基于玻璃结构调控的稀土离子发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子掺杂的发光材料具有许多优异的性能,如光吸收能力强,色纯度高,色彩鲜艳,发射波长覆盖范围广,物理化学性能稳定等优点,因而在照明、显示、激光介质、光纤放大器、光通讯和储能等领域具有广泛的应用。但是作为发光离子,由于其独特的4f内层电子跃迁导致其发光效率相对较低。玻璃作为一种良好的发光基质材料具有许多优点:透明度高,成本较低,容易加工以及较高的发光效率等;而且,玻璃的近程有序,远程无序的结构优势可以直接进行高浓度的稀土离子等发光中心离子的掺杂,可以避免光圈效应,且具有工艺简单、产品质量稳定等优良性能,因而稀土离子掺杂的发光玻璃被广泛应用于光电领域,成为一类重要的发光材料。如何提高稀土离子在玻璃基质中的发光效率以及优化稀土掺杂玻璃的发光性能成为一个重要的研究内容,并对光电材料的基础研究和器件化发展具有重要的理论价值。
     实验证明稀土离子在无机玻璃中的结构状态是处于网络外的空隙中,主要以离子键的形式与阴离子(团)相连接,激活剂离子的发光性能以及光吸收能力很大程度上与网络形成体的这些阴离子团有关。此外,玻璃修饰体离子如碱(土)金属离子等对激活剂离子的发光性质也会产生一定的影响作用。因此,通过对玻璃基质结构的调控可以实现对稀土离子的发光性质的调节,具体研究内容如下。
     本文制备了一系列稀土离子掺杂硼酸盐玻璃,并通过硼酸盐玻璃结构的变化,讨论了结构对稀土离子发光性质的影响机制。硼酸盐玻璃不仅是一种低熔点易制备的玻璃体系,而且具有特殊的结构单元。当在纯的B203玻璃中加入适量的碱金属或者碱土金属离子时,网络结构中存在着[B03]单元与[B04]单元的转变,进而对稀土离子的发光产生重要影响。在本文中,通过玻璃网络形成体B203和网络中间体A1203的变化,对稀土Eu3+离子掺杂的B2O3-Al2O3-Na2O硼酸盐玻璃体系的发光性质进行了研究。结果表明:随着网络形成体B203和网络中间体Al2O3含量的增加,在空气气氛下实现了Eu3+的自还原现象;而且随着玻璃组分浓度的增加,Eu2+的发光强度显著增强,并在较高A13+浓度样品中实现了自还原效率的显著提高。玻璃结构测试表明随着B2O3/Al2O3浓度的提高,玻璃的结构发生了从[B04]向[B03]的结构转变,由[B04]为主的五硼环、三硼环和四硼环等高聚态结构转变为[BO3]为主的原硼环,硼氧环以及焦硼环等低聚态结构。并且在结构转变的过程中,伴随有大量的负电荷产生,与网络间隙中的Eu3+相结合,实现了Eu3+的还原作用。因而,通过玻璃本身结构的调控可以实现对稀土离子发光性质的调控。
     由于等离子体共振的作用,玻璃中的金属纳米颗粒也可以对稀土离子的发光产生影响,但技术纳米颗粒在玻璃中的形成机制、金属离子的赋存状态以及它们对稀土离子发光的影响规律尚不明确,因此,本论文通过改变硼酸盐玻璃结构研究金属离子在网络中的赋存状态产生,并通过研究金属离子或纳米颗粒与稀土离子之间能量传递的关系,以期实现对稀土离子发光的调制。我们发现随着玻璃结构中[B04]单元向[B03]单元的转变,贵金属Ag的赋存状态发生了高聚态向低聚态的结构转变,即Ag+和Ag团簇的发光呈现增强的趋势,而Ag纳米颗粒的析出能力下降,金属离子的这种赋存状态变化对稀土离子的发光性质具有良好的促进作用。低聚态的Ag粒子通过能量传递作用促进了Eu3+的发光效率,这表明通过玻璃的结构调控可以实现金属离子的赋存状态调节,进而实现对稀土离子发光性质的优化调控。同时,在Eu-Ag共掺的样品中,实现了光谱从红光到蓝紫光的较大范围内的光谱颜色调控,并最终分别在Eu单掺的样品和Eu-Ag共掺的样品中实现了玻璃的白光发射,我们对Ag赋存状态与硼酸盐结构的关系以及Eu-Ag共掺玻璃中的能量传递机理做了推测分析。
     由上可知,通过改变玻璃自身的组分,可以对玻璃的内部微观结构进行选择性调控,进而实现对稀土离子发光行为的调制。在本文中,我们提出采用外场作用方式,即通过飞秒激光辐照对玻璃结构的诱导作用进行了相关研究,进而研究了激光诱导结构与稀土离子发光性质的相互关系。我们发现,飞秒激光作用到Sm3+掺杂的氟铝酸盐玻璃体系时,在激光焦点处由于多光子电离等的产生诱导了玻璃中的微纳结构,进而实现了部分Sm3+的光还原。同时我们发现,飞秒激光作用于卤素离子Cl,Br取代部分F离子的氟铝酸盐玻璃后,Sm2+的发光明显出现增强,在高浓度Cl,Br取代的样品中呈现了非线性显著增强的现象。透射电镜测试结果表明,飞秒激光作用下的玻璃基质中析出了卤化物Cl,Br的的纳米分相,并且Sm3+选择性地进入到析出的卤化物纳米分相中,这可能是导致Sm3+的光还原能力显著增强的原因。另外,针对卤素Br替换的基质的Sm3+的光还原效率比C1离子替换的样品以及纯氟化物基质都要高的问题,我们提出了物质的电负性影响光还原的机制,即卤化物的电负性越低其所形成的微观环境的还原性越强,其光还原能力也越强。因此我们有理由相信,外场作用也可以实现对玻璃结构的调控,进而调控掺杂稀土离子的发光性质。
Rare earth ions doped luminescent material exhibits many excellent properties, such as strong absorption ability, high color purity, and colorful hue, wild range of emission wavelength, stable physics and chemistry property. As a result, this kind of material has a wide range of application in many fields such as illumination, display, laser medium, fiber amplifier, optical communication, energy storage and so on. However, the emission efficiency is relative low because of their special4f electronic transition structure. Glass has many advantages as a host for luminescence materials:high transparency, low cost, easy processing and high luminescent efficiency etc. In addition, due to the special structure of glass-short-range order and and long-range disorder, high concentration of rare earth ions can be doped in glass. As a result, the halo effect can be avoided. Based on these, rare earth ions doped glass is an important material applied in photoelectric field widely. Therefore, it has important research significance in studying optical properties of rare earth ions doped glass, and how to improve luminescent efficiency of rare earth ions doped in glass has an important theoretical value in basic research and device project.
