qnr介导细菌对喹诺酮类耐药机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球范围内革兰阴性菌对氟喹诺酮类抗菌药耐药性的上升引起了医学界的重视。传统的理解认为细菌对喹诺酮类的耐药是由于突变所致,耐药性为垂直传递。这难以解释为何原本非常敏感的微生物迅速产生了耐药,且细菌常同时对喹诺酮类及其他类别抗菌药耐药。最近发现的质粒介导喹诺酮类耐药机制可部分解释耐药率上升迅速的原因。
     目前发现的质粒介导耐药机制有三种:1.五肽重复序列蛋白Qnr:保护DNA旋转酶免受喹诺酮类药物的抑制,此类蛋白很可能来源于水生细菌。2.AAC(6')-Ib-cr:一种氨基糖肽类乙酰转移酶,可以修饰环丙沙星及诺氟沙星而使其抗菌活性下降。这是首次发现自然界存在的酶修饰完全人工合成药物。3.外排泵QepA和OqxaAB。这三种机制都可以导致细菌对喹诺酮类药物敏感性下降,进而促进细菌产生更高水平的耐药。
     本研究对qnr新基因、qnr基因的表达调控及其在霍乱弧菌对喹诺酮类耐药性形成中的作用进行了研究,发现了一个新的qnr基因(qnrC),发现qnrB受SOS的调控,明确了qnrVC3与染色体的靶位突变共同促进了霍乱弧菌对喹诺酮类耐药性的上升,本研究有助于我们进一步了解细菌对喹诺酮类耐药性的形成机制,指导临床合理应用喹诺酮类药物。
     研究背景:自1998年发现第一个质粒介导喹诺酮类耐药基因-qnrA以来,国际上又陆续报道了另外两个qnr基因-qnrB和qnrS。这三个耐药基因在世界范围内临床分离菌中广泛分布,但不同基因间的同源性低,我们推测临床株中尚存在未被发现的新的qnr基因。在此部分研究中,我们在肠杆菌科细菌临床株中进行新的喹诺酮类耐药基因筛选,以期发现新的耐药基因。
     材料与方法:收集复旦大学附属华山医院2005-2007年临床分离的肠杆菌科细菌。通过临床菌株与耐叠氮钠的大肠埃希菌J53接合试验,筛选对环丙沙星敏感性下降的接合子。提取接合子的质粒,并对质粒进行酶切克隆分析和测序,确定引起敏感性下降的基因。通过PCR方法检测新qnr基因在临床分离菌中的流行情况。
     结果:在尿路感染患者的尿标本中分离到的一株奇异变形杆菌对氨苄西林、磺胺甲基异噁唑、甲氧苄啶耐药外对大多数抗菌药物敏感。这株细菌中含有的质粒pHS10,可以通过接合转移至大肠埃希菌J53。含有pHSl0的大肠埃希菌J53对环丙沙星敏感性下降,但是通过PCR检测并未发现已知的qnr基因、aac(6')-Ib-cr和qepA。奇异变形杆菌临床株和含pHS10 J53接合子的环丙沙星最低抑菌浓度(MIC)均为0.25μg/ml,较受体菌J53有32倍的上升。为进一步确定引起喹诺酮类敏感性下降的基因,对pHS10通过多种限制性内切酶消化后与质粒载体pUC18连接,连接后的产物转化至大肠埃希菌TOP10,通过氨苄西林和环丙沙星选择转化子。通过对转化子质粒的测序分析,发现了由HindⅢ酶切后的一个4.4kb的DNA片段可以介导喹诺酮类耐药。测序分析和进一步的克隆证明引起耐药的是其中一个含有666碱基对的基因,按照国际认可的命名原则,命名为qnrC。该基因编码221氨基酸的五肽重复序列蛋白QnrC。QnrC与QnrA1、QnrB1、QnrS1、QnrD相比,氨基酸同源性分别为64%、42%、59%、43%。QnrC基因的上游存在一个新的IS3家族的插入序列(insertion sequence, IS),命名为ISPmill,编码含有读码框移动的转座酶,推测这一结构与qnrC的摄入与传播有关。以PCR方法对2020株临床分离的肠杆菌科细菌进行检测,未发现qnrC基因。
     结论:在这部分研究中,在奇异变形杆菌中发现了新的质粒介导喹诺酮类耐药基因qnrC。
     研究背景:通过DNA结构分析发现,在qnrB基因的上游含有一个LexA结合位点。而这一位点在qnrA或qnrS周边则不存在。LexA蛋白是细菌SOS调控系统中的重要组成部分。在大肠埃希菌中,RecA刺激LexA的分解,可诱导40多种基因表达的SOS调控系统。细菌籍SOS调控系统对DNA损伤做出反应。已知喹诺酮类药物和丝裂霉素等可以损伤细菌DNA,诱导SOS反应。该部分研究旨在了解qnrB的表达是否受SOS系统的调控,此研究有利于理解Qnr蛋白的原始功能。
     材料与方法:大肠埃希菌GWl000,含有recA411基因,编码的RecA蛋白酶更容易被激活;大肠埃希菌AB1157,具有完整的SOS调控系统;AB1157LexA300::spec,其LexA蛋白有缺陷,不能与LexA结合位点结合;DM49,其LexA蛋白不能被蛋白酶水解。将qnrB1、qnrB2、qnrB3、qnrB4质粒和qnrA1、qnrS1质粒导入大肠埃希菌GW1000或J53,并测定不同温度下环丙沙星对这些菌株的MIC。以环丙沙星或丝裂霉素为诱导剂,用实时定量PCR方法检测qnr基因在诱导情况下的表达。在LexA蛋白有缺陷的菌株中重复诱导表达实验。使用管家基因mdh为实时定量PCR内对照。
     结果:含有不同亚型的qnrB质粒的GW1000菌株在培养温度从21℃升高到43℃时,对环丙沙星的敏感性降低2到8倍。含有qnrA1和qnrS1质粒的GW1000在温度升高时有2到3倍的敏感性降低。在具有野生型的SOS调控系统的大肠埃希菌J53中,温度升高时细菌对环丙沙星敏感性降低2倍。上述现象提示qnrB在SOS系统调控之下。qnrB在大肠埃希菌J53(具有完整的lexA和recA基因)中表达可受到诱导因素(环丙沙星、丝裂霉素)影响上升2.1至9.9倍,而qnrA1的表达则不受诱导。在含有野生型lexA和recA基因的大肠埃希菌AB1157内,qnrB4的表达也可被环丙沙星和丝裂霉素诱导,但是在LexA蛋白变异的ABll57LexA300::spec和DM49菌株内则不能被诱导。
     结论:与qnrA和qnrS不同,质粒上的qnrB基因在SOS系统调控之下,qnrB的诱导表达需要完整的SOS系统。
     研究背景:因为霍乱弧菌对很多抗菌药物的耐药上升,在很多地区,环丙沙星用于治疗霍乱弧菌感染。但是随着时间的推移,霍乱弧菌对环丙沙星敏感性下降,环丙沙星的临床疗效随之降低。我们对一个腹泻中心分离的霍乱弧菌耐药机制进行了研究,以明确qnr基因在耐药性形成过程中的影响。材料与方法:霍乱弧菌来源于一个腹泻研究国际中心2002至2008年的临床分离菌株。随机选择了16株对环丙沙星的敏感性水平不同的霍乱弧菌,首先用Etest测定氨苄西林、环丙沙星、庆大霉素、左氧氟沙星、萘啶酸、链霉素、四环素、甲氧苄啶和甲氧苄啶/磺胺甲基异噁唑对这些菌株MIC。应用PCR检测喹诺酮类耐药决定区突变和已知的质粒介导喹诺酮类耐药基因。以大肠埃希菌J53为受体菌进行接合试验。提取供体菌和接合子的质粒,以Southern印迹实验对水平传播耐药基因定位。使用反向PCR方法,对耐药基因周边结构进行分析。
     结果:根据MIC水平将16株霍乱弧菌分为3组,第一组(MIC 0.023-0.032μg/ml),第二组(MIC 0.38-0.5μg/ml),第三组(MIC>0.5μg/ml)。第一组菌株含有gyrA突变Ser83Ile,第二组菌株和第三组菌株除gyrA突变外,含有parC突变Ser85Leu,这两种突变都位于喹诺酮类耐药决定区域(QRDR)。株第二组菌株和所有的第三组菌株含有一个新的qnrVC基因亚型,其编码的蛋白与QnrVC1相差11个氨基酸,命名为qnrVC3。qnrVC3可通过接合转移至大3肠埃希菌。将qnrVC3克隆至表达载体pQE60并转化至大肠埃希菌J53可使其环丙沙星的MIC上升16-32倍。提取qnrVC3阳性的霍乱弧菌全基因组DNA对qnrVC3进行Southern印迹,对qnrVC3的周边结构进行测序,发现qnrVC3位于染色体的整合接合元件上(integrated conjugative element, ICE)。
     结论:霍乱弧菌对喹诺酮类药物耐药水平逐渐上升与喹诺酮类靶位突变的累积和位于可移动元件上的qnrVC3基因有关,这给霍乱的抗菌治疗带来了更大的挑战。
Fluoroquinolone resistance has been increasing in Gram-negative pathogens worldwide. The traditional understanding that quinolone resistance is acquired only through mutation and transmitted only vertically does not entirely account for the relative ease with which resistance develops in exquisitely susceptible organisms, or for the very strong association between resistance to quinolones and to other agents. The recent discovery of plasmid-mediated horizontally transferable genes encoding quinolone resistance might shed light on these phenomena. The Qnr proteins, capable of protecting DNA gyrase from quinolones, have homologues in water-dwelling bacteria, and seem to have been in circulation for some time, having achieved global distribution in a variety of plasmid environments and bacterial genera. AAC(6')-Ib-cr, a variant aminoglycoside acetyltransferase capable of modifying ciprofl oxacin and reducing its activity, seems to have emerged more recently, but might be even more prevalent than the Qnr proteins. Two plasmid-mediated quinolone transporters have now been found:OqxAB and QepA. Plasmid-medicated quinolone resistance mechanisms provide low-level quinolone resistance that facilitates the emergence of higher-level resistance in the presence of quinolones at therapeutic levels. Much remains to be understood about these genes, but their insidious promotion of substantial resistance, their horizontal spread, and their co-selection with other resistance elementsindicate that a more cautious approach to quinolone use and a reconsideration of clinical breakpoints are needed.
