A.(2005), The Earth Orbiting Space Debris, Serbian Astronomical Journal, No.170, pp:1-12.
    Tapley, B. D., B. E. Schutz, and G. H. Born (2004), Statistical Orbit Determination, Elsevier Academic Press.
    Vallado, D. A., Fundamentals of Astrodynamics and Applications (3rd Edition), Microcosm Press.
    Uhlmann, J. K. (1992), Algorithms for Multiple-Target Tracking., American Scientist, vol.80, March-April pp.128-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700