     Experiments demonstrated that rare earth ions are placed in the gaps outside the glass network in inorganic glass. They are connected with anion group mainly through ionic bonds. To a large extent, the luminescent properties of activators and their light absorption ability have relationships with networking formation anion group. Besides, the modifiers such as alkaline earth metal ions have a certain impact in the luminescent properties of activators. Therefore, the optical properties of rare earth ions can be regulated by the adjustment of glass structure. The main research contents are as follows:
     In this work, rare earth ions doped borate glasses are prepared. We discussed the influence of the glass structure on the rare earth luminescence by changing the borate glasses. Borate glass is famous for both low melting point and special structure units. The structure transition between [BO3] units and [BO4] units is existed in the glass when appropriate alkali metal ions or alkali-earth metal ions are doped in the B2O3glasses. This change will affect the emission of rare earth ions deeply. Herein, with variation of network forming B2O3and network medium Al2O3, the luminescent properties of Eu3+doped B2O3-Al2O3-Na2O glasses is investigated. The results indicate that with increasing of B2O3/Al2O3concentration, Eu3+ions are reduced to the divalent and the blue emission of Eu2+is observed in the air condition. Moreover, with increase of B2O3/Al2O3, the Eu+emission is enhanced evidently and the mutated growth of Eu2+luminescence happened in the higher Al3+ions doped samples. The structure detection revealed that the glass structure is turned from [BO4] units to the [BO3] units with increasing of B2O3/Al2O3concentration, which means the pentaborate groups, tetraborate groups consist of [BO3] and [BO4] units are turned to the low polymeric groups such as boroxol rings, triborate and orthoborate groups composed by the main [BO3] units. Moreover, during the decomposition process, low polymerized units with large negative charges are reacted with neighboring Eu3+ions leading to the Eu+ions reduction effect. It is therefore that the luminescence of rare earth ions can be controlled by the alternation of the glass structure induced by the varied composition.
     Owing to the good work of the plasma resonance, the metak nanoparticles in the glass matrix is available to influence on the luminescence of rare earth ions. However, the unclear problems are existed such as the formation mechanism of the technical nanoparticles in the host, the types of the metal ions and their rule effect on the rare earth ions emission. Therefore, The occurance state of the metal ions in the glass network is investigated by change of the structure of the borate glasses. And the avaible control on the rare earth ions luminescence is expected to be relized through the study of the energy transfer interaction between metal ions or nanoparticles and rare earth ions. It is found that the type of the noble silver is changed from their high polymeric state to the lower ones with transformation of [BO4] to [BO3] units. Namely, the luminesce intensity of Ag+and Ag aggregates is increased and the the precipitation ability of the Ag nanoparticles goes down. Fortunately, the variation is contributed for the emission of the doped rare earth ions. Energy transfer is proceeding from the low polymeric Ag species to the Eu3+ions emission efficiency. It is believed that the galss structure can be changed to control the type of the metal ions and then improve the luminescent properties of the rare earth ions in the glass.
     Accordingly, the variation of the glass component can selectively control the micro structure of the glasses and furthering to adjust the luminescence of the rare earth ions. In this paper, the external field mode is employed by the femtosecond laser irradiation into the glass to study their effect on the glass structure, including the interaction of the induced structure and the rare earth ions emission. The results indicates that part of doped Sm3+ions is reduced to the Sm2+in the laser focus where the micro structure is existed induced by the irradiation effect because of the multiphoton ionization. Not only that, but the luminescent efficiency is enhanced after the halide ions F is substituted by the Cl and Br ions with femtosecond laser effect. Even the significant enhancement of Sm2+luminescence is observed in the high halide ions Cl/Br doped samples. Structure anaylisis by TEM measurement indicates that the nanophase containing halide ions Cl or Br is precipited from the glass matrix and Sm3+is selectively incooperated into the nanophase by the femtosecond laser irradiatin effect. Besides, the reduction ability in Br substituted samples is stronger than Cl substituted galsses and both stronger than fluorate galsses. And the electronegativity effect is the proposed for the phenomenon. The lower of the electronegativity value, the ability of drawing electrons is stronger and the reduction ability is higher. Therefore, the external effect on the galss structure is another efficient method for the control of rare earth ions luminescence properties.
引文
1.孙家跃,杜海燕, 胡文祥.固体发光材料[M].北京:化学工业出版社,2003.
    2.李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.
    3. Aitasalo T., Deren P., Holsa, Jungner J., Krupa H., Lastusaari J.C., Legendziewicz M., J. Niittykoski, Strek J., W. Persistent luminescence phenomena in materials doped with rare earth ions. Journal of Solid State Chemistry,2003,171(1-2):114-122.
    4. Rolli R., Gatterer K., Wachtler M., Bettinelli M., Speghini A., Ajo D., Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2001,57 (10):2009-2017.
    5. Wachtler M, Speghini A., Gatterer K., Fritzer H.P., Ajo D., Bettinelli M. Optical properties of rare-earth ions in lead germanate glasses. Journal of the American Ceramic Society,1998,81(8):2045-2052.
    6. Nazabal V., Fargin E., Videau J.J., Le Flem G., Le Calvez A., Montant S., Freysz E., Ducasse A., Couzi M., Second-Harmonic Generation of Electrically Poled Borophosphate Glasses:Effects of Introducing Niobium or Sodium Oxides, Journal of Solid State Chemistry,1997,133(2):529-535.
    7. Narazaki A., Tanaka K., Hirao K., Soga N., Induction and relaxation of optical second-order nonlinearity in tellurite glasses, Journal of Applied Physics,1999,85(4):2046-2051.
    8. Philipps J. F., Topfer T, Ebendorff Heidepriem H, Ehrt D, Sauerbrey R., Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses. Applied Physics B-Lasers and Optics,2001,72(4):399-405.