     Since the discovery of qnrA in 1998, two additional qnr genes, qnrB and qnrS, have been described. These three plasmid-mediated genes contribute to quinolone resistance in gram-negative pathogens worldwide. A clinical strain of Proteus mirabilis was isolated from an outpatient with a urinary tract infection and was susceptible to most antimicrobials but resistant to ampicillin, sulfamethoxazole, and trimethoprim. Plasmid pHS10, harbored by this strain, was transferred to azide-resistant Escherichia coli J53 by conjugation. A transconjugant with pHS10 had low-level quinolone resistance but was negative by PCR for the known qnr genes, aac(6_)-Ib-cr and qepA. The ciprofloxacin MIC for the clinical strain and a J53/pHS10 transconjugant was 0.25μg/ml, representing an increase of 32-fold relative to that for the recipient, J53. The plasmid was digested with HindⅢ, and a 4.4-kb DNA fragment containing the new gene was cloned into pUC18 and transformed into E. coli TOP 10. Sequencing showed that the responsible 666-bp gene, designated qnrC, encoded a 221-amino-acid protein, QnrC, which shared 64%,42%,59%, and 43% amino acid identity with QnrA1, QnrB1, QnrS1, and QnrD, respectively. Upstream of qnrC there existed a new IS3 family insertion sequence, ISPmi1, which encoded a frameshifted transposase. qnrC could not be detected by PCR, however, in 2,020 strains of Enterobacteriaceae. A new quinolone resistance gene, qnrC, was thus characterized from plasmid pHS10 carried by a clinical isolate of P. mirabilis.
     Plasmid-mediated Qnr proteins provide low-level quinolone resistance and protect bacterial DNA gyrase and topoisomeraseⅣfrom quinolone inhibition. QnrA, QnrB, and QnrS are currently known. All are pentapeptide repeat proteins differing from each other by 40% or more in amino acid sequence, while within each type minor variations in sequence define alleles such as QnrB1 and QnrB2. In addition to protecting DNA gyrase, QnrB1 (but not QnrA1) at high concentrations has been shown to inhibit the enzyme in vitro, which may explain the bacterial growth inhibition observed when the gene is maximally expressed. We have discovered that qnrB is regulated by the SOS system so that quinolone exposure augments its expression. To determine whether expression of qnrB alleles is under SOS control, plasmids were introduced into Escherichia coli GW1000 with recA441, which encodes a RecA protease that is more easily activated. GW1000 derivatives containing plasmids with qnrB alleles demonstrated two-to eightfold decreases in ciprofloxacin susceptibility as the growth temperature increased from 21℃to 43℃. A two-to threefold decrease in susceptibility was also seen in strains with plasmids carrying qnrA1 or qnrS1 alleles. In E. coli J53 with unmodified SOS regulation, temperature had only a twofold effect on the level of qnrB1-mediated ciprofloxacin resistance. While the trend observed suggested that qnrB alleles are specifically regulated by the SOS system, the MIC results were not clear-cut because of a background effect of temperature on quinolone susceptibility. To document SOS regulation directly, the expression of qnr genes was measured by real-time quantitative PCR after a 15-to 30-min exposure to agents known to trigger the SOS response. In E. coli J53 with intact lexA and recA genes, expression of qnrB alleles increased between 2.1-and 9.9-fold in response to the inducing agents while expression of qnrA1 was unchanged. Proof that this increase in qnrB expression required an intact SOS system was obtained with a set of related strains. Expression of qnrB4 increased in response to ciprofloxacin or mitomycin C in E. coli AB1157 with wild-type lexA and recA genes but not in two strains derived from it:strain AB1157 LexA300::spec, which has a defective LexA protein so that LexA-regulated genes are constitutively expressed, or strain DM49, which has a protease-resistant LexA product and consequently is defective in SOS induction. SOS regulation of QnrB could be a carryover reflecting a role for this topoisomerase-interacting protein in response to DNA damage. Alternatively, SOS regulation serves to protect the host cell from the potentially toxic effects of QnrB while allowing augmented production upon exposure to quinolone antimicrobial agents.
     Ciprofloxacin was introduced for treatment of patients with cholera in Bangladesh because of the high resistance rates to other agents, but its utility has been compromised by decreasing ciprofloxacin susceptibility of Vibrio cholerae over time. We correlated levels of susceptibility and temporal patterns with the occurrence of mutation in gyrA, encoding a subunit of DNA gyrase, followed by mutation in parC, encoding a subunit of DNA topoisomeraseⅣ. We found that ciprofloxacin activity was more recently further compromised in strains containing qnrVC3, which encodes a pentapeptide repeat protein of the Qnr subfamily, members of which protect topoisomerases from quinolone action. We show that qnrVC3 confers transferable low-level quinolone resistance and is present within a member of the SXT integrating conjugative element family found commonly on the chromosomes of multidrug-resistant strains of V. cholerae and on the chromosome of Escherichia coli transconjugants constructed in the laboratory. Thus, progressive increases in quinolone resistance in V. cholerae are linked to cumulative mutations in quinolone targets and most recently to a qnr gene on a mobile multidrug resistance element, resulting in further challenges for the antimicrobial therapy of cholera.
引文
[1]. Ball, P. Quinolone generations:natural history or natural selection?[J]. J Antimicrob Chemother,2000.46 Suppl T1:17-24.
    [2]. Paton, J. H., and D. S. Reeves. Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use[J]. Drugs,1988.36:193-228.
    [3]. ZHU, D. M., Y. Y. ZHANG, and, F. WANG. Surveillance of bacterial resistance in Shanghai hospitals during 2006[J]. Chinese Journal of infection and chemotherapy,2007.7:393-399.
    [4]. Ling, T. K., J. Xiong, Y. Yu, C. C. Lee, H. Ye, and P. M. Hawkey. Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China[J]. Antimicrob Agents Chemother,2006.50:374-8.
    [5]. Neuhauser, M. M., R. A. Weinstein, R. Rydman, L. H. Danziger, G. Karam, and J. P. Quinn. Antibiotic resistance among gram-negative bacilli in US intensive care units:implications for fluoroquinolone use[J]. JAMA,2003. 289:885-8.
    [6]. Garau, J., M. Xercavins, M. Rodriguez-Carballeira, J. R. Gomez-Vera, I. Coll, D. Vidal, T. Llovet, and A. Ruiz-Bremon. Emergence and dissemination of quinolone-resistant Escherichia coli in the community [J]. Antimicrob Agents Chemother,1999.43:2736-41.
    [7]. Hooper, D. C. Mechanisms of quinolone resistance[M]. In:Quinolone antimicrobial agents. D. C. Hooper and E. Rubinstein, Washington, D.C.; [London]. ASM Press.2003.xiv,485 p.
    [8]. Froelich-Ammon SJ, O. N. Topoisomerase poisons:harnessing the dark side of enzyme mechanism[J]. J. Biol. Chem.,1995.270:21429-21432.
    [9]. J.H., M. C., A. P. Jackson, C. V. Smith, S. N., Maxwell A, R. C. C. s. o. t. b.-r. d. o. Liddington, and D. g. N.903-06. Crystal structure of the breakage-reunion domain of DNA gyrase[J]. Nature,1997.388:903-906.
    [10]. Poole, K. Efflux-mediated antimicrobial resistance[J]. J Antimicrob Chemother,2005.56:20-51.
    [11]. Ruiz, J. Mechanisms of resistance to quinolones:target alterations, decreased accumulation and DNA gyrase protection[J]. J Antimicrob Chemother,2003. 51:1109-17.
    [12]. Gomez-Gomez, J. M., J. Blazquez, L. E. Espinosa De Los Monteros, M. R. Baquero, F. Baquero, J. L. Martinez, I. v. plasmid-encoded, and r. t. q. F. M. L. 271-76. In vitro plasmid-encoded resistance to quinolones.[J]. FEMS Microbiol Lett 1997.154:271-276.
    [13]. Burman, L. G. Apparent absence of transferable resistance to nalidixic acid in pathogenic Gram-negative bacteria[J]. J Antimicrob Chemother,1977.3:509-516.
    [14]. Martinez-Martinez, L., A. Pascual, and G. A. Jacoby. Quinolone resistance from a transferable plasmid[J]. Lancet,1998.351:797-9.
    [15]. Jacoby, G., V. Cattoir, D. Hooper, L. Martinez-Martinez, P. Nordmann, A. Pascual, L. Poirel, and M. Wang. qnr Gene nomenclature [J]. Antimicrob Agents Chemother,2008.52:2297-9.
    [16]. Jacoby, G. A., K. E. Walsh, D. M. Mills, V. J. Walker, H. Oh, A. Robicsek, and D. C. Hooper. qnrB, another plasmid-mediated gene for quinolone resistance[J]. Antimicrob Agents Chemother,2006.50:1178-82.
    [17]. Wang, M., Q. Guo, X. Xu, X. Wang, X. Ye, S. Wu, and D. C. Hooper. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis[J]. Antimicrob Agents Chemother,2009.53:1892-7.
    [18]. Hata, M., M. Suzuki, M. Matsumoto, M. Takahashi, K. Sato, S. Ibe, and K. Sakae. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b[J]. Antimicrob Agents Chemother,2005. 49:801-3.
    [19]. Robicsek, A., J. Strahilevitz, G. A. Jacoby, M. Macielag, D. Abbanat, C. H. Park, K. Bush, and D. C. Hooper. Fluoroquinolone-modifying enzyme:a new adaptation of a common aminoglycoside acetyltransferase[J]. Nat Med,2006. 12:83-8.
    [20]. Strahilevitz, J., G. A. Jacoby, D. C. Hooper, and A. Robicsek. Plasmid-mediated quinolone resistance:a multifaceted threat[J]. Clin Microbiol Rev, 2009.22:664-89.
    [21]. Robicsek, A., G. A. Jacoby, and D. C. Hooper. The worldwide emergence of plasmid-mediated quinolone resistance [J]. Lancet Infect Dis,2006.6:629-40.
