颗粒物质斜槽流动和双仓振动的动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物质是大量的宏观粒径大于微米的固体颗粒的聚集,是与连续态物质相区别的另一大类物质形态,往往表现出体系内部异质不均结构、整体对力非线性响应等特点,并发生无序到无序、unjam到jammed等结构变化,是凝聚态物理前沿研究领域和新增长点。颗粒体系为远离平衡态的耗散体系,其造成系统能量损失的主要原因是:颗粒之间的相互作用以非弹碰撞和摩擦为主。因此维持体系的运动就要依靠外部的能量输入,常见的驱动形式有重力、撞击、激振、剪切等。在这些外加的作用下,系统会呈现出类似于固体、液体及气体的特性,而颗粒物质自身离散的特性又使它们跟连续介质形态有很大的差异。以至于有的学者建议将颗粒物质看做除了传统的固体、液体、气体以外的“第四种物质聚集形态”。
     颗粒物质的系统尺度可以从微米以上跨越六个量级,因此在自然界、工程实践和人类生产生活中广泛存在。颗粒物质的研究涉及多个领域:工农业、建筑业、制造业、医药食品业等。许多自然现象(山体滑坡、浮冰流、雪崩等)和工业生产过程(散态物质的输运、加工等)也与颗粒物质的运动规律密切相关。因此,对颗粒物质的运动规律的探究具有重要的社会效益和经济价值。
     本文主要针对颗粒物质类液和类气特性设计了颗粒流动和振动试验,并通过试验观察、理论建模和计算模拟相结合的手段对其特性进行分析。希望对理解颗粒物质在非静态条件下的物理特性提供一些有益的借鉴,对工程上颗粒物质的管道输送、多道汇聚、流量优化等问题提供一些理论性的指导。本文的主要研究内容有:
     考虑到实际的颗粒运输管道往往是受多个瓶颈的制约(比如出口收缩、管道拐弯等),我们设计了双瓶颈斜槽流实验,用来研究多瓶颈对系统相变和流量的影响。实验中,系统发生了稀疏流一密集流的相转变。在相变过程中,出现了一个稀疏态和密集态都可能存在的双稳区域。我们对双稳现象出现的原因进行了研究。我们发现是入口初始流量波动和上下瓶颈共同作用的结果。我们引入了复杂网络方法对初始储料仓内堆积颗粒的力网络进行分析,发现疏松堆积和密集堆积对系统初始流量的影响。再通过对上下瓶颈进行离散元模拟,成功得到双稳发生的范围,模拟结果跟实验结果一致。最后,我们研究了槽道倾角对系统的影响,并给出优化系统流量的建议。
     颗粒流与车辆交通流有许多相似的物理特性,我们做了一个双道汇聚的颗粒斜槽实验,来类比车辆交通中匝道进入主道的情形。通过主(侧)道比侧(主)道宽两组不同的对比实验,发现两道的入口流量不同可以使系统发生从稀疏到密集的相转变,并且存在四个相态。这点跟车辆交通流中的匝道系统有相似之处。对双道流量变化进行分析,发现两组不同情况下,出口流量会出现一次或两次流量突降,这种现象在交通流中未被发现,可能是颗粒流的独特现象。通过实验,我们还发现汇聚区域存在一个发生稀疏流到密集流转变的临界体积分数(?)=0.63±0.03。两道汇聚的研究希望对多道(N>3)颗粒流汇聚问题的研究提供一定的借鉴。
     颗粒物质受激振动会表现出类气特性,系统内颗粒之间碰撞频繁,非线性、耗散性尤为突出,其中一种具体表现是颗粒聚簇(clustering)和颗粒时钟(GranularClock)现象。我们先对之前学者关于颗粒气体双仓振动体系的研究进行概述,接着介绍我们新发现的颗粒双仓振动中的聚簇一颗粒时钟(GC-Clustering)共存现象。当我们把双仓容器宽度增大以后,系统出现了水平偏析现象,并且此偏析存在两种不同模式,导致系统出现颗粒时钟态或者聚簇态。这两种状态是在同一个振动强度下随机发生的,从实验观察结果来看呈现一种“跳跳停停”的现象。我们对此问题进行了细致的研究,通过改变颗粒数目比、半径比、盒子宽度等试验条件找出了聚簇一颗粒时钟现象的存在区域,并引入了一个单位时间转换概率P修正了一般的颗粒双仓系统的Flux Model,定性的重现了该实验现象。此部分工作对颗粒气体非线性特性和颗粒系统的随机性进行了有益的探索。
     本文研究了颗粒物质的流动和振动两个主要方面的动态特性问题,较侧重于颗粒物质的独特动态行为和其非线性物理特性。通过本文的研究,进一步加深了对颗粒物质系统复杂性机理的认识,并对自然界和实际工程中涉及的颗粒物质的加工和输运问题提供有益的借鉴。
Granular material is the collection of many solid particles whose sizes are greater than micron. It is a major category of substance different from the continuous media, such as solid, fluid and gas. Granular material exhibit many special behaviors, including the non-linear dynamics, structural heterogeneity, disorder to order and free flow to jam transition. It is a new growing point in the condensed matter physics research. The major role of interaction between particles are friction and inelastic collisions. The granular system is far from equilibrium because of the dissipative properties. There are more extra energy needed to maintain the movement of particles. The forms of input energy often contain the gravity, vibration, shear or impact force, etc. Granular material show similar characteristics of soil, liquid and gas under some conditions. Although granular material and continuous media have a lot in common, there are fundamental differences between them because of the discrete property. Some researchers have suggested that the granular material can be classified as "the forth substance form".