    9. Dvoyrin V. V., Mashinsky V. M., Bulatov L. I., Bufetov I. A., Shubin A. V., Melkumov M. A., Kustov E. F., Dianov E. M., Umnikov A. A., Khopin V. F., Yashkov M. V., Guryanov A. N., Bismuth-doped-glass optical fibers-a new active medium for lasers and amplifiers, Optics Letters,2006,31(20):2966-2968.
    10. Binnemans K., Van Deun R., Gorller-Walrand C, Adam J. L., Spectroscopic properties of trivalent lanthanide ions in fluorophosphate glasses, Journal of Non-crystalline Solids,1998,238(1-2):11-29.
    11. Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. W., Han I. T., Lee Y. H., Jung J. E., Lee N. S., Park G. S., Kim J. M., Fully sealed, high-brightness carbon-nanotube field-emission display. Applied PHysics Letters,1999,75(20):3129-3131.
    12. Gloge D., Weakly guiding fibers, Applied Optics:1971,10,2252-8.
    13. Kim H., Gilmore C. M., Horwitz J. S., Pique A., Murata H., Kushto G. P., Schlaf R., Kafafi Z. H., Chrisey D. B., Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Applied Physics Letters,2000,76(3):259-261.
    14. Konenkamp R., Word R. C., Schlegel C., Vertical nanowire light-emitting diode, Applied Physics Letters, 2004,85(24):6004-6006.
    15. Rocha J., Carlos L. D., Paz F. A. A., Ananias D., Luminescent multifunctional lanthanides-based metal-organic frameworks, Chemical Society Reviews,2011,4(2):926-940.
    16. Righini G. C. and Ferrari M., Photoluminescence of rare-earth-doped glasses, Rivista Del Nuovo Cimento, 2005,28(12):1-53.
    17. Eliseeva S.V., Bunzli J. C. G., Lanthanide luminescence for functional materials and bio-sciences, Chemical Society Reviews,2010,39(1):189-227.
    18. Wang F., Liu X. G., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chemical Society Reviews,2009,38(4):976-989.
    19. Binnemans K., Lanthanide-Based Luminescent Hybrid Materials, Chemical Reviews,2009,109 (9): 4283-4374.
    20 Tanabe S., Optical transitions of rare earth ions for amplifiers:how the local structure works in glass, Journal of Non-Crystalline Solids,1999,259(1-3):1-9.
    21. Slooff L. H., van Blaaderen A., Polman A., Hebbink G. A., Klink S. I., Van Veggel F. C. J. M., Reinhoudt D. N., Hofstraat J. W., Rare-earth doped polymers for planar optical amplifiers, Journal of Applied Physics, 2002,91(7):3955-3980.
    22. Kenyon A. J., Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics,2002,26(4-5):225-284.
    23. Lia Y.Q., Van Steena J. E. J., Van Krevela J. W. H., Bottya G., Delsinga A. C. A., DiSalvob F. J., de Witha G., Hintzen H. T., Luminescence properties of red-emitting M2Si5N8:Eu2+(M= Ca, Sr, Ba) LED conversion phosphors, Journal of Alloys and Compounds,2006,417(1-2):273-279.
    24. Park J. K., Kim C. H., Park S. H., Park H. D., Choi S. Y., Application of strontium silicate yellow phosphor for white light-emitting diodes, Applied Physics Letters,2004,84(10):1647-1649.
    25. Ye S., Xiao F., Pan Y. X., Ma Y. Y., Zhang Q. Y., Phosphors in phosphor-converted white light-emitting diodes Recent advances in materials, techniques and properties, Materials Science & Engineering R-Reports, 2010,71(1):1-34.
    26. Eichelbaum M. and Rademann K., Plasmonic enhancement or energy transfer? On the Luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices, Advanced Functional Materials,2009,19(13):2045-2052.
    27. Kim J. S., Jeon P. E., Choi J. C., Park H. L., Mho S. I., and Kim G. C., Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor, Applied Physics Letters,2004,84(15): 2931-2933.
    28. Zhu C. F., Yang Y. X., Liang X. L., Yuan S. L., Chen G. R., Rare earth ions doped full-color luminescence glasses for white LED, Journal of Luminescence,2007,126 (2):707-710.
    29. Liu S. M., Zhao G. L., Ying H., Wang J. X., Han G. R., Eu/Dy ions co-doped white light luminescence zinc-aluminoborosilicate glasses for white LED, Optical Materials,2008,31(1):47-50.
    30. Masai H., Fujiwara T., Matsumoto S., Takahashi Y., Iwasaki K., Tokuda Y., Yoko T., White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation, Optics Letters,2011,36(15): 2868-2870.
    31.刘光华.稀土材料学.北京:化学工业出版社,2007.
    32.张希艳,卢利平,柏朝晖等.稀土发光材料.北京:国防工业出版社,2005.
    33.苏锵.稀土化学.河南科学技术出版社,1993.
    34.张思远.稀土离子的光谱学-光谱性质和光谱理论.北京:科学出版社,2008.
    35.洪广言.稀土发光材料-基础与应用.科学出版社,2011.
    36.李梅,柳召刚,吴锦绣,胡艳宏.稀土元素及其分析化学.化学工业出版社,2009.
    37.张中太,张俊英.无机光致发光材料及应用(第1版).北京:化学工业出版社,2005.
    38. Cohen A. J., Smith H. L., Variable Transmission Silicate Glasses Sensitive to Sunlight. Science,1962, 137(3534):981.
    39. Yamazaki M., Yamamoto Y., Nagahama S. et al., Long luminescent glass:Tb3+-activated ZnO-B2O3-SiO2 glass, Journal of Non-Crystalline Solids,1998,241(1):71-73.
    40. Lin Y., Tang Z., Zhang Z. et al., Preparation and properties of photoluminescent rare earth doped SrO-MgO-B2O3-SiO2 glass, Materials Science and Engineering:B,2001,86(1):79-82.
    41. Qiu J., Hirao K., Long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses, Solid State Communications,1998,106(12):795-798.
    42. Qiu J., Kawasaki M., Tanaka K. et al., Phenomenon and mechanism of long-lasting sphorescence in Eu2+-doped aluminosilicate glasses. Journal of Physics and Chemistry of Solids,1998,59(9):1521-1525.