    [22]. Rodriguez-Martinez, J. M., C. Velasco, A. Briales, I. Garcia, M. C. Conejo, and A. Pascual. Qnr-like pentapeptide repeat proteins in gram-positive bacteria[J]. J Antimicrob Chemother,2008.61:1240-3.
    [23]. Poirel, L., J. M. Rodriguez-Martinez, H. Mammeri, A. Liard, and P. Nordmann. Origin of plasmid-mediated quinolone resistance determinant QnrA[J]. Antimicrob Agents Chemother,2005.49:3523-5.
    [24]. Poirel, L., A. Liard, J. M. Rodriguez-Martinez, and P. Nordmann. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants[J]. J Antimicrob Chemother,2005.56:1118-21.
    [25]. Cattoir, V., L. Poirel, D. Mazel, C. J. Soussy, and P. Nordmann. Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants [J]. Antimicrob Agents Chemother,2007.51:2650-1.
    [26]. Sanchez, M. B., A. Hernandez, J. M. Rodriguez-Martinez, L. Martinez-Martinez, and J. L. Martinez. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants [J]. BMC Microbiol,2008.8:148.
    [27]. Kehrenberg, C., S. Friederichs, A. de Jong, and S. Schwarz. Novel variant of the qnrB gene, qnrB 12, in Citrobacter werkmanii[J]. Antimicrob Agents Chemother,2008.52:1206-7.
    [28]. Fonseca, E. L., F. Dos Santos Freitas, V. V. Vieira, and A. C. Vicente. New qnr gene cassettes associated with superintegron repeats in Vibrio cholerae O1[J]. Emerg Infect Dis,2008.14:1129-31.
    [29]. Butala, M., Zgur-Bertok D, and B. S.J. The bacterial LexA transcriptional repressor[J]. Cell. Mol. Life Sci.,2009.66:82-93.
    [30]. Courcelle, J., A. Khodursky, B. Peter, P. O. Brown, and P. C. Hanawalt. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli[J]. Genetics,2001.158:41-64.
    [31]. Fernandez De Henestrosa, A. R., T. Ogi, S. Aoyagi, D. Chafin, J. J. Hayes, H. Ohmori, and R. Woodgate. Identification of additional genes belonging to the LexA regulon in Escherichia coli[J]. Mol Microbiol,2000.35:1560-72.
    [32]. Tran, J. H., and G. A. Jacoby. Mechanism of plasmid-mediated quinolone resistance[J]. Proc Natl Acad Sci U S A,2002.99:5638-42.
    [33]. Tran, J. H., G. A. Jacoby, and D. C. Hooper. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase[J]. Antimicrob Agents Chemother,2005.49:118-25.
    [34]. Tran, J. H., G. A. Jacoby, and D. C. Hooper. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV[J]. Antimicrob Agents Chemother,2005.49:3050-2.
    [35]. Cavaco, L. M., H. Hasman, S. Xia, and F. M. Aarestrup. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin[J]. Antimicrob Agents Chemother,2009.53:603-8.
    [36]. Shimizu, K., K. Kikuchi, T. Sasaki, N. Takahashi, M. Ohtsuka, Y. Ono, and K. Hiramatsu. Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother,2008. 52:3823-5.
    [37]. Anonymous. Performance standards for antimicrobial susceptiblity testing, 18th informational supplement. [J]. Clinical Laboratory Standards Institute, 2008.M100:1-186.
    [38]. Chandler, M., and J. Mahillon. Insertion sequences revisited[M]. In:Mobile DNA Ⅱ. N. L. Craig, Washington, D.C.:ASM Press.2001.305-366
    [39]. Chen, C. C., and S. T. Hu. Two frameshift products involved in the transposition of bacterial insertion sequence IS629[J]. J Biol Chem,2006. 281:21617-28.
    [40]. Mazauric, M. H., P. Licznar, M. F. Prere, I. Canal, and O. Fayet. Apical loop-internal loop RNA pseudoknots:a new type of stimulator of-1 translational frameshifting in bacteria[J]. J Biol Chem,2008.283:20421-32.
    [41]. Laursen, B. S., H. P. Sorensen, K. K. Mortensen, and H. U. Sperling-Petersen. Initiation of protein synthesis in bacteria[J]. Microbiol Mol Biol Rev,2005. 69:101-23.
    [42]. Sussman, J. K., E. L. Simons, and R. W. Simons. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo[J]. Mol Microbiol, 1996.21:347-60.
    [43]. Hu, F. P., X. G. Xu, D. M. Zhu, and M. G. Wang. Coexistence of qnrB4 and qnrS1 in a clinical strain of Klebsiella pneumoniae[J].1Acta Pharmacol Sin, 2008.29:320-4.
    [44]. Lascols, C., I. Podglajen, C. Verdet, V. Gautier, L. Gutmann, C. J. Soussy, E. Collatz, and E. Cambau. A plasmid-borne Shewanella algae Gene, qnrA3, and its possible transfer in vivo between Kluyvera ascorbata and Klebsiella pneumoniae[J]. J Bacteriol,2008.190:5217-23.
    [45]. Wang, M., J. H. Tran, G. A. Jacoby, Y. Zhang, F. Wang, and D. C. Hooper. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China[J]. Antimicrob Agents Chemother,2003.47:2242-8.
    [46]. Cattoir, V., P. Nordmann, J. Silva-Sanchez, P. Espinal, and L. Poirel. ISEcpl-mediated transposition of qnrB-like gene in Escherichia coli[J]. Antimicrob Agents Chemother,2008.52:2929-32.
    [47]. Chen, Y. T., H. Y. Shu, L. H. Li, T. L. Liao, K. M. Wu, Y. R. Shiau, J. J. Yan, I. J. Su, S. F. Tsai, and T. L. Lauderdale. Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended- spectrum-beta-lactamase activity in a clinical Klebsiella pneumoniae isolate[J]. Antimicrob Agents Chemother,2006.50:3861-6.
    [48]. Poirel, L., T. V. Nguyen, A. Weintraub, C. Leviandier, and P. Nordmann. Plasmid-mediated quinolone resistance determinant qnrS in Enterobacter cloacae[J]. Clin Microbiol Infect,2006.12:1021-3.
    [49]. Poirel, L., V. Cattoir, A. Soares, C. J. Soussy, and P. Nordmann. Novel Ambler class A beta-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1[J]. Antimicrob Agents Chemother,2007.51:631-7.
    [50]. Young, H. K. Antimicrobial resistance spread in aquatic environments [J]. J Antimicrob Chemother,1993.31:627-35.
    [51]. Jacoby, G. A., and P. Han. Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli[J]. J Clin Microbiol,1996.34:908-11.
    [52]. Kenyon, C. J., and G. C. Walker. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli[J]. Proc Natl Acad Sci U S A, 1980.77:2819-23.
    [53]. Mount, D. W., K. B. Low, and S. J. Edmiston. Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet lght-induced mutations[J]. J Bacteriol,1972.112:886-93.
    [54]. Robicsek, A., J. Strahilevitz, D. F. Sahm, G. A. Jacoby, and D. C. Hooper. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States[J]. Antimicrob Agents Chemother,2006.50:2872-4.
    [55]. Gay, K., A. Robicsek, J. Strahilevitz, C. H. Park, G. Jacoby, T. J. Barrett, F. Medalla, T. M. Chiller, and D. C. Hooper. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica[J]. Clin Infect Dis, 2006.43:297-304.
    [56]. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001.25:402-8.
    [57]. Walker, G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli[J]. Microbiol. Rev.,1984.48:60-93.
    [58]. Malik, M., X. Zhao, and K. Drlica. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones[J]. Mol Microbiol, 2006.61:810-25.
    [59]. Ysern, P., B. Clerch, M. Castano, I. Gibert, J. Barbe, and M. Llagostera. Induction of SOS genes in Escherichia coli and mutagenesis in Salmonella typhimurium by fluoroquinolones[J]. Mutagenesis,1990.5:63-6.
    [60]. Arsene, S., and R. Leclercq. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones[J]. Antimicrob Agents Chemother,2007.51:3254-8.
    [61]. Cirz, R. T., and F. E. Romesberg.. Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria[J]. Antimicrob. Agents Chemother.,2006.50:220-225.
    [62]. Khan, W. A., M. L. Bennish, C. Seas, E. H. Khan, A. Ronan, U. Dhar, W. Busch, and M. A. Salam. Randomised controlled comparison of single-dose ciprofloxacin and doxycycline for cholera caused by Vibrio cholerae 01 or 0139[J]. Lancet,1996.348:296-300.
    [63]. Saha, D., M. M. Karim, W. A. Khan, S. Ahmed, M. A. Salam, and M. L. Bennish. Single-dose azithromycin for the treatment of cholera in adults[J]. N Engl J Med,2006.354:2452-62.
    [64]. Burrus, V., J. Marrero, and M. K. Waldor. The current ICE age:biology and evolution of SXT-related integrating conjugative elements[J]. Plasmid,2006. 55:173-83.
    [65]. Hochhut, B., Y. Lotfi, D. Mazel, S. M. Faruque, R. Woodgate, and M. K. Waldor. Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins[J]. Antimicrob Agents Chemother,2001. 45:2991-3000.
    [66]. Saha, D., R. C. LaRocque, A. I. Khan, J. B. Harris, Y. A. Begum, S. M. Akramuzzaman, A. S. Faruque, E. T. Ryan, F. Qadri, and S. B. Calderwood. Incomplete correlation of serum vibriocidal antibody titer with protection from Vibrio cholerae infection in urban Bangladesh[J]. J Infect Dis,2004. 189:2318-22.
    [67]. Baranwal, S., K. Dey, T. Ramamurthy, G. B. Nair, and M. Kundu. Role of active efflux in association with target gene mutations in fluoroquinolone resistance in clinical isolates of Vibrio cholerae[J]. Antimicrob Agents Chemother,2002.46:2676-8.
    [68]. Kim, H. B., C. H. Park, C. J. Kim, E. C. Kim, G. A. Jacoby, and D. C. Hooper. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period[J]. Antimicrob Agents Chemother,2009.53:639-45.