     The scale of granular system cross six orders of magnitude started from micron. Therefore granular material exist universally in engineering, agricultural, industrial, construction, pharmaceutical processes, and so on. It is also involved in many natural phenomena (such as avalanche, landslide, debris flow etc.) and production process (such as the transport and processing of bulk material). So the research of granular material is beneficial for both economy and society.
     This paper presents experimental, theoretical, computational studies on the liquid-like and gas-like dynamic behaviors of granular material. Discrete element simulations are carried out in some respects of study. We hope this paper will reveal various nonlinear properties of granular system and provide some theoretical guidance for the engineering problems about the transport of pipeline, multi-channel merging flow and optimization, and so on. The contents of the paper are as follows.
     Considering the actual process of granular chute flow is often restricted by multi-bottleneck, we studies the granular flow down a chute with two successive turnings, which play the role of bottlenecks for the granular flow system and determine the granular flow state in main section between them. With the increase of main section width D, phase transition from dilute to dense granular flow is observed: when the main section width D is small (large), the granular flow at upper (lower) bottleneck is dense and the granular flow is dilute (dense) in the main section. More interestingly, a bistable region is exhibited, in which either dilute flow or dense flow may occur and continue for the entire run. In this region, the packing in the reservoir will affect initial flow rate and then affect the flow pattern. We adopt the method of complex network theory to analyze the problem. We also carry out discrete element simulation for the upper (lower) bottleneck. The results show qualitative agreements with the experimental results. Finally, a suggestion of the optimization of flow rate has been proposed.
     The merging granular flow of two channels is similar to the on-ramp system in traffic flow problem, we studied the dilute-dense transition behavior of two granular flow channels (A and B) merging into one channel at a joint point. Varying the inflow rate from the two channels, the system shows four flowing states:LL, LH, HL, and HH, where L is dilute flow (Low density flow) and H is dense flow (High density flow). In the case of channel size combination DA=40mm and DB=30mm, the outflow rate shows a remarkable two-sudden-drops behavior. That is different from a typical on-ramp system of vehicular traffic. When channel sizes are DA=20mm and DB=50mm, the outflow rate keeps constant for the LH, HL and HH states, so that only one sudden drop can be observed in the outflow rate. We find that the dilute to dense transition will occur when the area fraction of particles at the joint point exceeds a critical value near Φc=0.63±0.03. The study can give some clues for the merging flow of n (n>3) channels.
     In granular gas, the loss of kinetic energy in collisions due to microscopic degree of freedom of the system balances the energy gained from the shaking mechanism. We design a experiment on a vertically vibrated bidisperse granular mixture in a wide compartmentalized container. Within a certain range of vibration acceleration, a granular clock could stop and restart because of the forming of the horizontal segregation in the container. The experiments show that with proper vibration acceleration, the granular clock stops when horizontal segregation of the large spheres residing in the far end from the barrier wall occurs. When the segregation is broken, the granular clock restarts. We present the phase diagrams of vibration acceleration versus container width, ratio of the radius and small particle number to find out the Granualr Clock-Clustering state. A generalized flux model is proposed to reproduce the phenomenon of stop and restart of the granular clock by introducing a probability P. The results may shed some light on the understanding of the stochastic granular system.
     The studies of this paper are useful for both practical applications and physical mechanism of granular material. We hope that this work is helpful for understanding the complex nature of granular materials and is useful for the efficient transport of granular materials in industrial, mining and agricultural processes.
引文
[1]P.G. De Gennes, Soft Matter, Reviews of Modern Physics,1992,64,645-648.
    [2]P.G. De Gennes, Granular Matter:a tentative view, Reviews of Modern Physics,1999, S374-S382.
    [3]H.M. Jaeger, S.R. Nagel, R.P. Behringer, Granular solids,liquids,and gases, Reviews Modern Physics,1996,68,1259-1273.
    [4]P. Bak, C. Tang, K. Wiesenfeld, Self-Organized Criticality-an Explanation of 1/F Noise. Phys. Rev. Lett.,1987,59(4),381-384.
    [5]C.A. Coulomb, Sur une application des regles de maximis et minimis a quelques problems de statique relatifs a l'architecture, Acad. Roy. Sci. Mem. Phys. Divers Savants.,1773,7.
    [6]I. Goldhirsch, Scales And Kinetics Of Granular Flows. Chaos,1999,9(3),659-672.
