弹性材料及超弹性材料中波传播问题的间断Galerkin有限元方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对材料学中三种材料:棒状非线性弹性复合材料、细柱状非凸弹性材料以及杆状可压缩超弹性材料中波在传播过程中追赶碰撞问题以及波的相变问题进行研究。利用(局部)间断Galerkin方法及自适应Runge-Kutta间断Galerkin (RKDG)方法进行数值模拟。本文内容大致分成四个部分。
     第一部分针对棒状非线性弹性复合材料,其模型方程可以看成是守恒律方程组,但是由于不同材料的(两层)复合,模型方程中流通量项出现间断,且在模型方程的右端源项出现δ函数,这些都给数值格式的设计增加了困难。由于流通量项的不连续性,因此在处理数值流通量的时候需要注意。另外由于物理界面的存在,波发生反射和透射,因此方程的解会包含多个激波,从而也增加了问题的难度。我们首先从物理的角度,引入耗散率和物理容许解的概念,证明间断Galerkin (DG)格式的能量稳定性和DG解是物理容许解。然后借助于耗散率,我们提出一种dissipation-rate reserving DG格式,并通过数值算例比较说明该格式的优点。最后我们利用dissipation-rate reserving DG格式数值模拟了复合材料中波在传播过程中发生碰撞的细节,包括拉伸激波、压缩激波和稀疏波之间的碰撞,并给出了详细的碰撞时间和位置;通过选取四组不同参数比较碰撞之后拉伸波的幅值减小率来说明参数的影响,结果也验证了材料的非线性性能够使得材料中具有破坏性的拉伸波降低幅值达400%。这也表明这样的非线性弹性材料具有很好的抗冲击能力。最后我们考虑应力参数ε以及右边界对波的影响,还有四层复合材料中材料排列方式对材料保护的影响。
     第二部分针对细柱状非凸弹性材料,由于应力-应变关系的非凸性,将会导致解的不适定性,因此在材料中考虑柱体径向变形的影响得到新的模型方程,正是这种影响使得新的模型方程中包含高阶时间导数项,从而增加求解的难度。为了便于使用局部间断Galerkin (LDG)方法进行求解,我们引入新的时间辅助变量从而将模型方程转化为只具有一阶的时间导数的方程组,针对这-方程组设计了LDG方法。其次证明了LDG格式的稳定性,并通过数值算例给出LDG格式的精度:在L1模和L∞模意义下应变γ具有k+1阶精度。最后利用LDG格式进行了一系列数值模拟,由于色散和材料非凸性的影响,我们观察到了一些有趣的波动模式(wave pattern),例如,transformation front与类似于孤立子的波组成的波动模式和稀疏波与类似于孤立子的波组成的波动模式等等:另外我们给出了稀疏波与transformation fronts碰撞的详细过程。
     第三部分针对杆状可压缩超弹性材料,其模型方程(可压缩超弹性杆波动方程)与Camassa-Holm方程形式很一致,但是在非线性项多一个常数系数γ。正是由于常数系数γ的存在,使得模型方程不再具有好的性质(例如可积性)。模型方程所具有的多种类型波(例如紧孤立波,孤立子波波)是我们重点考察对象,我们利用LDG格式数值模拟这些类型波之间的相互碰撞,发现一些有趣的现象:紧孤立波、孤立子波在Gauss扰动下仍然是稳定的;两个相向的紧孤立波之间碰撞后以及两个右行孤立子波之间碰撞后均有类似于cuspon波形出现;两个紧孤立波碰撞后会出现两个孤立子波;三个紧孤立波碰撞后会出现三个大小不同的孤立子波;一个右行紧孤立波与一个孤立子波碰撞后会出现两个大小不同的孤立子波。
     第四部分同样针对棒状非线性弹性复合材料波的传播问题,从第一部分的数值计算结果可以看出应变γ包含多个激波,因此采用较大数目的网格进行模拟来抓住激波的信息,但是网格数目增大同时也大大增加了计算量。因为DG方法具有易于实现自适应的优点,我们采用自适应RKDG方法并结合KXRCF指示子(indicator)和TVB指示子这两种不同的指示子进行模拟,对是否需要TVB重构、参数M、有无耗散DG格式以及Pk元(所有次数不超过k的多项式)等多方面的影响进行考虑。总体而言,TVB指示子的计算结果要比KXRCF指示子好,因为存在的振荡少些。但是激波处出现少许光滑化的现象,因此还需通过选取合适的M值以使得结果更为精确。
In this thesis, we mainly focus on three types of materials:nonlinearly elastic composite bar, non-convex elastic slender cylinder and compressible hyper-elastic rod, and study the wave catching-up and collision phenomena and the phase transition in wave propagation in these materials. We use (local) discontinuous Galerkin method and adaptive Runge-Kutta discontinuous Galerkin method for numerical simulation.