    [69]. Faruque, S. M., M. J. Islam, Q. S. Ahmad, K. Biswas, A. S. Faruque, G. B. Nair, R. B. Sack, D. A. Sack, and J. J. Mekalanos. An improved technique for isolation of environmental Vibrio cholerae with epidemic potential: monitoring the emergence of a multiple-antibiotic-resistant epidemic strain in Bangladesh[J]. J Infect Dis,2006.193:1029-36.
    [70]. Yoshida, H., M. Bogaki, M. Nakamura, and S. Nakamura. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli[J]. Antimicrob Agents Chemother,1990.34:1271-2.
    [71]. Yoshida, H., M. Bogaki, M. Nakamura, L. M. Yamanaka, and S. Nakamura. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli[J]. Antimicrob Agents Chemother,1991.35:1647-50.
    [72]. Hopkins, K. L., R. H. Davies, and E. J. Threlfall. Mechanisms of quinolone resistance in Escherichia coli and Salmonella:recent developments [J]. Int J Antimicrob Agents,2005.25:358-73.
    [73]. Huda, M. N., J. Chen, Y. Morita, T. Kuroda, T. Mizushima, and T. Tsuchiya. Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1[J]. Microbiol Immunol,2003.47:419-27.
    [74]. Huda, M. N., Y. Morita, T. Kuroda, T. Mizushima, and T. Tsuchiya. Na+-driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium[J]. FEMS Microbiol Lett,2001.203:235-9.
    [75]. Huda, N., E. W. Lee, J. Chen, Y. Morita, T. Kuroda, T. Mizushima, and T. Tsuchiya. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae [J]. Antimicrob Agents Chemother, 2003.47:2413-7.
    [76]. Barker, A., C. A. Clark, and P. A. Manning. Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibrio cholerae O1 [J]. J Bacteriol,1994.176:5450-8.
    [77]. Biskri, L., M. Bouvier, A. M. Guerout, S. Boisnard, and D. Mazel. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities[J]. J Bacteriol,2005.187:1740-50.
    [78]. Mazel, D. Integrons:agents of bacterial evolution[J]. Nat Rev Microbiol,2006. 4:608-20.
    [79]. Rowe-Magnus, D. A., A. M. Guerout, P. Ploncard, B. Dychinco, J. Davies, and D. Mazel. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons[J]. Proc Natl Acad Sci U S A, 2001.98:652-7.
    [1]. Ball, P. Quinolone generations:natural history or natural selection?[J]. J Antimicrob Chemother,2000.46 Suppl T1:17-24.
    [2]. Paton, J. H., and D. S. Reeves. Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use[J]. Drugs,1988.36:193-228.
    [3]. Hooper, D. C. quinolones[M]. In:Mandell, Douglas, and Bennett's princinples and practice of infectous disease. R. G. D. G. L. Mandell, J. E. Bennett, and R. Dolin, New York, NY.:Elsevier/Churchill Livingstone,.2005.451-461
    [4]. Sader, H. S., T. R. Fritsche, and R. N. Jones. In vitro activity of garenoxacin tested against a worldwide collection of ciprofloxacin-susceptible and ciprofloxacin-resistant Enterobacteriaceae strains (1999-2004)[J]. Diagn Microbiol Infect Dis,2007.58:27-32.
    [5]. Colodner, R., Y. Keness, B. Chazan, and R. Raz. Antimicrobial susceptibility of community-acquired uropathogens in northern Israel [J]. Int J Antimicrob Agents,2001.18:189-92.
    [6]. Garau, J., M. Xercavins, M. Rodriguez-Carballeira, J. R. Gomez-Vera, I. Coll, D. Vidal, T. Llovet, and A. Ruiz-Bremon. Emergence and dissemination of quinolone-resistant Escherichia coli in the community [J]. Antimicrob Agents Chemother,1999.43:2736-41.
    [7]. Ling, T. K., J. Xiong, Y. Yu, C. C. Lee, H. Ye, and P. M. Hawkey. Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China[J]. Antimicrob Agents Chemother,2006.50:374-8.
    [8]. Hooper, D. C. Mechanisms of quinolone resistance[M]. In:Quinolone antimicrobial agents. D. C. Hooper and E. Rubinstein, Washington, D.C.; [London]. ASM Press.2003.xiv,485 p.
    [9]. Zhao, X., C. Xu, J. Domagala, and K. Drlica. DNA topoisomerase targets of the fluoroquinolones:a strategy for avoiding bacterial resistance [J]. Proc Natl Acad Sci U S A,1997.94:13991-6.
    [10]. Martinez-Martinez, L., A. Pascual, and G. A. Jacoby. Quinolone resistance from a transferable plasmid[J]. Lancet,1998.351:797-9.
    [11]. Jacoby, G. A., N. Gacharna, T. A. Black, G. H. Miller, and D. C. Hooper. Temporal appearance of plasmid-mediated quinolone resistance genes[J]. Antimicrob Agents Chemother,2009.53:1665-6.
    [12]. Robicsek, A., J. Strahilevitz, G. A. Jacoby, M. Macielag, D. Abbanat, C. H. Park, K. Bush, and D. C. Hooper. Fluoroquinolone-modifying enzyme:a new adaptation of a common aminoglycoside acetyltransferase[J]. Nat Med,2006. 12:83-8.
    [13]. Park, Y. J., J. K. Yu, S. I. Kim, K. Lee, and Y. Arakawa. Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in Enterobacter aerogenes co-producing RmtB and class A beta-lactamase LAP-1[J]. Ann Clin Lab Sci,2009.39:55-9.
    [14]. Gay, K., A. Robicsek, J. Strahilevitz, C. H. Park, G. Jacoby, T. J. Barrett, F. Medalla, T. M. Chiller, and D. C. Hooper. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica[J]. Clin Infect Dis, 2006.43:297-304.
    [15]. Hansen, L. H., L. B. Jensen, H. I. Sorensen, and S. J. Sorensen. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria[J]. J Antimicrob Chemother,2007.60:145-7.
    [16]. Hansen, L. H., S. J. Sorensen, H. S. Jorgensen, and L. B. Jensen. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs[J]. Microb Drug Resist,2005.11:378-82.
    [17]. Kim, H. B., M. Wang, C. H. Park, E. C. Kim, G. A. Jacoby, and D. C. Hooper. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae[J]. Antimicrob Agents Chemother,2009.53:3582-4.
    [18]. Jacoby, G., V. Cattoir, D. Hooper, L. Martinez-Martinez, P. Nordmann, A. Pascual, L. Poirel, and M. Wang. qnr Gene nomenclature [J]. Antimicrob Agents Chemother,2008.52:2297-9.
    [19]. Tran, J. H., and G. A. Jacoby. Mechanism of plasmid-mediated quinolone resistance[J]. Proc Natl Acad Sci U S A,2002.99:5638-42.
    [20]. Nordmann, P., and L. Poirel. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae[J]. J Antimicrob Chemother,2005.56:463-9.
    [21]. Poirel, L., J. M. Rodriguez-Martinez, H. Mammeri, A. Liard, and P. Nordmann. Origin of plasmid-mediated quinolone resistance determinant QnrA[J]. Antimicrob Agents Chemother,2005.49:3523-5.
    [22]. Cambau, E., C. Lascols, W. Sougakoff, C. Bebear, R. Bonnet, J. D. Cavallo, L. Gutmann, M. C. Ploy, V. Jarlier, C. J. Soussy, and J. Robert. Occurrence of qnrA-positive clinical isolates in French teaching hospitals during 2002-2005[J]. Clin Microbiol Infect,2006.12:1013-20.
    [23]. Bonemann, G., M. Stiens, A. Puhler, and A. Schluter. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant[J]. Antimicrob Agents Chemother,2006.50:3075-80.
    [24]. Torpdahl, M., A. M. Hammerum, C. Zachariasen, and E. M. Nielsen. Detection of qnr genes in Salmonella isolated from humans in Denmark[J]. J Antimicrob Chemother,2009.63:406-8.
    [25]. Jacoby, G. A., K. E. Walsh, D. M. Mills, V. J. Walker, H. Oh, A. Robicsek, and D. C. Hooper. qnrB, another plasmid-mediated gene for quinolone resistance[J]. Antimicrob Agents Chemother,2006.50:1178-82.
    [26]. Robicsek, A., J. Strahilevitz, D. F. Sahm, G. A. Jacoby, and D. C. Hooper. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States[J]. Antimicrob Agents Chemother,2006.50:2872-4.
    [27]. Tamang, M. D., S. Y. Seol, J. Y. Oh, H. Y. Kang, J. C. Lee, Y. C. Lee, D. T. Cho, and J. Kim. Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital[J]. Antimicrob Agents Chemother,2008.52:4159-62.
    [28]. Cattoir, V., P. Nordmann, J. Silva-Sanchez, P. Espinal, and L. Poirel. ISEcp1-mediated transposition of qnrB-like gene in Escherichia coli[J]. Antimicrob Agents Chemother,2008.52:2929-32.
    [29]. Kehrenberg, C., S. Friederichs, A. de Jong, and S. Schwarz. Novel variant of the qnrB gene, qnrB12, in Citrobacter werkmanii[J]. Antimicrob Agents Chemother,2008.52:1206-7.
    [30]. Sanchez-Cespedes, J., S. Marti, S. M. Soto, V. Alba, C. Melcion, M. Almela, F. Marco, and J. Vila. Two chromosomally located qnrB variants, qnrB6 and the new qnrB16, in Citrobacter spp. isolates causing bacteraemia[J]. Clin Microbiol Infect,2009.15:1132-8.
    [31]. Wang, M., Q. Guo, X. Xu, X. Wang, X. Ye, S. Wu, and D. C. Hooper. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis[J]. Antimicrob Agents Chemother,2009.53:1892-7.
    [32]. Cavaco, L. M., H. Hasman, S. Xia, and F. M. Aarestrup. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin[J]. Antimicrob Agents Chemother,2009.53:603-8.
    [33]. Cattoir, V., L. Poirel, D. Mazel, C. J. Soussy, and P. Nordmann. Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants[J]. Antimicrob Agents Chemother,2007.51:2650-1.