    [7]A.J. Liu, S.K.Nagel, Nonlinear Dynamics-Jamming is not just cool anymore, Nature,1998, 396,21-22.
    [8]G.Seiden, P.J. Thomas, Complexity,segregation,and pattern formation in rotating-drum flows, Reviews of Modern Physics,2011,83,1323-1365.
    [9]S.F. Edwards, Disorder in Condense Matter Physics, Oxford Univ.Press,1991,147-154.
    [10]M. Faraday, On the Forms and States Assumed by Fluids in Contact with Vibrating Elastic Surface,Philos.Trans.R.Soc. London,1831,83,299-307.
    [11]T.Shimada, D.Kadau, T. Shinbrot, H.J. Herrmann, Swimming in Granular Media, Phys. Rev. E,2009,80,020301(R)
    [12]G.D. Scott, K.R. Knight, J.D. Bernal, J. Mason, Radial Distribution Of Random Close Packing Of Equal Spheres, Nature,1962,194,956.
    [13]Yerazuni. S, S.W. Cornell, B. Wintner, Dense Random Packing Of Binary Mixtures Of Spheres, Nature,1965,207,835.
    [14]R. Rutgers, Packing Of Spheres, Nature,1962,193,465.
    [15]W.M. Visscher, Bolsterl. M, Random Packing Of Equal And Unequal Sphere In 2 And 3 Dimensions, Nature,1972,239,504.
    [16]A.Gamba, Random Packing Of Equal Spheres, Nature,1975,256,521-522.
    [17]P.A. Cundall, O.D.L.Strack. Discrete Numerical-Model for Granular Assemblies, Geote. Chnique,1979,29(l),47-65.
    [18]T.Shimada, D.Kadau, T. Shinbrot, H.J. Herrmann, Swimming in Granular Media, Phys. Rev. E,2009,80,020301(R)
    [19]J. Duran, Sand, Powder, and Grains.,2000, New York:Springer.
    [20]H.M. Jaeger, S.R. Nagel, R.P. Behringer, The Physics Of Granular Materials, Phys Today, 1996,49(4),32-38.
    [21]J. Lee, Density Waves in The Flows of Granular Media, Phys. Rev. E,1994,49,28124800.
    [22]陆坤权.颗粒物质(上).物理,2004,33(9).
    [23]陆坤权.颗粒物质(下).物理,2004,33(9).
    [24]Q.S.Chen;G.Q.Sun, K.H. Hu, Some Open Problems in Granular Matter Mechanics, Progress In Natural Science,2009,19(5),523-529.
    [25]L. Vanel, E. Clement. Pressure Screening and Fluctuations at the Bottom of a Granular Column, Eur. Phys. J. B,1999,11(3),525-533.
    [26]S. Ogawa. In:Proc. US-Jpn. Semin. Contin. Mech. and Stat. Approaches Mech. Granular Matter. Tokyo,1978.
    [27]M.V. Hecke, Impact Craters in Granular Media:Grains against Grains, Phys.Rev.Lett.,2009, 102,038001.
    [28]R. Maladen, Yang, Ding, Chen Li, Daniel,I. Goldman, Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Science,2009,325,314.
    [29]Yimin Jiang and Mario Liu, From Elasticity to Hypoplasticity:Dynamics of Granular Solids, Phys. Rev. Lett.,2007,99,105001.
    [30]T. Shinbrot, A. Alexander, F.J. Muzzio, Spontaneous Chaotic Granular Mixing. Nature,1999, 397,675-678.
    [31]T. Shinbrot, F.J. Muzzio, Noise to order, Nature,2001,410,251-258.
    [32]O. Reynolds, On the Dilatancy of Media Composed of Rigid Particles in Contact, Philos. Mag., 1885,20,469.
    [33]R A. Bagnold, Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear[J]. Proc R Soc Lon Ser-A,1954,225(1160),49-63.
    [34]A. Tordesillas, D.M. Walker, Q. Lin, Force Cycles and Force Chains, Phys. Rev. E,2010,81, 011302.
    [35]L. Zhang, Y.J. Wang, J. Zhang, Force-Chain Distributions In Granular Systems, Phys. Rev. E, 2014,89,012203.
    [36]J.F. Peters, M. Muthuswamy, J. Wibowo, A. Tordesillas, Characterization of Force Chains in Granular Material, Phys. Rev. E,2005,72,041307.
    [37]Antoinette Tordesillas, Giles Hunt, Jingyu Shi, A Characteristic Length Scale in Confined Elastic Buckling of a Force Chain, Phys. Rev. E,2011,13(3),215-218.
    [38]K.Q. Lu, M.Y. Hou, Z.H. Jiang, To Understand Earthquake From The Granular Physics Point of View-causes of Earthquakes, Earthquake Precursors and Prediction, Acta Physica Sinica,2012, 61(11),119103.
    [39]C.C. Liao; S.S. Hsiau, Experimental Analysis of Dynamic Properties in Wet Sheared Granular Matter, Powder Technology,2010,197(3),222-229.