    43. Li C. Y., Yu Y. Y., Wang S. B., Su Q., Photostimulated long lasting phosphorescence in Mn2+-doped zinc borosilicate glass. Journal of Non-Crystalline Solids,2003,321(3):191-196.
    44.干福熹,邓佩珍.激光材料.上海科学技术出版社,1996.
    45. Seeber W., Ehrt D., Ebendorff-Heidepriem H., Spectroscopic and laser properties Ce3+-Cr3+-Nd3+ co-doped fluoride phosphate and phosphate glasses. Journal of Non-Crystalline Solids,1994,171(1):94-104.
    46. Yin H. B., Deng P. Z., Zhang J. Z. et al, Emission properties of Yb3+ in fluorophosphates glass, Journal of Non-Crystalline Solids,1997,210(2-3):243-248.
    47. Byun J. O., Kim B. H., Hong K. S. et al., Properties and structure of RO-Na2O-Al2O3-P2O5 (R=Mg, Ca, Sr, Ba) glasses, Journal of Non-Crystalline Solids,1995,190(3):288-295.
    48.(日)木村磐根,杨明君,孙晓东,郭雪清(译).光通讯与无线通讯系统.北京:科学出版社,2001.
    49.刘增基.光纤通信.西安:西安电子科技大学出版社,2001.
    50. Naffaly M., Jha A., Wayne G. J.,1.3 μm Fluorescence quenching in Pr-doped glasses, Journal of Applied Physics,1998,84(4):1800-1804.
    51. Lopez-Lago E., Couderc V., Griscom L., All-optical poling of a chalcohalogenide glass, Optical Materials,2001,16 (4):413-416.
    52.姜建华.无机非金属材料工艺原理.化学工业出版社,2005.
    53.赵彦钊,殷海荣.玻璃工艺学.化学工业出版社,2006.
    54.卢安贤.无机非金属材料导论(第2版).长沙:中南大学出版社,2010.
    55.武汉建筑材料工业学院,华东化工学院,浙江大学.玻璃工艺原理.北京:中国建筑工业出版社,1981.
    56.王承恩,陶瑛,玻璃成分设计与调整.化学工业出版社,2006.
    57.李善锋.铒、镱掺杂硼硅酸盐玻璃的光学特性.大连:大连理工大学,2006.
    58.徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    59. Judd B. R., The Information of Nonsequential Messages Information and Control, Phys. Rev.1959,2(4): 315-332.
    60. Ofelt G. S., Intensities of crystal spectra of rare-earth ions, The Journal of Chemical Physics,1962,37(3): 511-520.
    61. Reisfeld R., Spectroscopy and applications of thin films prepared by sol-gel process, Structure and Bonding,1973,13:53-98.
    62. Izumitani T., Toratani H., Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses, J. Non-cryst. Solids, 1982,47(1): 87-99.
    63. Tanabe S., Ohyagi T., Soga N. et al., Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses, Physics Reviewer B, 1992,46(6): 3305-3310.
    64. Bettinelli M., Spegini A., Ferrari M. et al., Spectroscopic investigation of zinc borate glasses doped with trivalent europium ions, Journal of Non-Crystalline Solids, 1996, 201(3): 211-221.
    65. Oomen E. W. J. L., van Dongen A. M. A., Europium (Ⅲ) in oxide glasses: Dependence of the emission spectrum upon glass composition, Journal of Non-Crystalline Solids, 1989, 111(2-3): 205-213.
    66. Nageno Y., Takebe H., Morinaga K. et al., Composition dependence of Jubb-Ofelt parameters in silicate, borate, and phosphate glasses, Journal ofNon-Crystalline Solids, 1994, 169(3): 288-294.
    67. Fujita K., Tanaka K., Yamashita K., Room-temperature persistent spectral hole burning of Eu3+ -doped sodium borate glasses, Journal of Luminescence, 2000, 87-89: 682-684.
    68. Qiu J. R., Shimizugawa Y., sugimoto N., Hirao K., Photostimulated luminescence in borate glasses doped with Eu2+ and Sm3+ ions, Journal of Non-Crystalline Solids, 222: 290-295.
    69. Weber M. J., CRC handbook of laser science and technology, supplement, 1991(1).
    70. McCumber D. E., Theory of photon-terminated optical masers, Physics Reviewer A, 1964,134(2): 299-306.
    71. Miniscalw W. J., Quimby R. S., General procedure for the analysis of Er3+ cross sections, Optics Letters, 1991,16(4):258-260.
    72. Lewis G. N., Acids and bases. J. Franklin. Inst. 1938, 226:293-313.
    73. Duffy J. A., Ingram M. D., Establishment of an optical scale for Lewis basicity in inorganic oxyacids, melten salts and glasses, Journal of American. Chemical Society, 1971, 93(24): 6448-6454.
    74.刘志亮.Bi离子掺杂硅酸盐玻璃的近红外超宽带发光性质及机理的研究.昆明理工大学硕士论文,
    75.刘史敏,Al2O3-B3O3-SiO2系统光功能玻璃制备、结构及性能研究浙江大学博士论文,2009.
    76. Shimizugawa Y., Umesaki N., Hanada K., Sakai I. and Qiu J. R., X-ray induced reduction of rare earth ion doped in Na2O-Al2O3-B2O3 glasses, Journal of Synchrotron Radiation, 2001, 8:797-799.
    77. Qiu J., Hirao K., y-ray induced reduction of Sm3+ to Sm2+ in sodium aluminoborate glasses. Journal of Materials Science Letters, 2001,20(8): 691- 693.
    78. Nogami M. and Suzuki K., Formation of Sm2+ Ions and Spectral Hole Burning in X-ray Irradiated Glasses, The Journal of Physical Chemistry B, 2002, 106(21): 5395-5399.
    79. Ebeling P., Ehrt D., Friedrich M., X-ray induced effects in phosphate glasses, Optical Materials,2002, 20(2):101-111.
    80. Zeng H. D., Qiu J. R., Jiang X. W., Zhu C. S., Gan F. X., Space-selective precipitation of gold nanoparticlesi n transparent glasses, Journal of the Chinese Ceramic Society,2004,32(3):270-279.