    [34]. Rodriguez-Martinez, J. M., C. Velasco, A. Briales, I. Garcia, M. C. Conejo, and A. Pascual. Qnr-like pentapeptide repeat proteins in gram-positive bacteria[J]. J Antimicrob Chemother,2008.61:1240-3.
    [35]. Shimizu, K., K. Kikuchi, T. Sasaki, N. Takahashi, M. Ohtsuka, Y. Ono, and K. Hiramatsu. Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother,2008. 52:3823-5.
    [36]. Poirel, L., A. Liard, J. M. Rodriguez-Martinez, and P. Nordmann. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants[J]. J Antimicrob Chemother,2005.56:1118-21.
    [37]. Sanchez, M. B., A. Hernandez, J. M. Rodriguez-Martinez, L. Martinez-Martinez, and J. L. Martinez. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants [J]. BMC Microbiol,2008.8:148.
    [38]. Fonseca, E. L., F. Dos Santos Freitas, V. V. Vieira, and A. C. Vicente. New qnr gene cassettes associated with superintegron repeats in Vibrio cholerae O1 [J]. Emerg Infect Dis,2008.14:1129-31.
    [39]. Velasco, C., J. M. Rodriguez-Martinez, A. Briales, P. Diaz de Alba, J. Calvo, and A. Pascual. Smaqnr, a new chromosome-encoded quinolone resistance determinant in Serratia marcescens[J]. J Antimicrob Chemother,2010.65:239-42.
    [40]. Arsene, S., and R. Leclercq. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones[J]. Antimicrob Agents Chemother,2007.51:3254-8.
    [41]. Bateman, A., A. G. Murzin, and S. A. Teichmann. Structure and distribution of pentapeptide repeats in bacteria[J]. Protein Sci,1998.7:1477-80.
    [42]. Vetting, M. W., S. S. Hegde, J. E. Fajardo, A. Fiser, S. L. Roderick, H. E. Takiff, and J. S. Blanchard. Pentapeptide repeat proteins[J]. Biochemistry, 2006.45:1-10.
    [43]. Hegde, S. S., M. W. Vetting, S. L. Roderick, L. A. Mitchenall, A. Maxwell, H. E. Takiff, and J. S. Blanchard. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA[J]. Science,2005.308:1480-3.
    [44]. Baquirin, M. H., and M. Barlow. Evolution and recombination of the plasmidic qnr alleles[J]. J Mol Evol,2008.67:103-10.
    [45]. Garrido, M. C., M. Herrero, R. Kolter, and F. Moreno. The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell[J]. EMBOJ,1988.7:1853-62.
    [46]. Heddle, J. G., S. J. Blance, D. B. Zamble, F. Hollfelder, D. A. Miller, L. M. Wentzell, C. T. Walsh, and A. Maxwell. The antibiotic microcin B17 is a DNA gyrase poison:characterisation of the mode of inhibition[J]. J Mol Biol, 2001.307:1223-34.
    [47]. Parks, W. M., A. R. Bottrill, O. A. Pierrat, M. C. Durrant, and A. Maxwell. The action of the bacterial toxin, microcin B17, on DNA gyrase[J]. Biochimie, 2007.89:500-7.
    [48]. Jacoby, G. A., N. Chow, and K. B. Waites. Prevalence of plasmid-mediated quinolone resistance[J]. Antimicrob Agents Chemother,2003.47:559-62.
    [49]. Montero, C., G. Mateu, R. Rodriguez, and H. Takiff. Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA[J]. Antimicrob Agents Chemother,2001.45:3387-92.
    [50]. Wang, J. C. DNA topoisomerases[J]. Annu Rev Biochem,1996.65:635-92.
    [51]. Drlica, K., M. Malik, R. J. Kerns, and X. Zhao. Quinolone-mediated bacterial death[J]. Antimicrob Agents Chemother,2008.52:385-92.
    [52]. Drlica, K., and X. Zhao. DNA gyrase, topoisomerase IV, and the 4-quinolones[J]. Microbiol Mol Biol Rev,1997.61:377-92.
    [53]. Drlica, K., and D. C. Hooper.. Mechanisms of quinolone action[M]. In: Quinolone antimicrobial agents. D. C. H. a. E. Rubinstein, Washington, DC.: ASM Press.2003.19-40
    [54]. Gellert, M., K. Mizuuchi, M. H. O'Dea, T. Itoh, and J. I. Tomizawa. Nalidixic acid resistance:a second genetic character involved in DNA gyrase activity [J]. Proc Natl Acad Sci U S A,1977.74:4772-6.
    [55]. Khodursky, A. B., E. L. Zechiedrich, and N. R. Cozzarelli. Topoisomerase IV is a target of quinolones in Escherichia coli[J]. Proc Natl Acad Sci U S A, 1995.92:11801-5.
    [56]. Tran, J. H., G. A. Jacoby, and D. C. Hooper. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase[J]. Antimicrob Agents Chemother,2005.49:118-25.
    [57]. Tran, J. H., G. A. Jacoby, and D. C. Hooper. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase Ⅳ[J]. Antimicrob Agents Chemother,2005.49:3050-2.
    [58]. Merens, A., S. Matrat, A. Aubry, C. Lascols, V. Jarlier, C. J. Soussy, J. D. Cavallo, and E. Cambau. The pentapeptide repeat proteins MfpAMt and QnrB4 exhibit opposite effects on DNA gyrase catalytic reactions and on the ternary gyrase-DNA-quinolone complex[J]. J Bacteriol,2009.191:1587-94.
    [59]. Wang, M., J. H. Tran, G. A. Jacoby, Y. Zhang, F. Wang, and D. C. Hooper. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China[J]. Antimicrob Agents Chemother,2003.47:2242-8.
    [60]. Wang, M., D. F. Sahm, G. A. Jacoby, Y. Zhang, and D. C. Hooper. Activities of newer quinolones against Escherichia coli and Klebsiella pneumoniae containing the plasmid-mediated quinolone resistance determinant qnr[J]. Antimicrob Agents Chemother,2004.48:1400-1.
    [61]. Hopkins, K. L., M. Day, and E. J. Threlfall. Plasmid-mediated quinolone resistance in Salmonella enterica, United Kingdom[J]. Emerg Infect Dis,2008. 14:340-2.
    [62]. Hopkins, K. L., L. Wootton, M. R. Day, and E. J. Threlfall. Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK[J]. J Antimicrob Chemother,2007.59:1071-5.
    [63]. Xu, X., S. Wu, X. Ye, Y. Liu, W. Shi, Y. Zhang, and M. Wang. Prevalence and expression of the plasmid-mediated quinolone resistance determinant qnrA1[J]. Antimicrob Agents Chemother,2007.51:4105-10.
    [64]. Minarini, L. A., L. Poirel, V. Cattoir, A. L. Darini, and P. Nordmann. Plasmid-mediated quinolone resistance determinants among enterobacterial isolates from outpatients in Brazil[J]. J Antimicrob Chemother,2008.62:474-8.
    [65]. Quiroga, M. P., P. Andres, A. Petroni, A. J. Soler Bistue, L. Guerriero, L. J. Vargas, A. Zorreguieta, M. Tokumoto, C. Quiroga, M. E. Tolmasky, M. Galas, and D. Centron. Complex class 1 integrons with diverse variable regions, including aac(6')-Ib-cr, and a novel allele, qnrB10, associated with ISCR1 in clinical enterobacterial isolates from Argentina[J]. Antimicrob Agents Chemother,2007.51:4466-70.
    [66]. Rodriguez-Martinez, J. M., C. Pichardo, I. Garcia, M. E. Pachon-Ibanez, F. Docobo-Perez, A. Pascual, J. Pachon, and L. Martinez-Martinez. Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1[J]. Clin Microbiol Infect,2008.14:691-7.
    [67]. Mammeri, H., L. Poirel, and P. Nordmann. Bactericidal activity of fluoroquinolones against plasmid-mediated QnrA-producing Escherichia coli[J]. Clin Microbiol Infect,2005.11:1048-9.
    [68]. Rodriguez-Martinez, J. M., C. Velasco, I. Garcia, M. E. Cano, L. Martinez-Martinez, and A. Pascual. Mutant prevention concentrations of fluoroquinolones for Enterobacteriaceae expressing the plasmid-carried quinolone resistance determinant qnrA1 [J]. Antimicrob Agents Chemother, 2007.51:2236-9.
    [69]. Robicsek, A., D. F. Sahm, J. Strahilevitz, G. A. Jacoby, and D. C. Hooper. Broader distribution of plasmid-mediated quinolone resistance in the United States[J]. Antimicrob Agents Chemother,2005.49:3001-3.
    [70]. Wiegand, I., I. Luhmer-Becker, and B. Wiedemann..2005. Presented at the 45th Intersci. Conf. Antimicrob. Agents Chemother, Washington, DC.
    [71]. Drlica, K., and X. Zhao. Mutant selection window hypothesis updated[J]. Clin Infect Dis,2007.44:681-8.
    [72]. Allou, N., E. Cambau, L. Massias, F. Chau, and B. Fantin. Impact of low-level resistance to fluoroquinolones due to qnrA1 and qnrS1 genes or a gyrA mutation on ciprofloxacin bactericidal activity in a murine model of Escherichia coli urinary tract infection[J]. Antimicrob Agents Chemother, 2009.53:4292-7.
    [73]. Jeong, J. Y., E. S. Kim, S. H. Choi, H. H. Kwon, S. R. Lee, S. O. Lee, M. N. Kim, J. H. Woo, and Y. S. Kim. Effects of a plasmid-encoded qnrA1 determinant in Escherichia coli strains carrying chromosomal mutations in the acrAB efflux pump genes[J]. Diagn Microbiol Infect Dis,2008.60:105-7.
    [74]. Martinez-Martinez, L., A. Pascual, I. Garcia, J. Tran, and G. A. Jacoby. Interaction of plasmid and host quinolone resistance[J]. J. Antimicrob. Chemother.,2003.51:1037-1039.
    [75]. Strahilevitz, J., D. Engelstein, A. Adler, V. Temper, A. E. Moses, C. Block, and A. Robicsek. Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae and Enterobacter spp. collected from 1990 to 2005[J]. Antimicrob Agents Chemother,2007.51:3001-3.