    [40]H.W. Ouyang; S.C. Huang; Z.M. Liu, Jamming and Glass-Transition for Granular Matters, Rare Metal Materials And Engineering,2009,38(7),1310-1316.
    [41]E.I. Corwin, H.M. Jaeger, S.R.Nagel, Structural Signature of Jamming in Granular Media, Nature,2005,435,1075-1078.
    [42]C.S.O. Hern, L.E. Silbert, A.J.Liu, S.R. Nagel, Jamming at Zero Temperature and Zero Applied Stress:The Epitome of Disorder, Phys.Rev.E,2003,68,011306.
    [43]T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Jamming Transition in Granular Systems, Phys.Rev.Lett.,2007,98,058001.
    [44]N. Xu, V. Vitelli, M. Wyart, A. J. Liu, S.R. Nagel,Energy Transport in Jammed Sphere Packings. Phys.Rev.Lett.,2009,102,038001.
    [45]M. Otsuki, H. Hayakawa, Critical Scaling Near Jamming Transition for Frictional Granular Particles, Phys.Rev.E,2011,83,051301.
    [46]T. Hatano, Scaling Properties of Granular Rheology Near the Jamming Transition, J.Phys.Soc.Jpn.,2008,77,123002.
    [47]H. Liu, X.Y. Xie, N. Xu, Finite Size Analysis of Zero-Temperature Jamming Transition under Applied Shear Stress by Minimizing a Thermodynamic-Like Potential, Phys. Rev. Lett.,2014,112, 145502
    [48]D. Bi, J. Zhang, B. Chakraborty, R.P.Behringer, Jamming by Shear,Nature,2011,480,355-258.
    [49]H.A. Janssen, Getreidedruck in silozellen. Z.Deuth.Ing.1895,39(7),1045-1049;
    [50]J.S.L. Combinido, M.T. Lim, Crowding Effects in Vehicular Traffic, PLOS ONE,2012,7(11), e48151.
    [51]M.B. Hu, Q.S. Wu, R. Jiang. Size Segregation In A Vibrated Tilted Compartmentalized Granular Chamber, Chinese Phys. Lett,2003,20(7),1091-1093.
    [52]M.B. Hu, X.Z. Kong, Q.S. Wu, Y.H. Wu, Effects Of Container Geometry On Granular Segregation Pattern, Chinese Physics,2005,14(9),1844-1849.
    [53]J.B. Knight, H.M. Jaeger, S.R. Nagel, Vibration-Induced Size Separation in Granular Media-the Convection Connection, Phys. Rev. Lett.,1993,70(24),3728-3731.
    [54]M.E.Mobius, B.E. Lauderdale, S.R. Nagel, H.M. Jaeger. Brazil-nut Effect-Size Separation Of Granular Particles. Nature,2001,414(6861),270-270.
    [55]W. Cooke, S. Warr, J.M. Huntley, R.C. Ball, Particle Size Segregation In A Two-Dimensional Bed Undergoing Vertical Vibration, Phys. Rev. E,1996,53(3),2812-2822.
    [56]M.A. Naylor, M.R. Swift, P.J. King, Air-driven Brazil nut effect, Phys. Rev. E,2003,68, 012301.
    [57]T. Schnautz, R. Brito, C.A. Kruelle, I. Rehberg, Horizontal Brazil-Nut Effect and Its Reverse, Phys. Rev. Lett.,2005,95,028001.
    [58]C. Guttler, I.V. Borstel, R. Schrapler, J. Blum, Granular Convection and The Brazil Nut Effect In Reduced Gravity, Phys. Rev. E,2013,87,044201.
    [59]A.P.J. Brea, H.M. Ensner, C.A. Kruelle, I. Rehberg, Reversing The Brazil-Nut Effect: Competition Between Percolation and Condensation, Phys. Rev. Lett.,2003,90,014302.
    [60]G. A.Canul-Chay, P A. Belmont, Y. Nahmad-Molinari, J.C. Ruiz-Suarez, Does the Reverse Brazil Nut Problem Exist?, Phys. Rev. Lett.,2002,89,189601.
    [61]A. Rosato, K.J. Strandburg, F. Prinz, R. H. Swendsen, Why the Brazil Nuts are On Top:Size Segregation of Particulate Matter by Shaking, Phys. Rev. Lett.,1987,58,1038
    [62]D. C. Hong, P.V. Quinn, S. Luding, Reverse Brazil Nut Problem:Competition Between Percolation and Condensation, Phys. Rev. Lett.,2001,86,3423.
    [63]维基百科[DB/OL],hhttp://en.wikipedia.org/wiki/Ernst_Chladni.
    [64]Vicente Garz6, Brazil-Nut Effect Versus Reverse Brazil-Nut Effect In a Moderately Dense Granular Fluid, Phys. Rev. E,2008,78,020301(R).
    [65]C.P. Liu, L. Wang, P. Wu, M. Jia, Effects of Gas Flow on Granular Size Separation, Phys. Rev. Lett.,2010,104,188001.