    81. Zhang J., Dong W., Qiao L., Li J., Zheng J. W., Sheng J. W., Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing, Journal of Crystal Growth,2007,305(1):278-284.
    82. Beall. G. H., Glass-ceramics:Recent development and application, in Nucleation and crystallization in glasses and liquids (M. C. Weinberg edt.), Transactions Series, Westerville, Ohio, The American Ceramic Society,1993,30,241-266.
    83.曹国喜,胡和方,干福熹.透明氟铝酸盐微晶玻璃研究.硅酸盐通报.2003,6:51-54.
    84.黄文静,Tb3+-Tm3+-Yb3+共掺氟氧化物微晶玻璃上转换发光性质及机理研究,昆明理工大学硕士论文,2010.
    85. Neindre L. L., Jiang S. B., Hwang B. C, Luo T., Waston J., Peyghambarian N., Effect of relative alkali content on absorption linewidth in erbium-doped tellurite glasses, Journal of Non-Crystalline Solids,1999, 255(1):97-102.
    86.闻格,梁婉雪, 章正刚等.矿物红外光谱学.重庆:重庆大学出版社,1988:1-2.
    87.阳国辉, 陈亚杰,冯清茂.拉曼光谱的发展及应用.化学工程师,2008,1:34-36.
    88.干福熹,等,光学玻璃,科学出版社,1964.
    89.姜中宏,新型光功能玻璃.化学工业出版社,2008.
    90.H.M.巴夫鲁什夫,A.K.茹拉夫列夫.易熔玻璃.北京:中国建筑工业出版社,1975:1.
    91. Honma T., Benino Y., Fujiwara T. et al. New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system, Optical Materials,2002,20(1): 27-33.
    92. Honma T., Benino Y., Fujiwara T., Komatsu T., Sato R., Nonlinear optical crystal linewriting in glass by yttrium aluminium garnet laser irradiation, Appllied Physics Letters,2003,82(6):892-894.
    93.文启.硼酸盐的高温Raman光谱的研究.硕士学位论文,上海大学,2001.
    94. Meera B. N., Sood A. K., Chandrabhas N. et al., Raman study of lead borate glasses. Journal of Non-Crystalline Solids,1990,126(3):224-230.
    95.杨南如,无机非金属材料测试方法.武汉:武汉工业大学出版社,1993:223-252.
    96. Thoms M., VonSeggern H., Winnacker A., Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr:Eu2+, Physical Review B:Condensed Matter,1991,44:9240-9247.
    97. Blasse G., Bril A., Energy transfer between Eu2+ ions in nonequivalent sites in strontium-silicate-phosphate, Physics Letters A,1969,28(8):572-573.
    98. Kim C. H., Kwon I. E., Park C. H., Hwang Y. J., Bae H. S., Yu B. Y., Pyun C. H., Hong G. Y., Phosphors for plasma display panels, Journal of Alloys and Compounds,2000,311(1):33-39.
    99. Justel T., Bechtel H., Mayr W., Wiechert D. U., Blue emitting BaMgAli0O17:Eu with a blue body color, Journal of Luminescence,2003,104(1-2):137-143.
    100. Tale I., Kulis P., Kronghauz V., Recombination luminescence mechanisms in Ba3(PO4)2, Journal of Luminescence,1979,20 (4):343-347.
    101. Wang C.,.Peng M. Y., Jiang N., Jiang X. W., Zhao C. J., Qiu J. R., Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions, Materials Letters,2007,61(17):3608-3611.
    102. Qiu J. R., Kojima K., Miura T., Mitsuyu T., Hirao K., Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass, Optics Letters,1999,24 (11):786-788.
    103 Peng M. Y., Pei Z. W., Hong G. Y., Su Q., The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor, Journal of Materials Chemistry,2003,13(1): 1202-1205.
    104. Nogami M., Kawaguchi T., Yasumori A., Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching, Optics Communications,2001,193(1-6):237-244.
    105. Peng M. Y., Hong G. G., Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu, Journal of Luminescence,2007,127(2):735-740.
    106. Zhang C. M., Yang J., Lin C. K., Li C. X., Lin J., Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition, Journal of Solid State Chemistry,2009,182(7):1673-1678.
    107. Grandhea B. K., Bandia V. R., Janga K., Kima S. S, Shinb D. S., Lee Y. I., Lim J. M., Song T., Reduction of Eu3+ to Eu2+ in NaCaPO4:Eu phosphors prepared in a non-reducing atmosphere, Journal of Alloys and Compounds,2011,509 (30):7937-7942.
    108. Zeng Q. H.,.Pei Z. W., Wang S. B., Su Q., The reduction of Eu3+ in SrB6O10 prepared in air and the luminescence of SrB6O10:Eu, Journal of Alloys and Compounds,1998,275:238-241.
    109. Zhu C. F., Yang Y. X., Liang X. L., Yuan S. L., Chen G. R., Composition Induced Reducing Effects on Eu Ions in Borophosphate Glasses, Journal of the American Ceramic Society,2007,90 (9):2984-2986.
    110. Liu S. M., Zhao G. L., Ruan W., Yao Z. W., Xie T. T., Jin J., Ying H., Wang J. X., Han G. R., Reduction of Eu3+ to Eu2+ in Aluminoborosilicate Glasses Prepared in Air, Journal of the American Ceramic Society,2008,91(8):2740-2742.
    111. Lian Z. H., Wang J., Lv Y. H., Wang S. B., Su Q., Journal of Alloys and Compounds,2007,430 (1-2): 257-261.
    112. Shimizugawa Y., Qiu J. R., Hirao K., Local structure around reduced rare earth ions doped in borate glasses by XAFS, Journal of Non-Crystalline Solids,1997,222:310-315.
    113. Jimenez J. A., Lysenko S., Liu H., Fachini E., Cabrera C. R., Investigation of the influence of silver and tin on the luminescence of trivalent europium ions in glass, Journal of Luminescence,2010,130 (1):163-167.
    114. Duffy J. A., Redox equilibria in glass, Journal of Non-Crystalline Solids,1996,196:45-50.
    115. Zeng H. D., Yang Y. F., Lin Z. Y., Liang X. L., Yuan S. L., Chen G. R., Sun L. Y., The effect of B2O3 on the luminescent properties of Eu ion-doped aluminoborosilicate glasses, Journal of Non-Crystalline Solids, 2011,357 (11-13):2328-2331.