     There are four parts in this thesis. In the first part, we consider nonlinearly e-lastic composite bar, in which the model equations is conservation laws. The model equations contain a discontinuous flux and a source term with a δ-function due to the materials'composition. These set difficulties for the design of numerical schemes. Some attention should be paid to deal with the numerical fluxes for the discontinuity of the flux. In addition, the waves can reflect and transmit at the physical interface, and the solutions contain many shock waves, which also increase the difficulty for the problem. From the point of physics, we first introduce the concept of dissipation rate and physically admissible solution. Then, by virtue of the dissipation rate, we develop a dissipation-rate reserving discontinuous Galerkin method and give numerical simula-tions to demonstrate the advantage of the scheme. In the end, we use the dissipation-rate reserving discontinuous Galerkin scheme to simulate the details of the interactions of waves at the propagation process, which include the interactions between tensile shock wave, compressive shock and rarefaction wave. We give the detailed times and po-sitions for the interactions. We also examine how material parameters influence the reduction ratio by four different group of parameters. These results confirm that when the stress-strain relation of the second nonlinearly elastic material is convex, the tensile wave can indeed catch the previously transmitted compressive wave. The simulation results by the discontinuous Galerkin method show that the catching-up phenomena can reduce the magnitude of the tensile wave by more than400%. They also show that the non-linear elastic materials have excellent impact resistance.
     In the second part, we focus on the impact-induced wave in a slender cylinder composed of a non-convex elastic material. This system is not well-posed due to the non-convexity of the stress-strain relation. A new model equation can be obtained by considering the effects of the radial deformation and traction-free condition on the lateral surface. There are higher order time derivative terms that increase the difficulty for solving. We introduce new time auxiliary variables into the equation so that the model equations can be written as a system with first-order time derivative. Then we present the stability of the local discontinuous Galerkin scheme. The method with pk elements (denoting all polynomials of degree at most k) gives a uniform (k+1)-th order of accuracy forγ in both Ll and L∞norms through one example. In the end, we use local discontinuous Galerkin scheme for a series of simulation, there are some interesting wave patterns, due to the effect of the dispersion and the non-convexity of material, such as the wave pattern with transformation front and solitary wave, the wave pattern with rarefaction wave and solitary wave. We also investigate the interaction of transformation fronts and rarefaction waves, and demonstrate the interesting wave phenomena.
     In the third part, we consider the travelling waves in a compressible hyper-elastic rod. The model equation (compressible hyper-elastic rod wave equation) for the ma-terial is similar to the form of Camassa-Holm equation, and there is another constant coefficientλfor the nonlinear term. Therefore, we can refer to the numerical scheme of Camassa-Holm equation for that of this model equation. The Camassa-Holm equation is a completely integrable equation. Unfortunately, the property of completely inte-grable isn't enjoyed by the current model equation when λ≠1. But interestingly, the model equation when λ<0shares traveling waves such as compacton waves, soliton waves. We will focus on these traveling wave, and give numerical simulation for inter-action between these wave.Some unexpected phenomena are found. For example, the compacton and soliton wave are stable with a Gaussian perturbation. After the collision of the two compacton waves, two soliton waves occur. After the collision of the three compactons, three solitons occur. After the collision of compacton wave and soliton wave, the profiles of the finally separated wave from them are likely with that of one soliton wave.