    [66]Y.J. Peng, Z.Zhang, Y.Wang, Experimental and Theoretical Investigations of The Effect of "Brazil Nut" Segregation in Vibrating Granular Matters, Acta Physica Sinica,2012,61(13).
    [67]S.S. Hsiau, C.C. Liao, C.H. Tai, The Dynamics of Wet Granular Matter Under a Vertical Vibration Bed, Granular Matter,2013,15(4),437-446.
    [68]X.Yan, Q.Shi, M. Hou, K. Lu, C.K. Chan, Effects of Air on the Segregation of Particles in a Shaken Granular Bed. Phys.Rev.Lett.,2003,91,014302.
    [69]刘晓星,颗粒系统中偏析结构的离散模拟[D],硕士论文,北京:中国科学院过程工程研究所,2008.
    [70]F.Ludewig, N. Vandewalle, Reversing the Brazil nut effect, Eur. Phys. J. E,2005,18(4), 367-372.
    [71]K.M. Aoki, T. Akiyama, Y. Maki, T. Watanabe, Convective Roll Patterns in Vertically Vibrated Beds of Granules, Phys. Rev. E,1996,54,874.
    [72]C.H. Tai, S.S. Hsiau, Dynamics Behaviors of Powders in a Vibrating Bed.,Powder Technology, 2004,139,221.
    [73]J. Talbot, P. Viot, Wall-enhanced Convection in Vibrofluidized Granular Systems, Phys. Rev. Lett.,2002,89,064301.
    [74]H.J. van Gerner, M.A. van der Hoef, D. van der Meer, K. van der Weele, Inversion of Chladni Patterns by tuning the Vibrational Acceleration, Phys. Rev. E,2010,82,012301.
    [75]姜泽辉,陆坤权,厚美瑛,陈唯,陈相君,振动颗粒混合物中的三明治式分离,物理学报,2003,52(9),140.
    [76]史庆藩,阎学群,厚美瑛,牛小娟,陆坤权,振动混合颗粒形成的反巴西果分层及其相图的实验观测,科学通报,2003,48(4),328.
    [77]H.Y. Lee,H.W. Lee, D. Kim,Origin of Synchronized Traffic Flow on Highways and Its Dynamic Phase Transitions,1998, Phys. Rev. Lett.81,1130
    [78]D. Helbing, A. Hennecke, M. Treiber, Phase Diagram of Traffic States in the Presence of Inhomogeneities, Phys. Rev. Lett.,1999,82,4360.
    [79]D. Helbing, M. Treiber, Gas-Kinetic-Based Traffic Model Explaining Observed Hysteretic Phase Transition, Phys. Rev. Lett.,1998,81,3042.
    [80]R. Jiang, Q.S. Wu, B.H. Wang, Cellular Automata Model Simulating Traffic Interactions Between On-ramp And Main Road, Phys. Rev. E,2002,66(3).
    [81]F. Li, Z.Y. Gao, B. Jia. Traffic behavior in the on-ramp system with signal controlling. Physica A,2007,385(1),333-342.
    [82]A. Nakahara, T. Isoda,1/f alpha Density Fluctuation At The Slugging Transition Point Of Granular Flows Through A Pipe, Phys. Rev. E,1997,55(4),4264-4273.
    [83]X. Wu. K. J. Maloy, A. Hansen, M. Ammi, D. Bideau, Why Hour Glasses Tick, Phys. Rev. Lett.,1993,71,1363.
    [84]C.T. Veje, P. Dimon, Power Spectra of Flow in an Hourglass, Phys. Rev. Lett.,1997,56,4376.
    [85]K. To, P.Y. Lai, H.K. Pak, Jamming of Granular Flow In a Two-Dimensional Hopper, Phys. Rev. Lett.,2001,86(1),71-74.
    [86]L. Vanel, et al, Memories in Sand:Experimental Tests of Construction History on Stress Distributions Under Sandpile, Phys Rev E,1999,60(5),R5040-R5043.
    [87]C. Lozano, A.Janda, A. Garcimartin, D. Maza, I. Zuriguel, Flow and Clogging in a Silo With an Obstacle above The Orifice, Phys. Rev. E,2012,86,031306.
    [88]I. Zuriguel, A. Janda, A. Garcimartin, C. Lozano, R. Arevalo, D. Maza, Silo Clogging Reduction by The Presence of an Obstacle, Phys. Rev. Lett.,2011,107,278001.
    [89]W. Chen, M. Hou, K. Lu, Z. Jiang, L. Lam, Granular Flows Through Vertical Pipes Controlled by an Electric Field, Phys.Rev.E,2001,64,061305.
    [90]M. Hou, W. Chen, T. Zhang, K. Lu, Electric Field Controlled Dilute-Dense Flow Transition in Granular Flow Through a Vertical Pipe, Powder Technology,2003,135,105-111.
    [91]J. Simon, J.R. de Bruyn, Shape of Impact Craters in Granular Media, Powder Technology, 2003,135,105-111.
    [92]P. Jop, Y. Forterre, O. Pouliquen, A rheology for dense granular flows, Nature,2006,441,727.