    116. Duffy J. A., Ingram M. D., An interpretation of glass chemistry in terms of the optical basicity concept, Journal of Non-Crystalline Solids,1976,21(3):373-410.
    117. Egili K. E., Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 glasses, Physica B: Condensed Matter,2003,325:340-348.
    118. Pernice P., Esposito S., Aronne A., Sigaev V. N., Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system, Journal of Non-Crystalline Solids,1999,258(1):1-10.
    119. Konijnendijk W. L., Stevels J. M., The structure of borate glasses studied by Raman scattering, Journal of Non-Crystalline Solids,1975,18 (3):307-331.
    120. Dwivedi B. P., Rahman M. H., Kumar Y., Khanna B. N., Raman scattering study of lithium borate glasses, Journal of Physics and Chemistry of Solids,1993,54(5):621-628.
    121. Kam E. I., Infrared studies of borate glasses, Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B,2003,44(2):79-87.
    122. Nogami M., Yamazaki T., Abe, Y., Fluorescence properties of Eu3+ and Eu2+ in Al2O3-SiO2 glass, Journal of Luminescence,1998,78(1):63-68.
    123. Gresch R. and Muller-Warmuth W., 11B and 27AlNMR studies of glasses in the system Na2O-B2O3-Al2O3 ("NABAL"), Journal of Non-Crystalline Solids,1976,21(1):31-40.
    124. Doweidar H., Moustafa Y. M., El-Maksoud S. A., and Silim H., Materials Science and Engineering:A, Properties of Na2O-Al2O3-B2O3 glasses,2001,301(2):207-212.
    125. Kim K. S. and Bray P. J., The determination of the structures of compounds and glasses in the system MgO-B2O3 using 11B NMR, Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B,1974,15(2):47.
    126. Subhadra M. and Kistaiah P., Infrared and Raman spectroscopic studies of alkali bismuth borate glasses: Evidence of mixed alkali effect, Vibrational Spectroscopy,2012,62:23-27.
    127. Tang Y. X., Jiang Z. H., Song X. Y., NMR, IR and Raman spectra study of the structure of borate and borosilicate glasses, Journal of Non-Crystalline Solids,1989,112(1-3):131-135.
    128. Irion M. and Couzi M., An infrared and Raman study of new Ionic-conductor lithium glasses, Journal of Solid State Chemistry,1980,31(3):285-294.
    129. Kamitsos E. I. and Chryssikos G. D., Borate glass structure by Raman and infrared spectroscopies, Journal of Molecular Structure,1991,247:1-16.
    130. Kamitsos E. I., Patsis A., Karakassides M. A., and Chryssikos G. D., Infrared reflectance spectra of lithium borate glasses, Journal of Non-Crystalline Solids,1990,126(1-2):52-67.
    131. Pernice P., Esposito S., Aronne A., and Sigaev V. N., Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system, Journal of Non-Crystalline Solids,1999,258(1-3):1-10.
    132. Kamitsos E. I., Karakassides M. A., and Chryssikos G. D., A Vibrational Study of Lithium Sulfate Based Fast Ionic Conducting Borate Glasses, The Journal of Physical Chemistry,1986,90(19):4528-4533.
    133. Yiannopoulos Y. D., Chryssikos G. D., and Kamitsos E. I., Structure and properties of alkaline earth borate glasses, Physics and Chemistry of Glasses,2001,42(3):164-172.
    134. Wang J. P., Cheng J. S., and Lu P., Effect of A12O3 on the thermal expansion and face separation of borosilicate glass, Journal of the Ceramic Chinese Society,2008,36(4):544-548.
    135. Yano T., Kunimine N., Shibata S., and Yamane M., Structural investigation of sodium borate glasses and melts by Raman spectroscopy:I. Quantitative evaluation of structural units, Journal of Non-Crystalline Solids, 2003,321(3),137-146.
    136. K. Patek, Glass Lasers, Butterworth, London,1970:72.
    137. Fukushima M., Managaki N., Fujii M., Yanagi H., and Hayashi S., Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping, Journal of Applied Physics,2005,98(2): 024316-4.
    138. Lin H., Meredith G., Jiang S., Peng X., Luo T., Peyghambarian N., and Pun E.Y., Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass, Journal of Applied Physics,2003,93(1):,186-191.
    139. Som T. and Karmakar B., Efficient green and red fluorescence upconversion in erbium doped new low phonon antimony glasses, Optical Materials,2009,31(4):609-618.
    140. Tanabe S., Hirao K., and Soga N., Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+, Journal of Non-Crystalline Solids,1990,122(1):79-82.
    141. Malta O. L., Santa-Cruz P. A., De Sa'G. F., and Auzel F., Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials, Journal of Luminescence,1985,33(3):261-272.
    142 Barnes W. L., Dereux A., and Ebbesen T. W., Surface plasmon subwavelength optics, Nature,2003, 424(6950):824-830.
    143. Le F., Brandl D. W., Urzhumov Y. A., Wang H., Kundu J., Halas N. J., Aizpurua J., and Nordlander P., Metallic Nanoparticle Arrays:A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption, ACS Nano,2008,2(4),707-718.
    144. Geddes C. D. and Lakowicz J. R., Metal-Enhanced Fluorescence Solution-Based Sensing Platform, Journal of Fluorescence,2002,12(2):121-129.
    145. Eichelbaum M. and Rademann K., Plasmonic Enhancement or Energy Transfer? On the Luminescence of Gold-, Silver-, and Lanthanide-Doped Silicate Glasses and Its Potential for Light-Emitting Devices, Advanced Functional Materials,2009,19(13):2045-2052.
    146. Guo H., Li J. J., Li F., Zhang H., Origin of White Luminescence in Ag-Eu Co-doped Oxyfluoride Glasses, Journal of The Electrochemical Society,2011,158 (6):165-168.
    147. Zheng H. R., Gao D. L., Fu Z. X., Wang E. K., Lei Y., Min Y. T., Fluorescence enhancement of Ln+ doped nanoparticles, Journal of Luminescence,2011,131(3):423-428.