     In the fourth part, we continue to consider the wave catching-up phenomena in a nonlinearly elastic composite bar. The solutions contain many shock waves. We use a large-number mesh to capture the information of shock wave, but which unfortunate-ly increases the cost of computation. The discontinuous Galerkin method shares the advantage of easy adaptive implementation since there is no need of continuity on cel-1interface. Therefore, we use adaptive Runge-Kutta discontinuous Galerkin method with KXRCF indicator and TVB indicator to simulate. We consider the effects of the TVB reconstruction, the parameter M, the discontinuous Galerkin scheme with dissi-pation and Pk element, etc. Overall, The results by TVB indicator are better than that by KXRCF indicator, because there is less oscillation. However, there occurs some s-mearing phenomena. Therefore, we need to select an appropriate parameter M to make the results more accurate.
引文
[1]陆明万.弹性理论基础(下册).清华大学出版社,1990.
    [2]王礼立.应力波基础第2版.国防工业出版社,2005.
    [3]Rohan Abeyaratne and James K. Knowles. Kinetic relations and the propagation of phase boundaries in solids. Archive for Rational Mechanics and Analysis,114(2):119-154,1991.
    [4]Rohan Abeyaratne and James K. Knowles. Evolution of phase transitions:a continuum theo-ry, volume 10. Cambridge University Press,2006.
    [5]Jan Achenbach. Wave propagation in elastic solids. Elsevier,1984.
    [6]Slimane Adjerid, Karen D Devine, Joseph E Flaherty, and Lilia Krivodonova. A posteri-ori error estimation for discontinuous galerkin solutions of hyperbolic problems. Computer Methods in Applied Mechanics and Engineering,191(11):1097-1112,2002.
    [7]Igor V. Andrianov, Vladyslav V. Danishevs'kyy, Heiko Topol, and Dieter Weichert. Homog-enization of a ID nonlinear dynamical problem for periodic composites. ZAMM Journal of Applied Mathematics and Mechanics,91(6):523-534,2011.
    [8]Robert Artebrant and Hans Joachim Schroll. Numerical simulation of Camassa-Holm peakons by adaptive upwinding. Applied Numerical Mathematics,56(5):695-711,2006.
    [9]Derek S. Bale, Randall J. Leveque, Sorin Mitran, and James A. Rossmanith. A wave prop-agation method for conservation laws and balance laws with spatially varying flux functions. SIAM Journal on Scientific Computing,24(3):955-978,2002.
    [10]J Banhart and J Baumeister. Deformation characteristics of metal foams. Journal of Materials Science,33(6):1431-1440,1998.
    [11]Carlos Erik Baumann and J. Tinsley Oden. An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics. International Journal for Numerical Methods in Engineering,47(1-3):61-73,2000.
    [12]A. Berezovski, M. Berezovski, and J. Engelbrecht. Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Materials Science and Engineering A, 418(1-2):364-369,2006.
    [13]M Berezovski, A Berezovski, and J Engelbrecht. Wave propagation in heterogeneous materials with secondary substructure. Advances in Heterogeneous Material Mechanics, pages 747-755,2011.
    [14]Philippe Boulanger and Michael Hayes. Finite-amplitude waves in mooney-rivlin and hadamard materials. In M. Hayes and G. Saccomandi, editors, Topics in Finite Elasticity, volume 424 of CISM Courses Lect., pages 131-167. Springer, New York,2001.
    [15]Zongxi Cai and Hui-Hui Dai. Phase transitions in a slender cylinder composed of an in-compressible elastic material. II. Analytical solutions for two boundary-value problems. Pro-ceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences,462(2066):419-438,2006.
    [16]Roberto Camassa and Darryl D. Holm. An integrable shallow water equation with peaked solitons. Physical Review Letters,71(11):1661-1664,1993.
    [17]Joe J Carruthers, AP Kettle, and AM Robinson. Energy absorption capability and crashworthi-ness of composite material structures:a review. Applied Mechanics Reviews,51(10):635-649, 1998.
    [18]B. E. Clements, J. N. Johnson, and R. S. Hixson.Stress waves in composite materials. Phys. Rev. E,54:6876-6888, Dec 1996.
    [19]Bernardo Cockburn and Huiing Gau. A model numerical scheme for the propagation of phase transitions in solids. SIAM Journal on Scientific Computing,17(5):1092-1121,1996.
    [20]Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu. The Runge-Kutta local projection dis-continuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Mathematics of Computation,54(190):545-581,1990.
    [21]Bernardo Cockburn, GE Karniadakis, and Chi-Wang Shu. Discontinuous galerkin methods: theory, computation and applications. Technical report, Brown University, Providence, RI (US),2000.