    [93]R. Delannay, M. Louge, P. Richard, N. Taberlet, A. Valance, Towards a Theoretical Picture of Dense Granular Flows Down Inclines, Nat.Mater.2007,6,99-108.
    [94]C.H. Lee, C.J. Huang, Kinetic-Theory-Based Model Of Dense Granular Flows Down Inclined Planes, Physics of Fluids,2012,24.
    [95]V. Kumaran, dynamics of dense sheared granular flows. Part I.Structure and Diffusion, Journal of Fluid Mechanics,2009,632,109-144.
    [96]王璐珠,粮仓应力转向比和稳定性行为研究,硕士论文,长沙:中南大学,2011.
    [97]E.C.Rericha, C. Bizon, M.D. Shattuck, H.L.Swinney, Shocks in Supersonic Sand, Phys.Rev.Lett,2001,88,014302.
    [98]D.M. Mueth, G.F. Debregeas, G.S. Karczmar, P.J. Eng, S.R. Nagel, H.M. Jaeger, Signatures Of Granular Microstructure In Dense Shear Flows, Nature,2000,406,385-389.
    [99]M. A. Hopkins, H.H. Shen, A Monte-Carlo Solution For Rapidly Shearing Granular Flows Based On The Kinetic-Theory Of Dense Gases, Journal of Fluid Mechanics,1992,244,477-491.
    [100]O. Pouliquen, Y. Forterre, Friction Law For Dense Granular Flows:application to the motion of a mass down a rough inclined plane, Journal of Fluid Mechanics,2002,453,133-151.
    [101]G.Q. Hu, Y.C. Li, M.Y. Hou, K. To, Traveling Shock Front in Quasi-two-dimensional Granular Flows, Phys. Rev. E,2010,81(1).
    [102]M. Hou, W, Chen, T. Zhang, K. Lu, C.K. Chan, Global Nature Of Dilute-to-Dense Transition Of Granular Flows In A 2D Channel, Physical Review Letter,2003,91.
    [103]13] D. Lohse, R. Rauhe, R.P.H.M. Bergmann, D. van der Meer, Creating a Dry Variety of Quicksand,Nature,2004,432,689.
    [104]J.J. Brey, M.J. Ruiz-Montero. Direct Monte Carlo Simulation Of Dilute Granular flow, Comput. Phys. Commun.,1999,121,278-283.
    [105]J.J. Brey, F. Moreno, J.W. Dufty. Model Kinetic Equation For Low-Density Granular Flow, Phys. Rev. E,1996,54(1),445-456.
    [106]D. Lohse, et al. Impact on Soft Sand:Void Collapse and Jet Formation, Phys. Rev. Lett.,2004, 93,198003.
    [107]C.S. Campbell. Rapid Granular Flows, Annu. Rev. Fluid Mech.,1990,22,57-92.
    [108]N. Taberlet, P. Richard, A. Valance, W. Losert, J.M. Pasini, J.T. Jenkins, R. Delan-nay, Superstable Granular Heap in a Thin Channel, Phys.Rev.Lett.2003,91,264301.
    [109]M.Y. Hou, W. Chen, T. Zhang, K.Q. Lu, C.K. Chan, Scaling Property of The Dilute-Dense Transition in 2D Granular Flows. Int. J. of Mod. Phys. B,2004,18,2441.
    [110]C.S. Campbell, Granular Material Flows-An Overview, Powder Technology,2006,162, 208-229.
    [111]A. Goldshtein, M. Shapiro, L. Moldavsky, M. Fichman, Mechanics of Collisional Motion of Granular-Materials.2. Wave-Propagation through Vibrofluidized Granular Layers, Journal of Fluid Mechanic,1995,287,349-382.
    [112]P.K. Haff. Grain Flow As A Fluid-Mechanical Phenomenon. Journal of Fluid Mechanic, 1983,134,401-430.
    [113]M. Hou, W. Chen, T. Zhang, K. Lu, C.K. Chan, Global Nature of Dilute-to-Dense Transition of Granular Flows in a 2D Channel, Phys. Rev. Lett.2003,91,204301.
    [114]苗天德,刘源,缪馥星,慕青松,颗粒气体的振荡现象,科学通报,2005,50(8),740-744.
    [115]Y. Li, R. Liu, M. Hou, Gluing Bifurcation and Noise-Induced Hopping in the Oscillatory Phenomena of Compartmentalized Bidisperse Granular Gases, Phys.Rev.Lett.,2012,109,198001.
    [116]R. Liu, Y. Li, M. Hou, Oscillatory Phenomena of Compartmentalized Bi-disperse Granular Gases,Phys. Rev. E,2009,79,052301.
    [117]P.Y. Lai, M. Hou, C.K. Chan, Granular Gases in Compartmentalized Systems, Journal of the Physical Society of Japan,2009,78(4),041001.
    [118]彭政,李湘群,蒋礼,符力平,蒋亦民,应力未饱和粮仓系统中器壁与颗粒的摩擦阻力,物理学报,2009,58(3),2090.