    148. Quaranta A., Rahman A., Mariotto G., Maurizio C., Trave E., Gonella F., Cattaruzza E., Ghibaudo E., Broquin J. E., Spectroscopic Investigation of Structural Rearrangements in Silver Ion-Exchanged Silicate Glasses, The Journal of Physical Chemistry C,2012,116(5):3757-3764.
    149. Jimenez J. A., Lysenko S., Zhang G., Liu H., Optical properties of silver-doped aluminophosphate glasses, Journal of Materials Science,2007,42(5):1856-1863.
    150. Wei R. F., Li J. J., Gao J. Y., Guo H., Enhancement of Eu3+ Luminescence by Ag Species (Ag NPs, ML-Ag, Ag+) in Oxyfluoride Glasses, Journal of the American Ceramic Society,2012,95(11):3380-3382.
    151. Li J. J., Wei R. F., Liu X. Y., Guo H., Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses, Optics Express,2012,20(9):10122-10127.
    152. Hayakawa T., Selvan S. T., Nogami M., Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass, Applied Physics Letters,1999,74(11):1513-1515.
    153. Fan S. J., Yu C. L., He D. B., Li K. F., Hu L. L., White light emission from γ-irradiated Ag/Eu co-doped phosphate glass under NUV light excitation, Journal of Alloys and Compounds,2012,518:80-85.
    154 Kolobkova E. V., Nikonorov N. V., Sidorov A. I., Shakhverdov T. A., Luminescence of molecular silver clusters in oxyfluoride glasses, Optics and Spectroscopy,2013,114(2):236-239.
    155. Piasecki P., Piasecki A., Pan Z. D., Mu R., and Morgan S. H., Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithiumlanthanum-aluminosilicate glass, Journal of Nanophotonics,2010,4(1):0435221-10.
    156. Alivisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots, Science,1996,271(5251): 933-937.
    157. Zou W. G., Yang Z. S., Lu M. K., Gu F., Wang S. F., Effect of Mn2+ ions on the photo luminescence characteristics of Eu3+ doped Zn3(BO3)2 nanoparticles, Displays,2005,26:143-146.
    158. Nabika H., Deki S., Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase, The Journal of Physical Chemistry B,2003,107(35): 9161-9164.
    159. Naranjo L. P., deArau jo C. B., Malta O. L., SantaCruz P. A., Kassab L. R. P., Enhancement of Pr3+ luminescence in PbO-GeO2 glasses containing silver nanoparticles, Applied Physics Letters,2005,87:241914.
    160.Z. Pan, A.Ueda, R.Agajr, A.Burger, R.Mu, S.H.Morgan, Journal of Non-Crystalline Solids (2010) 1.
    161. Lakshminarayana G., Qiu J. R., Enhancement of Pr3+ luminescence in TeO2-ZnO-Nb2O5-MoO3 glasses containing silver nanoparticles, Journal of Alloys and Compounds,2009,478(1-2):630-635.
    162. Strohhofer C., Polman A., Silver as a sensitizer for erbium, Applied Physics Letters,2002,81:(8) 1414-1416.
    163. Jimenez J. A., Lysenko S., Liu H., Enhanced UV-excited luminescence of europium ions in silver/tin-doped glass, Journal of Luminescence,2008,128 (5-6):831-833.
    164. Lipowska B., Konkowski A. M., Energy transfer and surface plasmon resonance in luminescent materials based on Tb(Ⅲ) and Ag or Au nanoparticles in silica xerogel, Journal of Non-Crystalline Solids,354 (35-39): 4383-4387.
    165. Guo H., Wang X. F., Chen J. D., Li F., Ultraviolet light induced white light emission in Ag and Eu3+ co-doped oxyfluoride glasses, Optics Express,2010,18(18):18900-189905.
    166. Li J. J., Chen J. D., Wei R. F., and Guo H., Combined White Luminescence from Eu3+, ML-Ag Particles and Ag+ in Ag-Eu3+ Co-Doped H3BO3-BaF2 Glasses, Journal of the American Ceramic Society,2012,95(4): 1208-1211.
    167. Fan S. J., Yu C. L., He D. B., Wang X., Hu L. L., Tunable white light emission from y-irradiated Ag/Eu co-doped phosphate glass phosphor, Optical Materials Express,20122(6):765-770.
    168. Li, L. J., Yang, Y., Zhou, D. C., Yang, Z. W., Xu, X. H., Qiu, J. B., Investigation of the role of silver species on specrroscopic features of Sm3+-activated sodium-aluminosilicate glasses via Ag+-Na+ion exchange, Journal of Applied Physics,2013,113(19):193103-193103-5.
    169. Li, L. J., Yang, Y., Zhou, D. C., Yang, Z. W., Xu, X. H., Qiu, J. B., Investigation of the interaction between different types of Ag species and europium ions in Ag+-Na+ion-exchange glass, Optical Materials Express,2013,3(6):806-812.
    170. Li, L. J., Yang, Y., Zhou, D. C., Yang, Z. W., Xu, X. H., Qiu, J. B., The influence of Ag species on spectroscopic features of Tb3+-activated sodium-aluminosilicate glasses via Ag+-Na+ ion exchange, Journal of Non-Crystalline Solids,2014,385:95-99.
    171. Hirosaki N., Xie R. J., Kimoto K., Sekiguchi T., Yamamoto Y., Suehiro T., Mitomo M., Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes, Applied Physics Letters,2005,86(21):211905.
    172. Xie R. J., Hirosaki N., Mitomo M., Takahashi K., Sakuma K., Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors, Applied Physics Letters,2006,88 (10): 101104-101104-3.
    173. Zhang J. C., Parent C., le Flem G., Hagenmuller P., White light emitting glasses, Journal of Solid State Chemistry,1991,93(1) 17-29.
    174. Liang X., Yang Y., Zhu C., Yuan S., Chen G., Pring A., Xia F., Luminescence properties of Tb3+-Sm3+ codoped glasses for white light emitting diodes, Applied Physics Letters,2007,91(9):091104-091104-3.
    175. DeMaria J., Stetser D. A., Heynau H., Self mode-locking of lasers with saturable absorbers, Applied Physics Letters,1966,8(7):174-176.
    176. Fork R. L., Greene B. I., Shank C. V., Generation of optical pluses shorter than 0.1 psec by colliding pulse mode locking, Applied Physics Letters,1981,38(9):671-672.