    [22]Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu. TVB Runge-Kutta local projection dis-continuous Galerkin finite element method for conservation laws. Ⅲ. One-dimensional sys-tems. Journal of Computational Physics,84(1):90-113,1989.
    [23]Bernardo Cockburn and Chi-Wang Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation,52(186):411-435,1989.
    [24]Bernardo Cockburn and Chi-Wang Shu. The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modelisation Mathematique et Analyse Numerique,25(3):337-361,1991.
    [25]Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis,35(6):2440-2463,1998.
    [26]Bernardo Cockburn and Chi-Wang Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. Journal of Computational Physics, 141(2):199-224,1998.
    [27]Bernardo Cockburn and Chi-Wang Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing,16(3):173-261,2001.
    [28]G. M. Coclite, H. Holden, and K. H. Karlsen. Global weak solutions to a generalized hyperelastic-rod wave equation. SLAM Journal on Mathematical Analysis,37(4):1044-1069, 2005.
    [29]Giuseppe Maria Coclite, Kenneth H. Karlsen, and Nils Henrik Risebro. An explicit finite difference scheme for the Camassa-Holm equation. Advances in Differential Equations,13(7-8):681-732,2008.
    [30]David Cohen and Xavier Raynaud. Geometric finite difference schemes for the general-ized hyperelastic-rod wave equation. Journal of Computational and Applied Mathematics, 235(8):1925-1940,2011.
    [31]David Cohen and Xavier Raynaud. Convergent numerical schemes for the compressible hy-perelastic rod wave equation. Numerische Mathematik,122(1):1-59,2012.
    [32]A. Constantin and H. P. McKean. A shallow water equation on the circle. Communications on Pure and Applied Mathematics,52(8):949-982,1999.
    [33]Adrian Constantin and Walter A. Strauss. Stability of a class of solitary waves in compressible elastic rods. Physics Letters. A,270(3-4):140-148,2000.
    [34]Hui-Hui Dai. Non-existence of one-dimensional stress problems in solid-solid phase transi-tions and uniqueness conditions for incompressible phase-transforming materials. Comptes Rendus Mathematique. Academie des Sciences. Paris,338(12):981-984,2004.
    [35]Hui-Hui Dai and Zongxi Cai. Phase transitions in a slender cylinder composed of an incom-pressible elastic material. I. Asymptotic model equation. Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences,462(2065):75-95,2006.
    [36]Hui-Hui Dai, Debin Huang, and Liu Zengrong. Singular dynamics with application to singular waves in physical problems. Journal of the Physical Society of Japan,73(5):1151-1155,2004.
    [37]Hui-Hui Dai and Yi Huo. Solitary shock waves and other travelling waves in a general com-pressible hyperelastic rod. The Royal Society of London. Proceedings. Series A. Mathematical, Physical and Engineering Sciences,456(1994):331-363,2000.
    [38]Hui-Hui Dai and De-Xing Kong. Global structure stability of impact-induced tensile waves in a rubber-like material. IMA Journal of Applied Mathematics,11(1):14-33,2006.
    [39]Hui-Hui Dai and De-Xing Kong. The propagation of impact-induced tensile waves in a kind of phase-transforming materials. Journal of Computational and Applied Mathematics,190(1- 2):57-73,2006.
    [40]Hui-Hui Dai and Zhenli Xu. Impact-induced wave patterns in a slender cylinder composed of a non-convex elastic material. In AIP Conference Proceedings, volume 1029, page 77,2008.
    [41]Kostas Danas, SV Kankanala, and Nicolas Triantafyllidis. Experiments and modeling of iron-particle-filled magnetorheological elastomers. Journal of the Mechanics and Physics of Solids, 60(1):120-138,2012.
    [42]C. Eskilsson. An hp-adaptive discontinuous Galerkin method for shallow water flows. Inter-national Journal for Numerical Methods in Fluids,67(11):1605-1623,2011.
    [43]Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. A self-adaptive moving mesh method for the Camassa-Holm equation. Journal of Computational and Applied Mathematics, 235(1):229-243,2010.
    [44]Cristian Faciu and Mihaela Mihailescu-Suliciu. On modelling phase propagation in smas by a maxwellian thermo-viscoelastic approach. International journal of solids and structures, 39(13):3811-3830,2002.