    [119]J. Eggers, Sand as Maxwell's Demon, Phys. Rev. Lett.,1999,83,5322.
    [120]R. Mikkelsen, D. van der Meer, K. van derWeele, D. Lohse, Competitive Clustering in a Bidisperse Granular Gas. Phys. Rev. Lett.,2002,89,214301.
    [121]R. Mikkelsen, et al., Competitive Clustering in a Bidisperse Granular Gas:Experiment, Molecular Dynamics, and Flux Model, Phys. Rev. E,2004,70,061307.
    [122]K. Van der Weele, Granular Gas Dynamics:How Maxwell's Demon Rules in a Non-equilibrium System, Contemp. Phys.,2008,49,157..
    [123]R. Lambiotte, J. M. Salazar, L. Brenig, From Particle Segregation to The Granular Clock. Phys. Lett. A,2005,343,224-230.
    [124]S. Viridi, M. Schmick, M. Markus, Experimental Observations of Oscillations and Segregation in a Binary Granular Mixture, Phys. Rev. E,2006,74,041301.
    [125]Y. Liu, et al, Experimental Investigation about Cyclic Oscillations of a Binary Vibrofluidized Granular Mixture in N Connected Compartments, Europhys. Lett.,2008,84,14004.
    [126]K.C. Chen, C.C. Li, C.H. Lin, L.M. Ju, C.S. Yeh, Experimental Study of Three Compartmentalized Granular Follower, J. Phys.Soc. Jpn.,2008,77,084403.
    [127]K.C. Chen, C.C. Li, C.H. Lin, G.H. Guo, Clustering and Phases of Compartmentalized Granular gases, Phys. Rev. E,2009,79,021307.
    [128]K.C. Chen, W.L. Hsieh, C.H. Lin, Intruder-induced Change in Condensation Temperature of Granular Gases, Phys. Rev. E,2011,83,021303.
    [129]K.C. Chen, C.H. Lin, W.L. Hsieh, Two Types of Oscillation in Unequally Compartmentalized Granular Gases, Phys. Rev. E.2012,85,021306.
    [130]M.Y. Hou, H.N. Tu, R. Liu, Y.C. Li, K.Q. Lu, P.Y. Lai, C.K. Chan. Temperature Oscillations In A Compartmentalized Bidisperse Granular Gas, Phys. Rev. Lett.,2008,100(6).
    [131]戴宏钦,球体随机堆积及其堆积结构的研究,博士论文,苏州:苏州大学,2011.
    [132]F.W.AstoR, Atoms and their packing fractions, Nature,1927,120,956-959.
    [133]Hao Liu, Xiaoyi Xie, Ning Xu, Finite Size Analysis of Zero-Temperature Jamming Transition under Applied Shear Stress by Minimizing a Thermodynamic-Like Potential, Phys. Rev. Lett.,2014,112,145502.
    [134]Lijin Wang, Ning Xu, Probing the Glass Transition from Structural and Vibrational Properties of Zero-Temperature Glasses, Phys. Rev. Lett.,2014,112,055701.
    [135]孙其诚,金峰,颗粒物质的多尺度结构及其研究框架,物理,2009,04.
    [136]孙其诚等,自然界与工程中的颗粒物质与颗粒流,香山科学会议,北京,2013.
    [137]W.F. Brace, J.D. Byerlee, Stick-Slip as a Mechanism for Earthquakes, Science,1966,153 (3739),990-992.
    [138]孙其诚,王光谦,静态堆积颗粒中的力链分布,物理学报,2008,8,4667-4674.
    [139]徐正红,颗粒物质的力链压曲变形及本构模型研究,硕士论文,浙江:浙江大学,2011.
    [140]W.F. Brace, J.D. Byerlee, On Dense Granular Flows, Science,1966,153 (3739),990-992.
    [141]C.S. Campbell, Stress-controlled Elastic Granular Shear Flows, Journal of Fluid Mechanics, 2005,539,273-297.
    [142]I. Zuriguel, A. Garcimartin, D. Maza, L. A. Pugnaloni, J.M. Pastor, Jamming During the Discharge of Granular Matter From a Silo, Phys. Rev. E,2005,71,051303
    [143]Takumi. Masuda, Katsuhiro. Nishinari, Andreas. Schadschneider, Critical Bottleneck Size for Jamless Particle Flows in Two Dimensions, Phys. Rev. Lett.,2014,112,138701.
    [144]O. Moriyama, T. Isoda, et al, Dynamics of Granular Flow through a Vertical Pipe:Effect of Medium Flow, J. Phys.Soc. Jpn.,1998,67(5),1616-1624.
    [145]O. Moriyama, N. Kuroiwa, M. Matsushita, H.Hayakawa,4/3 law of granular particles flowing through a vertical pipe, Phys. Rev. Lett.,1998,80(13),2833-2836.