    177. Valdmanis J. A., Fork R. L., Gordon J. P., Generation of optical Pulses as short as 27 femtoseconds direetly from a laser balancing self-phase modulation, group-veloeity dispersion, saturable absorption, and saturable gain, Optics Letters,1985,10(3):131-133.
    178. Spenee D. E., Kean P. N., Sibbett W.,60-fs pulse generation from a self-mode-locked Ti:Sapphire laser, Optics Letters,1991,16(1):42-45.
    179. Huang C., Kapteyn H. C., MeIntosh J. W., Murnane M. M., Generation of transform-limited 32-fs pulses from a self-mode-locked Ti:sapphire laser, Optics Letters,1992,17(2):139-141.
    180. Proctor B., Wise F., Generation of 13-fs pulses from a mode-locked Ti:Al2O3 laser with reduced third-order dispersion, Applied Physics Letters,1993,62(5):470-472.
    181.杨建军,飞秒激光超精细“冷”加工技术及其应用(Ⅰ).激光与光电子进展.2004,41(3):42-52.
    182. Qiu J., External electromagnetic field indued electronic structures and novel optical functions of rare-earth-ion-doped glasses, Journal of the Ceramic Society of Japan,2001,109 (2):25-31.
    183. Miura K., Qiu J.Q., Inouye H., Mitsuyu T., Hirao K., Photo written optical waveguides in various glasses with ultrashort pulse laser, Applied Physics Letters,1997, (71)23:3329-3331.
    184. Sun H., Xu Y., Juodkazis S., Sun K., Wtanabe M., Matsuo S., Misawa H., Nishii J., Arbitrary-lattice photonic crystals created by multiphoton microfabrication, Optics Letters,2001,26(6):325-327.
    185. Dai Y., Zhu B., Qiu J., Ma H., Lu B., Yu B., Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser, Chemical Physics Letters,2007,443(4-6):253-257.
    186. Qiu J. R., Jiang X., Zhu C., Shirai M., Si J., Jiang N. and Hirao K., Manipulation of Gold Nanoparticles inside Transparent Materials, Angewandte Chemie International Edition,2004,43(17):2230-2234.
    187. Shimotsuma Y., Hirao K., Kazansky P. G., Qiu J. R., Three-Dimensional Micro-and Nano-Fabrication in Transparent Materials by Femtosecond Laser, Japanese Journal of Applied Physics,2005,44(7):4735-4748.
    188. Lim K. S.,-Shin J., Jang K., Lee.S., Hamilton D. S., Multilayer optical memory using femtosecond-laser induced fluorescence in rare-earth ion doped glass, Applied Physics A,2008,93(1):215-218
    189. Lee S., Lee M., Lim K., Femtosecond laser induced PL change in Sm-doped sodium borate glass and 3D optical memory, Journal of Luminescence,2007,122-123:990-992.
    190. Qiu J. R., Miura K., Suzuki T., Mitsuyu T., Hirao K., Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser, Applied Physics Letters,1999,74(1): 10-12.
    191. Yu L. X., Nogami M., Photoluminescent changes of Eu3+ in ZnO-SiO2 glasses induced by femtosecond laser, Journal of Alloys and Compounds,2008,462 (1-2):187-191
    192. Qiu, J. B., Nanostructure induced by femtosecond laser in various OH-contents silicas, Journal of Nanoscience and Nanotechnology,2008,8(3):1422-1426.
    193. Hirao K., Todoroki S., Cho D. H., Soga N., Room-temperature persistent hole burning of Sm2+ in oxide glasses, Optics Letters,1993,18(19):1586-1587.
    194. Kishimoto S. and Hirao K., Direct observation of time-resolved excited state absorption on Tm3+ -doped various glasses using a laser-flash pump-probe spectroscopy, Journal of Non-Crystalline Solids,1997, 213-214:393-397.
    195. Lim J., Lee M., Kim E., Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass, Applied Physics Letters,2005,86:191105. 196. Schaffer C. B., Garcia J. F., Mazur E., Applied Physics A:Material Science Process,2003,76(3): 351-354.
    197. You H. P., Nogami M., Optical Properties and Valence Change of Europium Ions in a Sol-Gel Al2O3-B2O3-SiO2 Glass by Femtosecond Laser Pulses, The Journal of Physical Chemistry B,2005,109(29): 13980-13984.
    198. Qiu J. B., Makishima A., Rare-Earth Containing Nanocrystal Precipitation and Up-conversion Luminescence in Oxyfluoride Glasses, Journal of Nanoscience and Nanotechnology,2005,5(9):1541-1545.
    199. Chen D. Q, Wang Y. S., Yu. Y. L., Huang P., Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic, Applied Physics Letters,91(5):051920.
    200. Stuart B. C., Feit M. D., Rubenchi A. M., Shore B. W., Perry M. D., Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Reviewer Letters,1995,74(12):2248-2251.
    201. Meng X. Q., Han C., Wu F. M., Li J. B., Er3+ -Yb3+ co-doped TiO2 nanoparticles embedded in amorphous matrix with strong up-conversion emissions, Journal of Alloys and Compounds,2012,536,210-213.
    202. Wu Y., Shen X., Dai S. X., Y. Xu Y. S., Chen F. F., Lin C. G., Xu T. F., and Nie Q. H., Silver Nanoparticles Enhanced Upconversion Luminescence in Er3+/Yb3+ Codoped Bismuth-Germanate Glasses, The Journal of Physical Chemistry C.,2011,115(50):25040-25045.
    203. Qiu J. B. and Song Z. G., Nanocrystals precipitation and up-conversion luminescence in Yb3+-Tm3+ co-doped oxyfluoride glasses, Journal of Rare Earths,2008,26(6):919-923.
    204. Xie J. H., Zhang Q. A., Zhuang Y. X., Liu X. F., Guan M. J., Zhu B., Yang R., and Qiu J. R., Enhanced mid-IR emission in Yb3+-Tm3+ co-doped oxyfluoride glass ceramics, Journal of Alloys and Compounds, 509(6):3032-3037.
    205. Fujita K., Yasumoto C., and Hirao K., Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses, Journal of Luminescence,2002,98(1-4): 317-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700