    [76]. Wu, J. J., W. C. Ko, S. H. Tsai, and J. J. Yan. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital [J]. Antimicrob Agents Chemother,2007.51:1223-7.
    [77]. Yang, H., H. Chen, Q. Yang, M. Chen, and H. Wang. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac(6')-Ib-cr in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China[J]. Antimicrob Agents Chemother,2008.52:4268-73.
    [78]. Park, Y. J., J. K. Yu, S. Lee, E. J. Oh, and G. J. Woo. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens:a multicentre study from Korea[J]. J Antimicrob Chemother,2007.60:868-71.
    [79]. Lavilla, S., J. J. Gonzalez-Lopez, M. Sabate, A. Garcia-Fernandez, M. N. Larrosa, R. M. Bartolome, A. Carattoli, and G. Prats. Prevalence of qnr genes among extended-spectrum beta-lactamase-producing enterobacterial isolates in Barcelona, Spain[J]. J Antimicrob Chemother,2008.61:291-5.
    [80]. Poirel, L., L. Villa, A. Bertini, J. D. Pitout, P. Nordmann, and A. Carattoli. Expanded-spectrum beta-lactamase and plasmid-mediated quinolone resistance[J]. Emerg Infect Dis,2007.13:803-5.
    [81]. Toleman, M. A., P. M. Bennett, and T. R. Walsh. ISCR elements:novel gene-capturing systems of the 21st century?[J]. Microbiol Mol Biol Rev,2006. 70:296-316.
    [82]. Robicsek, A., G. A. Jacoby, and D. C. Hooper. The worldwide emergence of plasmid-mediated quinolone resistance [J]. Lancet Infect Dis,2006.6:629-40.
    [83]. Rodriguez-Martinez, J. M., A. Pascual, I. Garcia, and L. Martinez-Martinez. Detection of the plasmid-mediated quinolone resistance determinant qnr among clinical isolates of Klebsiella pneumoniae producing AmpC-type beta-lactamase[J]. J Antimicrob Chemother,2003.52:703-6.
    [84]. Wang, M., D. F. Sahm, G. A. Jacoby, and D. C. Hooper. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States [J]. Antimicrob Agents Chemother,2004.48:1295-9.
    [85]. Castanheira, M., A. S. Pereira, A. G. Nicoletti, A. C. Pignatari, A. L. Barth, and A. C. Gales. First report of plasmid-mediated qnrAl in a ciprofloxacin-resistant Escherichia coli strain in Latin America[J]. Antimicrob Agents Chemother,2007.51:1527-9.
    [86]. Mammeri, H., M. Van De Loo, L. Poirel, L. Martinez-Martinez, and P. Nordmann. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe[J]. Antimicrob Agents Chemother,2005.49:71-6.
    [87]. Nazic, H., L. Poirel, and P. Nordmann.. Further identification of plasmid-mediated quinolone resistance determinant in Enterobacteriaceae
    in Turkey [J]. Antimicrob. Agents Chemother.,2005.49:2146-2147.
    [88]. Poirel, L., J. D. Pitout, L. Calvo, J. M. Rodriguez-Martinez, D. Church, and P. Nordmann. In vivo selection of fluoroquinolone-resistant Escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum beta-lactamase[J]. Antimicrob Agents Chemother,2006.50:1525-7.
    [89]. Poirel, L., M. Van De Loo, H. Mammeri, and P. Nordmann.. Association of plasmid-mediated quinolone resistance with extended-spectrum β-lactamase VEB-1.[J]. Antimicrob. Agents Chemother.,2005.49:3031-3094.
    [90]. Cattoir, V., F. X. Weill, L. Poirel, L. Fabre, C. J. Soussy, and P. Nordmann. Prevalence of qnr genes in Salmonella in France[J]. J Antimicrob Chemother, 2007.59:751-4.
    [91]. Corkill, J. E., J. J. Anson, and C. A. Hart. High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK[J]. J Antimicrob Chemother,2005.56:1115-7.
    [92]. Ellington, M. J., R. Hope, J. F. Turton, M. Warner, N. Woodford, and D. M. Livermore. Detection of qnrA among Enterobacteriaceae from South-East England with extended-spectrum and high-level AmpC beta-lactamases[J]. J Antimicrob Chemother,2007.60:1176-8.
    [93]. Jiang, Y., Z. Zhou, Y. Qian, Z. Wei, Y. Yu, S. Hu, and L. Li. Plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China[J]. J Antimicrob Chemother,2008.61:1003-6.
    [94]. Lavigne, J. P., H. Marchandin, J. Delmas, N. Bouziges, E. Lecaillon, L. Cavalie, H. Jean-Pierre, R. Bonnet, and A. Sotto. qnrA in CTX-M-producing Escherichia coli isolates from France [J]. Antimicrob Agents Chemother,2006. 50:4224-8.
    [95]. Pai, H., M. R. Seo, and T. Y. Choi. Association of QnrB determinants and production of extended-spectrum beta-lactamases or plasmid-mediated AmpC beta-lactamases in clinical isolates of Klebsiella pneumoniae [J]. Antimicrob Agents Chemother,2007.51:366-8.
    [96]. Iabadene, H., Y. Messai, H. Ammari, N. Ramdani-Bouguessa, S. Lounes, R. Bakour, and G. Arlet. Dissemination of ESBL and Qnr determinants in Enterobacter cloacae in Algeria[J]. J Antimicrob Chemother,2008.62:133-6.
    [97]. Soge, O. O., B. A. Adeniyi, and M. C. Roberts. New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae [J]. J Antimicrob Chemother,2006.58:1048-53.
    [98]. Gamier, F., N. Raked, A. Gassama, F. Denis, and M. C. Ploy. Genetic environment of quinolone resistance gene qnrB2 in a complex sull-type integron in the newly described Salmonella enterica serovar Keurmassar[J]. Antimicrob Agents Chemother,2006.50:3200-2.
    [99]. Pomba, C., J. D. da Fonseca, B. C. Baptista, J. D. Correia, and L. Martinez-Martinez. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6')-Ib-cr genes in a dog[J]. Antimicrob Agents Chemother,2009.53:327-8.
    [100]. Espedido, B. A., S. R. Partridge, and J. R. Iredell. bla(IMP-4) in different genetic contexts in Enterobacteriaceae isolates from Australia[J]. Antimicrob Agents Chemother,2008.52:2984-7.
    [101]. Wu, J. J., W. C. Ko, H. M. Wu, and J. J. Yan. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital,1999-2005[J]. J Antimicrob Chemother,2008.61:1234-9.
    [102]. Chmelnitsky, I., S. Navon-Venezia, J. Strahilevitz, and Y. Carmeli. Plasmid-mediated qnrB2 and carbapenemase gene bla(KPC-2) carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates[J]. Antimicrob Agents Chemother,2008.52:2962-5.
    [103]. Verdet, C., Y. Benzerara, V. Gautier, O. Adam, Z. Ould-Hocine, and G. Arlet. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region:genetic organization of the ampC and ampR genes originating from Morganella morganii[J]. Antimicrob Agents Chemother,2006.50:607-17.
    [104]. Cattoir, V., L. Poirel, and P. Nordmann. Plasmid-mediated quinolone resistance determinant QnrB4 identified in France in an Enterobacter cloacae clinical isolate coexpressing a QnrS1 determinant[J]. Antimicrob Agents Chemother,2007.51:2652-3.
    [105]. Castanheira, M., R. E. Mendes, P. R. Rhomberg, and R. N. Jones. Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. Medical Centers: molecular evaluation from the MYSTIC Program (2007)[J]. Microb Drug Resist,2008.14:211-6.
    [106]. Garcia-Fernandez, A., D. Fortini, K. Veldman, D. Mevius, and A. Carattoli. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella[J]. J Antimicrob Chemother,2009.63:274-81.
    [107]. Pallecchi, L., E. Riccobono, A. Mantella, F. Bartalesi, S. Sennati, H. Gamboa, E. Gotuzzo, A. Bartoloni, and G. M. Rossolini. High prevalence of qnr genes in commensal enterobacteria from healthy children in Peru and Bolivia[J]. Antimicrob Agents Chemother,2009.53:2632-5.
    [108]. Endimiani, A., L. L. Carias, A. M. Hujer, C. R. Bethel, K. M. Hujer, F. Perez, R. A. Hutton, W. R. Fox, G. S. Hall, M. R. Jacobs, D. L. Paterson, L. B. Rice, S. G. Jenkins, F. C. Tenover, and R. A. Bonomo. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States[J]. Antimicrob Agents Chemother,2008. 52:2680-2.
    [109]. Rice, L. B., L. L. Carias, R. A. Hutton, S. D. Rudin, A. Endimiani, and R. A. Bonomo. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae [J]. Antimicrob Agents Chemother,2008.52:3427-9.
    [110]. Wu, J. J., W. C. Ko, C. S. Chiou, H. M. Chen, L. R. Wang, and J. J. Yan. Emergence of Qnr determinants in human Salmonella isolates in Taiwan[J]. J Antimicrob Chemother,2008.62:1269-72.
    [111]. Hata, M., M. Suzuki, M. Matsumoto, M. Takahashi, K. Sato, S. Ibe, and K. Sakae. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b[J]. Antimicrob Agents Chemother,2005. 49:801-3.
    [112]. Poirel, L., V. Cattoir, A. Soares, C. J. Soussy, and P. Nordmann. Novel Ambler class A beta-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1[J]. Antimicrob Agents Chemother,2007.51:631-7.
    [113]. Chatterji, M., and V. Nagaraja. GyrⅠ:a counter-defensive strategy against proteinaceous inhibitors of DNA gyrase[J]. EMBO Rep,2002.3:261-7.
    [114]. Kehrenberg, C., K. L. Hopkins, E. J. Threlfall, and S. Schwarz.. Complete nucleotide sequence of a small qnrSl-carrying plasmid from
    Salmonella enterica subsp. enterica Typhimurium DT193 [J]. J. Antimicrob. Chemother.,2007.60:903-905.