    [45]R. Hartmann. Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic turbulent delta wing flow. International Journal for Numerical Methods in Fluids,72(8):883-894,2013.
    [46]Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM Journal on Scientific Computing,24(3):979-1004,2002.
    [47]Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics,183(2):508-532,2002.
    [48]Helge Holden and Xavier Raynaud. Convergence of a finite difference scheme for the Camassa-Holm equation. SIAM Journal on Numerical Analysis,44(4):1655-1680,2006.
    [49]Helge Holden and Xavier Raynaud. A convergent numerical scheme for the Camassa-Holm equation based on multipeakons. Discrete and Continuous Dynamical Systems. Series A, 14(3):505-523,2006.
    [50]Helge Holden and Xavier Raynaud. Global conservative solutions of the generalized hyperelastic-rod wave equation. Journal of Differential Equations,233(2):448-484,2007.
    [51]Paul Houston and Endre Suli. hp-Adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM Journal on Scientific Computing,23(4):1226-1252, 2001.
    [52]Shou-Jun Huang, Hui-Hui Dai, Zhen Chen, and De-Xing Kong. Mathematical theory and analytical solutions for the wave catching-up phenomena in a nonlinearly elastic composite bar. Proceedings of The Royal Society of London. Series A. Mathematical, Physical and En-gineering Sciences,468(2148):3882-3901,2012.
    [53]Weizhang Huang and Robert D Russell. Adaptive moving mesh methods, volume 174. Springer,2010.
    [54]Rossen Ivanov. On the integrability of a class of nonlinear dispersive wave equations. Journal of Nonlinear Mathematical Physics,12(4):462-468,2005.
    [55]James K. Knowles. Impact-induced tensile waves in a rubberlike material. SIAM Journal on Applied Mathematics,62(4):1153-1175,2002.
    [56]L. Krivodonova, J. Xin, J.-F. Remaccle, N. Chevaugeon, and J. E. Flaherty. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Applied Numerical Mathematics,48(3-4):323-338,2004.
    [57]Randall J. LeVeque. Numerical methods for conservation laws. Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel,1990.
    [58]Ruo Li and Tao Tang. Moving mesh discontinuous Galerkin method for hyperbolic conserva-tion laws. Journal of Scientific Computing,27(1-3):347-363,2006.
    [59]Xiaozhou Li, Yan Xu, and Yishen Li. Investigation of multi-soliton, multi-cuspon solutions to the Camassa-Holm equation and their interaction. Chinese Annals of Mathematics. Series B, 33(2):225-246,2012.
    [60]ZQ Li and QP Sun. The initiation and growth of macroscopic martensite band in nano-grained niti microtube under tension. International Journal of Plasticity,18(11):1481-1498,2002.
    [61]Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. Journal of Computational Physics,115(1):200-212,1994.
    [62]Zhengrong Liu and Can Chen. Compactons in a general compressible hyperelastic rod. Chaos, Solitons and Fractals,22(3):627-640,2004.
    [63]Takayasu Matsuo. A Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equa-tion. Journal of Computational and Applied Mathematics,234(4):1258-1266,2010.
    [64]Takayasu Matsuo and Hisashi Yamaguchi. An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations. Journal of Computational Physics,228(12):4346-4358, 2009.
    [65]W. J. Parnell. Effective wave propagation in a prestressed nonlinear elastic composite bar. MA Journal of Applied Mathematics,72(2):223-244,2007.
    [66]Jianxian Qiu and Chi-Wang Shu. A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM Journal on Scientific Computing,27(3):995-1013,2005.
    [67]Wm H Reed and T R Hill. Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479,1973.
    [68]Nicolas Seguin and Julien Vovelle. Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Mathematical Models & Methods in Applied Sciences,13(2):221-257,2003.
    [69]JA Shaw and S Kyriakides. Thermomechanical aspects of NiTi. Journal of the Mechanics and Physics of Solids,43(8):1243-1281,1995.
    [70]JA Shaw and S Kyriakides. Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. International Journal of Plasticity,13(10):837-871, 1997.
    [71]JA Shaw and S Kyriakides. On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Materialia,45(2):683-700,1997.
    [72]Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced numerical approximation of nonlinear hy-perbolic equations (Cetraro,1997), volume 1697 of Lecture Notes in Math., pages 325-432. Springer, Berlin,1998.