    [146]M.B. Hu, Q.S. Wu, X.Z. Kong, Y.H. Wu, Discharge Oscillation of Particles From a Vertical Pipe with Capillary Outlet, Chinese Science Bulletin,2005,50(11),1076-1078.
    [147]孔祥照,颗粒物质动态特性的若干问题研究,硕士论文,合肥:中国科学技术大学,2006.
    [148]E.Altshuler, O. Ramos, E. Martinez, A. J.Batista-Leyva, A.Rivera, K.E. Bassler, Sandpile Formation by Revolving Rivers, Phys. Rev.Lett.,2003,91(1),014501.
    [149]S.B. Savage, Streaming Motions in a Bed of Vibrationally Fluidized Dry Granular, Fluid. Mech.,1988,194,457-478.
    [150]P. Evesque, J. Rajchenbach, Instability in a Sand Heap, Phys. Rev. Lett.,1989,62(1),44-46.
    [151]M. Bourzutschky, J. Miller, "Granular" Convection in a Vibrated Fluid, Phys. Rev. Lett., 1995,74,2216.
    [152]S.P. Pudasaini, C. Kroner, Shock Waves in Rapid Flows of Dense Granular Materials: Theoretical Predictions and Experimental Results, Phys Rev E,2008,78,041308.
    [153]E.L Grossman, Effects of Container Geometry on Granular Convection, Phys. Rev.E.,1998, 56(3),3290-3300.
    [154]S.S. Hsiau, et al., Convection Cells and Segregation in a Vibrated Granular Bed. AlChE. Journal.2002,48(10),1430-1438.
    [155]吴晶,振动颗粒的分离与对流,硕士论文,哈尔滨:哈尔滨工业大学,2007.
    [156]孟小杰,颗粒介质在准二维振动容器中的对流与分聚,硕士论文,长沙:中南大学,2011.
    [157]M.B. Hu, et al., Granular Segregation in a Multi-bottleneck Container:Mobility Effect, International Journal of Modern Physics B.2005,19(10),1793-1800.
    [158]W.R. Ketterhagena, et al., Modeling Granular Segregation in Flow From Quasi-three-dimensional, Wedge-shaped hoppers, Powder Technology,2008,179(3),126-143.
    [159]H.J. van Gerner, K.van der Weele, M.van der Hoef, D. van der Meer, Air-induced Inverse Chladni Patterns, J. Fluid Mech.689,2011,203-220.
    [160]厚美瑛,刘锐,李寅阊,陈延佩,Pierre.Evesque,颗粒气体流体力学描述的适用性,中国力学大会 2011暨钱学森诞辰100周年纪念大会,2013.
    [161]厚美瑛,刘锐,Meerson B.,颗粒气体的类气-液相变,空间科学学报,2008,28(1),1.
    [162]E. Khain,B. Meerson, Oscillatory Instability in a Driven Granular Gas, Europhys Lett.,2004, 65,193-199.
    [163]R. Liu, Y. Li, M. Hou, Phase Separation in a Three Dimensional Granular Gas System. Acta Physica Sinica,2008,67(8),4660.
    [164]R. Liu, Y. Li, M. Hou,, B.Meerson, Van der Waals-like Phase Separation Instability of a Driven Granular Gas in Three Dimensions, Phys. Rev. E,2007,75,079705.
    [165]李寅闾,张兆部,涂洪恩,刘锐,胡海云,厚美瑛,分仓颗粒布居分聚现象的通量模型,物理学报,2009,58(8),5857-5863.
    [166]厚美瑛,陈唯,张彤,陆坤权,陈志强,颗粒物质从稀疏流到密集流转变的普适规律, 物理,2004,33,389.
    [167]D. Blair, I.S. Aranson, G.W. Grabtree, et al., Patterns in Thin Vibrated Granular Layers: Interfaces, Hexagons, and Superoscillons, Phys. Rev. E,2000,61,5600.
    [168]Bennett, H. Charles. The Thermodynamics of Computation-a Review, International Journal of Theoretical Physics,1982,21,905-940.
    [169]P. Vazquez, et al.,. Infinite Penetration of a Projectile into a Granular Medium, Phys. Rev. Lett., 2011,106,218001.
    [170]A.Vrij, Neutron Scattering of Colloidal Particle Dispersions:Contrast Variation with Homogeneous and Granular Solvents, Colloids And Surface,2003,213,117-129.
    [171]Qi-Yi Liu, Mao-Bin Hu, Rui Jiang, Yong-Hong Wu, Stop and Restart of Granular Clock in a Vibrated Compartmentalized Bidisperse Granular System, Phys. Rev. E,2013,87,014202.
    [172]Fuweng Zhang, Li Wang, Chuanping Liu, Ping Wu, Shuai Zhan, Patterns of Convective Flow in a Vertically Vibrated Granular Bed, Physics Letters A,2014,378,1303-1308.
    [173]W. A. Beverloo, H.A. Leniger, J. Van de Velde,The flow of granular solids through orifices, Chem. Eng. Sci.,1961,15,260.
    [174]P. Umbanhowar, Patterns in the sand, Nature,1997,389,541-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700