    [115]. Cattoir, V., L. Poirel, C. Aubert, C. J. Soussy, and P. Nordmann. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp[J]. Emerg Infect Dis,2008.14:231-7.
    [116]. Picao, R. C., L. Poirel, A. Demarta, C. S. Silva, A. R. Corvaglia, O. Petrini, and P. Nordmann. Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake[J]. J Antimicrob Chemother, 2008.62:948-50.
    [117]. Saga, T., M. Kaku, Y. Onodera, S. Yamachika, K. Sato, and H. Takase. Vibrio parahaemolyticus chromosomal qnr homologue VPA0095:demonstration by transformation with a mutated gene of its potential to reduce quinolone susceptibility in Escherichia coli[J]. Antimicrob Agents Chemother,2005. 49:2144-5.
    [118]. Lascols, C., I. Podglajen, C. Verdet, V. Gautier, L. Gutmann, C. J. Soussy, E. Collatz, and E. Cambau. A plasmid-borne Shewanella algae Gene, qnrA3, and its possible transfer in vivo between Kluyvera ascorbata and Klebsiella pneumoniae[J]. J Bacteriol,2008.190:5217-23.
    [119]. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy,, and M. W. L. A. H. Knap, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers, and H. O. Smith. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004.304:66-74.
    [120]. Torniainen, K., J. Mattinen, C. P. Askolin, and S. Tammilehto. Structure elucidation of a photodegradation product of ciprofloxacin[J]. J Pharm Biomed Anal,1997.15:887-94.
    [121]. Parshikov, I. A., T. M. Heinze, J. D. Moody, J. P. Freeman, A. J. Williams, and J. B. Sutherland. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin[J]. Appl Microbiol Biotechnol,2001.56:474-7.
    [122]. Adjei, M. D., T. M. Heinze, J. Deck, J. P. Freeman, A. J. Williams, and J. B. Sutherland. Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria[J]. Can J Microbiol,2007.53:144-7.
    [123]. Batt, A. L., I. B. Bruce, and D. S. Aga. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environ Pollut,2006.142:295-302.
    [124]. Tamtam, F., F. Mercier, B. Le Bot, J. Eurin, Q. Tuc Dinh, M. Clement, and M. Chevreuil. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions [J]. Sci Total Environ,2008.393:84-95.
    [125]. Ellington, M. J., and N. Woodford. Fluoroquinolone resistance and plasmid addiction systems:self-imposed selection pressure?[J]. J Antimicrob Chemother,2006.57:1026-9.
    [126]. Critchlow, S. E., M. H. O'Dea, A. J. Howells, M. Couturier, M. Gellert, and A. Maxwell. The interaction of the F plasmid killer protein, CcdB, with DNA gyrase:induction of DNA cleavage and blocking of transcription[J]. J Mol Biol,1997.273:826-39.
    [127]. Jiang, Y., J. Pogliano, D. R. Helinski, and I. Konieczny. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase[J]. Mol Microbiol,2002.44:971-9.
    [128]. Chatterji, M., S. Sengupta, and V. Nagaraja. Chromosomally encoded gyrase inhibitor GyrI protects Escherichia coli against DNA-damaging agents[J]. Arch Microbiol,2003.180:339-46.
    [129]. Malik, M., X. Zhao, and K. Drlica. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones[J]. Mol Microbiol, 2006.61:810-25.
    [130]. Wang, M., G. A. Jacoby, D. M. Mills, and D. C. Hooper. SOS regulation of qnrB expression[J]. Antimicrob Agents Chemother,2009.53:821-3.
    [131]. Ysern, P., B. Clerch, M. Castano, I. Gibert, J. Barbe, and M. Llagostera. Induction of SOS genes in Escherichia coli and mutagenesis in Salmonella typhimurium by fluoroquinolones[J]. Mutagenesis,1990.5:63-6.
    [132]. Rodriguez-Martinez, J. M., C. Velasco, A. Pascual, I. Garcia, and L. Martinez-Martinez. Correlation of quinolone resistance levels and differences in basal and quinolone-induced expression from three qnrA-containing plasmids[J]. Clin Microbiol Infect,2006.12:440-5.
    [133]. Vetting, M. W., C. H. Park, S. S. Hegde, G. A. Jacoby, D. C. Hooper, and J. S. Blanchard. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6')-Ib-cr variant[J]. Biochemistry,2008.47:9825-35.
    [134]. Boyd, D. A., S. Tyler, S. Christianson, A. McGeer, M. P. Muller, B. M. Willey, E. Bryce, M. Gardam, P. Nordmann, and M. R. Mulvey. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada[J]. Antimicrob Agents Chemother,2004.48:3758-64.
    [135]. Cordeiro, N. F., L. Robino, J. Medina, V. Seija, I. Bado, V. Garcia, M. Berro, J. Pontet, L. Lopez, C. Bazet, G. Rieppi, G. Gutkind, J. A. Ayala, and R. Vignoli. Ciprofloxacin-resistant enterobacteria harboring the aac(6')-Ib-cr variant isolated from feces of inpatients in an intensive care unit in Uruguay [J]. Antimicrob Agents Chemother,2008.52:806-7.
    [136]. Fihman, V., M. F. Lartigue, H. Jacquier, F. Meunier, N. Schnepf, L. Raskine, J. Riahi, M. J. Sanson-le Pors, and B. Bercot. Appearance of aac(6')-Ib-cr gene among extended-spectrum beta-lactamase-producing Enterobacteriaceae in a French hospital[J]. J Infect,2008.56:454-9.
    [137]. Karisik, E., M. J. Ellington, R. Pike, R. E. Warren, D. M. Livermore, and N. Woodford. Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom[J]. J Antimicrob Chemother,2006.58:665-8.
    [138]. Machado, E., T. M. Coque, R. Canton, F. Baquero, J. C. Sousa, and L. Peixe. Dissemination in Portugal of CTX-M-15-, OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6')-Ib-cr gene, which encodes an aminoglycoside- and fluoroquinolone-modifying enzyme [J]. Antimicrob Agents Chemother,2006.50:3220-1.
    [139]. Pallecchi, L., A. Bartoloni, C. Fiorelli, A. Mantella, T. Di Maggio, H. Gamboa, E. Gotuzzo, G. Kronvall, F. Paradisi, and G. M. Rossolini. Rapid dissemination and diversity of CTX-M extended-spectrum beta-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America[J]. Antimicrob Agents Chemother,2007. 51:2720-5.
    [140]. Pitout, J. D., Y. Wei, D. L. Church, and D. B. Gregson. Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada:the emergence of aac(6')-Ib-cr[J]. J Antimicrob Chemother,2008.61:999-1002.
    [141]. Sabtcheva, S., M. Kaku, T. Saga, Y. Ishii, and T. Kantardjiev. High prevalence of the aac(6')-Ib-cr gene and its dissemination among Enterobacteriaceae isolates by CTX-M-15 plasmids in Bulgaria[J]. Antimicrob Agents Chemother, 2009.53:335-6.
    [142]. Ma, J., Z. Zeng, Z. Chen, X. Xu, X. Wang, Y. Deng, D. Lu, L. Huang, Y. Zhang, J. Liu, and M. Wang. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals [J]. Antimicrob Agents Chemother,2009.53:519-24.
    [143]. Chmelnitsky, I., O. Hermesh, S. Navon-Venezia, J. Strahilevitz, and Y. Carmeli. Detection of aac(6')-Ib-cr in KPC-producing Klebsiella pneumoniae isolates from Tel Aviv, Israel[J]. J Antimicrob Chemother,2009.64:718-22.
    [144]. Putman, M., H. W. van Veen, and W. N. Konings. Molecular properties of bacterial multidrug transporters [J]. Microbiol Mol Biol Rev,2000.64:672-93.
    [145]. Poole, K. Efflux-mediated antimicrobial resistance[J]. J Antimicrob Chemother,2005.56:20-51.
    [146]. Hansen, L. H., E. Johannesen, M. Burmolle, A. H. Sorensen, and S. J. Sorensen. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli[J]. Antimicrob Agents Chemother,2004. 48:3332-7.
    [147]. S(?)rensen, A. H., L. H. Hansen, E. Johannesen, and S. J. Sorensen.2003. Conjugative plasmid conferring resistance to olaquindox[J]. Antimicrob. Agents Chemother.,2003.47:798-799.
    [148]. Yamane, K., J. Wachino, S. Suzuki, K. Kimura, N. Shibata, H. Kato, K. Shibayama, T. Konda, and Y. Arakawa. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate[J]. Antimicrob Agents Chemother,2007.51:3354-60.
    [149]. Cattoir, V., L. Poirel, and P. Nordmann. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France[J]. Antimicrob Agents Chemother,2008.52:3801-4.
    [150]. Perichon, B., P. Bogaerts, T. Lambert, L. Frangeul, P. Courvalin, and M. Galimand. Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux[J]. Antimicrob Agents Chemother,2008.52:2581-92.
    [151]. Yamane, K., J. Wachino, S. Suzuki, and Y. Arakawa. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan[J]. Antimicrob Agents Chemother,2008.52:1564-6.
    [152]. Perichon, B., P. Courvalin, and M. Galimand. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli[J]. Antimicrob Agents Chemother,2007.51:2464-9.
    [153]. Kim, E. S., J. Y. Jeong, S. H. Choi, S. O. Lee, S. H. Kim, M. N. Kim, J. H. Woo, and Y. S. Kim. Plasmid-mediated fluoroquinolone efflux pump gene, qepA, in Escherichia coli clinical isolates in Korea[J]. Diagn Microbiol Infect Dis,2009.65:335-8.
    [154], Strahilevitz, J., G. A. Jacoby, D. C. Hooper, and A. Robicsek. Plasmid-mediated quinolone resistance:a multifaceted threat[J]. Clin Microbiol Rev, 2009.22:664-89.
    [155]. Poirel, L., C. Leviandier, and P. Nordmann.. Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital.[J]. Antimicrob. Agents Chemother.,2006.50:3992-3997.