    [73]Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics,77(2):439-471,1988.
    [74]M. Slemrod. Dynamic phase transitions in a van der Waals fluid. Journal of Differential Equations,52(1):1-23,1984.
    [75]Zhijun Tan, Tao Tang, and Zhengru Zhang. A simple moving mesh method for one-and two-dimensional phase-field equations. Journal of Computational and Applied Mathematics, 190(1-2):252-269,2006.
    [76]Tao Tang. Moving mesh methods for computational fluid dynamics. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 141-173. Amer. Math. Soc., Providence, RI,2005.
    [77]Lulu Tian, Yan Xu, JGM Kuerten, and JJW Van der Vegt. A local discontinuous galerkin method for the propagation of phase transition in solids and fluids. Journal of Scientific Com-puting, pages 1-33,2013.
    [78]Anna Vainchtein. Dynamics of phase transitions and hysteresis in a viscoelastic Ericksen's bar on an elastic foundation. Journal of Elasticity. The Physical and Mathematical Science of Solids,57(3):243-280 (2000),1999.
    [79]Anna Vainchtein. Dynamics of non-isothermal martensitic phase transitions and hysteresis. International Journal of Solids and Structures,39(13-14):3387-3408,2002.
    [80]Margit Vallikivi, Andras Salupere, and Hui-Hui Dai. Numerical simulation of propagation of solitary deformation waves in a compressible hyperelastic rod. Mathematics and Computers in Simulation,82(7):1348-1362,2012.
    [81]Jack R Vinson and Robert L Sierakowski. The behavior of structures composed of composite materials, volume 105. Springer,2006.
    [82]S. Vukovic, N. Cmjaric-Zic, and L. Sopta. Weno schemes for balance laws with spatially varying flux. Journal of Computational Physics,199(1):87-109,2004.
    [83]Shaolong Xie, Lin Wang, and Weiguo Rui. Peaked wave solutions to a generalized hyperelastic-rod wave equation. Annals of Differential Equations,23(1):96-103,2007.
    [84]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for three classes of non-linear wave equations. Journal of Computational Mathematics,22(2):250-274,2004.
    [85]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for nonlinear Schrodinger equations. Journal of Computational Physics,205(1):72-97,2005.
    [86]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Physica D. Nonlinear Phenomena,208(1-2):21-58, 2005.
    [87]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Computer Methods in Applied Mechanics and Engineering,195(25-28):3430-3447,2006.
    [88]Yan Xu and Chi-Wang Shu. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Computer Methods in Applied Mechanics and Engineering,196(37-40):3805-3822,2007.
    [89]Yan Xu and Chi-Wang Shu. A local discontinuous Galerkin method for the Camassa-Holm equation. SIAM Journal on Numerical Analysis,46(4):1998-2021,2008.
    [90]Jue Yan and Chi-Wang Shu. A local discontinuous Galerkin method for KdV type equations. SIAM Journal on Numerical Analysis,40(2):769-791,2002.
    [91]Jue Yan and Chi-Wang Shu. Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. Journal of Scientific Computing,17(1-4):27-47,2002.
    [92]Xiaobo Yang, Weizhang Huang, and Jianxian Qiu. A moving mesh WENO method for one-dimensional conservation laws. SIAM Journal on Scientific Computing,34(4):A2317-A2343, 2012.
    [93]Zhaoyang Yin. On the blow-up of solutions of a periodic nonlinear dispersive wave equation in compressible elastic rods. Journal of Mathematical Analysis and Applications,288(1):232-245,2003.
    [94]Qiang Zhang. Adaptive discontinuous Galerkin finite element methods for a two-dimensional convection-diffusion equation. Journal on Numerical Methods and Computer Applications, 29(1):56-64,2008.
    [95]Hongqiang Zhu and Jianxian Qiu. Adaptive Runge-Kutta discontinuous Galerkin meth-ods using different indicators:one-dimensional case. Journal of Computational Physics, 228(18):6957-6976,2009.
    [96]Hongqiang Zhu and Jianxian Qiu. An h-adaptive Runge-Kutta discontinuous Galerkin method for Hamilton-Jacobi equations. Numerical Mathematics. Theory, Methods and Applications, 6(4):617-636,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700