    [156]. Ambrozic Avgustin, J., R. Keber, K. Zerjavic, T. Orazem, and M. Grabnar. Emergence of the quinolone resistance-mediating gene aac(6')-Ib-cr in extended-spectrum-beta-lactamase-producing Klebsiella isolates collected in Slovenia between 2000 and 2005[J]. Antimicrob Agents Chemother,2007. 51:4171-3.
    [157]. Kim, H. B., C. H. Park, C. J. Kim, E. C. Kim, G. A. Jacoby, and D. C. Hooper. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period[J]. Antimicrob Agents Chemother,2009.53:639-45.
    [158]. Touati, A., L. Brasme, S. Benallaoua, A. Gharout, J. Madoux, and C. De Champs. First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals[J]. Diagn Microbiol Infect Dis,2008.60:287-90.
    [159]. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food--10 states,2007[J]. MMWR Morb Mortal Wkly Rep,2008.57:366-70.
    [160]. Angulo, F. J., K. R. Johnson, R. V. Tauxe, and M. L. Cohen. Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella:implications for the use of fluoroquinolones in food animals[J]. Microb Drug Resist,2000. 6:77-83.
    [161]. Cahill, S. M., I. K. Wachsmuth, L. Costarrica Mde, and P. K. Ben Embarek. Powdered infant formula as a source of Salmonella infection in infants [J]. Clin Infect Dis,2008.46:268-73.
    [162]. Fabrega, A., J. Sanchez-Cespedes, S. Soto, and J. Vila. Quinolone resistance in the food chain[J]. Int J Antimicrob Agents,2008.31:307-15.
    [163]. Giraud, E., S. Baucheron, and A. Cloeckaert. Resistance to fluoroquinolones in Salmonella:emerging mechanisms and resistance prevention strategies [J]. Microbes Infect,2006.8:1937-44.
    [164]. Smith, A. M., N. Govender, and K. H. Keddy. Quinolone-resistant Salmonella Typhi in South Africa,2003-2007[J]. Epidemiol Infect,2010.138:86-90.
    [165]. Chu, Y. W., T. K. Cheung, T. K. Ng, D. Tsang, W. K. To, K. M. Kam, and J. Y. Lo. Quinolone resistance determinant qnrA3 in clinical isolates of Salmonella in 2000-2005 in Hong Kong[J]. J Antimicrob Chemother,2006. 58:904-5.
    [166]. Capoor, M. R., D. Nair, N. S. Walia, R. S. Routela, S. S. Grover, M. Deb, P. Aggarwal, P. K. Pillai, and P. J. Bifani. Molecular analysis of high-level ciprofloxacin resistance in Salmonella enterica serovar Typhi and S. Paratyphi A:need to expand the QRDR region?[J]. Epidemiol Infect,2009.137:871-8.
    [167]. Cheung, T. K., Y. W. Chu, M. Y. Chu, C. H. Ma, R. W. Yung, and K. M. Kam. Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype Enteritidis in Hong Kong[J]. J Antimicrob Chemother,2005.56:586-9.
    [168]. Taguchi, M., R. Kawahara, K. Seto, K. Inoue, A. Hayashi, N. Yamagata, K. Kamakura, and E. Kashiwagi. Plasmid-mediated quinolone resistance in Salmonella isolated from patients with overseas travelers' diarrhea in Japan[J]. Jpn J Infect Dis,2009.62:312-4.
    [169]. Cavaco, L. M., H. Korsgaard, G. Sorensen, and F. M. Aarestrup. Plasmid-mediated quinolone resistance due to qnrB5 and qnrS1 genes in Salmonella enterica serovars Newport, Hadar and Saintpaul isolated from turkey meat in Denmark[J]. J Antimicrob Chemother,2008.62:632-4.
    [170]. Cavaco, L. M., R. S. Hendriksen, and F. M. Aarestrup. Plasmid-mediated quinolone resistance determinant qnrS1 detected in Salmonella enterica serovar Corvallis strains isolated in Denmark and Thailand[J]. J Antimicrob Chemother,2007.60:704-6.
    [171]. Fortini, D., A. Garcia-Fernandez, K. Veldman, D. Mevius, and A. Carattoli. Novel genetic environment of plasmid-mediated quinolone resistance gene qnrB2 in Salmonella Bredeney from poultry[J]. J Antimicrob Chemother, 2009.64:1332-4.
    [172]. Kehrenberg, C., A. de Jong, S. Friederichs, A. Cloeckaert, and S. Schwarz. Molecular mechanisms of decreased susceptibility to fluoroquinolones in avian Salmonella serovars and their mutants selected during the determination of mutant prevention concentrations[J]. J Antimicrob Chemother,2007. 59:886-92.
    [173]. Ahmed, A. M., Y. Ishida, and T. Shimamoto. Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan[J]. J Appl Microbiol,2009.106:402-9.
    [174]. Gunell, M., M. A. Webber, P. Kotilainen, A. J. Lilly, J. M. Caddick, J. Jalava, P. Huovinen, A. Siitonen, A. J. Hakanen, and L. J. Piddock. Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype[J]. Antimicrob Agents Chemother,2009.53:3832-6.
    [175]. Choi, S. H., J. H. Woo, J. E. Lee, S. J. Park, E. J. Choo, Y. G. Kwak, M. N. Kim, M. S. Choi, N. Y. Lee, B. K. Lee, N. J. Kim, J. Y. Jeong, J. Ryu, and Y. S. Kim. Increasing incidence of quinolone resistance in human non-typhoid Salmonella enterica isolates in Korea and mechanisms involved in quinolone resistance [J]. J Antimicrob Chemother,2005.56:1111-4.
    [176]. Stevenson, J. E., K. Gay, T. J. Barrett, F. Medalla, T. M. Chiller, and F. J. Angulo. Increase in nalidixic acid resistance among non-Typhi Salmonella enterica isolates in the United States from 1996 to 2003[J]. Antimicrob Agents Chemother,2007.51:195-7.
    [177]. Wu, W., H. Wang, J. Lu, J. Wu, M. Chen, Y. Xu, and Y. Lu. Genetic diversity of Salmonella enteric serovar typhi and paratyphi in Shenzhen, China from 2002 through 2007[J]. BMC Microbiol,2010.10:32.
    [178]. Ahmed, A. M., E. E. Younis, Y. Ishida, and T. Shimamoto. Genetic basis of multidrug resistance in Salmonella enterica serovars Enteritidis and Typhimurium isolated from diarrheic calves in Egypt[J]. Acta Trop,2009. 111:144-9.
    [179]. Veldman, K., W. van Pelt, and D. Mevius. First report of qnr genes in Salmonella in The Netherlands [J]. J Antimicrob Chemother,2008.61:452-3.
    [180]. Cerquetti, M., A. Garcia-Fernandez, M. Giufre, D. Fortini, M. Accogli, C. Graziani, I. Luzzi, A. Caprioli, and A. Carattoli. First report of plasmid-mediated quinolone resistance determinant qnrS1 in an Escherichia coli strain of animal origin in Italy[J]. Antimicrob Agents Chemother,2009.53:3112-4.
    [181]. Cavaco, L. M., and F. M. Aarestrup. Evaluation of quinolones for use in detection of determinants of acquired quinolone resistance, including the new transmissible resistance mechanisms qnrA, qnrB, qnrS, and aac(6')Ib-cr, in Escherichia coli and Salmonella enterica and determinations of wild-type distributions[J]. J Clin Microbiol,2009.47:2751-8.
    [182]. Sjolund-Karlsson, M., J. P. Folster, G. Pecic, K. Joyce, F. Medalla, R. Rickert, and J. M. Whichard. Emergence of plasmid-mediated quinolone resistance among non-Typhi Salmonella enterica isolates from humans in the United States[J]. Antimicrob Agents Chemother,2009.53:2142-4.
    [183]. Chen, Y. T., H. Y. Shu, L. H. Li, T. L. Liao, K. M. Wu, Y. R. Shiau, J. J. Yan, I. J. Su, S. F. Tsai, and T. L. Lauderdale. Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-beta-lactamase activity in a clinical Klebsiella pneumoniae isolate [J]. Antimicrob Agents Chemother,2006.50:3861-6.
    [184]. Fabre, L., A. Delaune, E. Espie, K. Nygard, M. Pardos, L. Polomack, F. Guesnier, M. Galimand, J. Lassen, and F. X. Weill. Chromosomal integration of the extended-spectrum beta-lactamase gene blaCTX-M-15 in Salmonella enterica serotype Concord isolates from internationally adopted children[J]. Antimicrob Agents Chemother,2009.53:1808-16.
    [185]. Dionisi, A. M., C. Lucarelli, S. Owczarek, I. Luzzi, and L. Villa. Characterization of the plasmid-borne quinolone resistance gene qnrB 19 in Salmonella enterica serovar Typhimurium[J]. Antimicrob Agents Chemother, 2009.53:4019-21.
    [186]. Cui, S., J. Li, Z. Sun, C. Hu, S. Jin, F. Li, Y. Guo, L. Ran, and Y. Ma. Characterization of Salmonella enterica isolates from infants and toddlers in Wuhan, China[J]. J Antimicrob Chemother,2009.63:87-94.
    [187]. Veldman, K., C. Dierikx, A. van Essen-Zandbergen, W. van Pelt, and D. Mevius. Characterization of multidrug-resistant, qnrB2-positive and extended-spectrum-{beta}-lactamase-producing Salmonella Concord and Salmonella Senftenberg isolates[J]. J Antimicrob Chemother,2010.
    [188]. San Martin, B., L. Lapierre, J. Cornejo, and S. Bucarey. Characterization of antibiotic resistance genes linked to class 1 and 2 integrons in strains of Salmonella spp. isolated from swine[J]. Can J Microbiol,2008.54:569-76.
    [189]. Parry, C. M., and E. J. Threlfall. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae[J]. Curr Opin Infect Dis,2008.21:531-8.
    [190]. Liu, J. H., Y. T. Deng, Z. L. Zeng, J. H. Gao, L. Chen, Y. Arakawa, and Z. L. Chen. Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6')-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs[J]. Antimicrob Agents Chemother,2008. 52:2992-3.
    [191]. Amin, A. K., and D. W. Wareham. Plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolates associated with community and nosocomial urinary tract infection in East London, UK[J]. Int J Antimicrob Agents,2009.34:490-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700