化学损伤剂诱导下Fen1突变小鼠癌症发生机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对各种癌症的观察分析发现,当不同的个体暴露于一定的含致癌物的环境时,他们倾向于发生癌症的程度是不同的。流行病学的研究表明在外界DNA损伤的刺激下,个体表现出的不同癌症发生倾向性可能和基因的多样性有关,如碱基切除修复(BER)相关基因的单核苷酸多态性。为了验证这个长久以来的假说,并进一步阐明参与BER途径中一个基因(Fen])的变化是如何导致机体对环境损伤剂敏感从而产生癌症,我们利用已建立的FEN1点突变(E160D)小鼠展开了一系列的实验研究,并分别从分子水平、细胞水平和小鼠模型三个层面对相关的机制进行了阐述。
     1、构建了FEN1点突变库,并对重组蛋白的纯化方法进行了优化。我们沿用点突变的方法,将FEN1各氨基酸位点突变为丙氨酸,并将鉴定后的质粒和菌株保存入库。另外,我们还优化了FPLC蛋白纯化系统进而得到了极高纯度的重组蛋白,为后续的大量生化实验奠定了基础。
     2、在体外分析了重组蛋白和MEF细胞(鼠胚胎纤维细胞)核粗提物对两种BER修复过程的中间产物类似物的酶切活性,发现E160D突变的存在会大大影响FEN1蛋白或相应MEF细胞对DNA损伤的切除能力。此外,我们还在体外比较了MEF细胞的BER修复能力并同时利用纯化的重组蛋白进行了LP-BER重建。对所得到的放射性产物进行信号强弱比较发现,E160D突变MEF细胞的BER活性要明显低于野生型细胞;该突变也同时影响了体外LP-BER重建的效率。
     3、研究了在化学损伤剂(MNU和H202)处理情况下细胞水平的变化。E160D突变的MEF细胞对MNU和H202处理的敏感性更高,表现为其DNA复制叉的瓦解、DNA双链断裂(DSBs)的产生以及引发的染色体畸变,使细胞内非正常染色体(四倍体和非整倍体)的比例增加。
     4、对基因改造小鼠进行一次性的DNA烷化剂(MNU)注射。在对照组小鼠生长完全正常的情况下,处理的小鼠表现出很高的肺癌发生率,其中尤以E160D纯合突变鼠的肿瘤恶性程度最高。
     综上,我们认为BER相关基因(FEN1)的一个微小变化(点突变E160D)会导致机体对碱基损伤的修复能力下降,而当含有这种突变类型的个体处于化学损伤剂诱导的条件下,会更倾向于罹患癌症。
A critical observation in sporadic cancers is that not all individuals are equally prone to developing cancer following exposure to a given environmental carcinogen. Epidemiological studies have suggested that the difference in the timing of cancer onset in response to exogenous DNA damage is likely attributable to genetic variations, such as those associated with base excision repair (BER) genes. To test this long-standing hypothesis and elucidate how a genetic variation in the BER gene flap endonuclease 1 (FEN1) results in susceptibility to environment insults and causes cancer, we used the pre-exist mouse model to demonstrate the mechanism. Here, we addressed the questions through several levels, including molecular, cellular and mouse model et.al.
     1、We established a point-mutations pool of human FEN1 and then optimized the purification protocol for those recombination proteins. We mutated all the amino acids of FEN1 into Alanine by Quick-Change mutagnesis, stored the mutated plasmids and the transformed protein expression strains. Meanwhile, we optimized the protein purification protocol by using FPLC system and obtained extremely-pure FEN1 proteins, which can be used for a bundle of biochemistry assays in the future studies.
     2、We demonstrated that the E160D mutation impairs the ability of FEN1 to process DNA intermediate structures in long-patch BER;The LP-BER activity is decreased using nuclear extracts or reconstituted purified BER proteins by in vitro biochemistry assays.
     3、We also observed the phenotypes after chemical induction in cellular level. E160D cells were more sensitive to the base-damaging agents methylnitrosourea (MNU) and hydrogen peroxide (H2O2), leading to DNA strand breaks, chromosomal breakage and chromosome instabilities in response to these DNA insults.
     4、We further show that E160D mice are more susceptible to exposure to methylnitrosourea and develop lung adenocarcinoma.
     Thus, our current study demonstrates that a subtle genetic variation (E160D) in BER genes (FEN1) may cause a functional deficiency in repairing base damage, such that individuals carrying the mutation or similar mutations are predisposed to chemical-induced cancer development.
引文
1. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature,2009.461(7267):p.1071-8.
    2. Sampathi, S., A. Bhusari, B. Shen, and W. Chai, Human flap endonuclease I is in complex with telomerase and is required for telomerase-mediated telomere maintenance. J Biol Chem,2009.284(6):p.3682-90.
    3. Harrington, J.J. and M.R. Lieber, Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases:implications for nucleotide excision repair. Genes Dev,1994.8(11):p.1344-55.
    4. Lieber, M.R., The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays,1997.19(3):p.233-40.
    5. Shen, B., J. Qiu, D. Hosfield, and J.A. Tainer, Flap endonuclease homologs in archaebacteria exist as independent proteins. Trends Biochem Sci,1998.23(5):p. 171-3.
    6. Harrington, J.J. and M.R. Lieber, The characterization of a mammalian DNA structure-specific endonuclease. Embo J,1994.13(5):p.1235-46.
    7. Zheng, L., M. Li, J. Shan, R. Krishnamoorthi, and B. Shen, Distinct Roles of Two Mg2+ Binding Sites in Regulation of Murine Flap Endonuclease-1 Activities,A. Biochemistry,2002.41(32):p.10323-10331.
    8. Goulian, M., S.H. Richards, C.J. Heard, and B.M. Bigsby, Discontinuous DNA synthesis by purified mammalian proteins. J Biol Chem,1990.265(30):p.18461-71.
    9. Kenny, M.K., L.A. Balogh, and J. Hurwitz, Initiation of adenovirus DNA replication. I. Mechanism of action of a host protein required for replication of adenovirus DNA templates devoid of the terminal protein. J Biol Chem,1988. 263(20):p.9801-8.
    10. Liu, Y., H.I. Kao, and R.A. Bambara, Flap endonuclease 1:a central component of DNA metabolism. Annu Rev Biochem,2004.73:p.589-615.
    11. Zheng, L., M. Zhou, Q. Chai, J. Parrish, D. Xue, S.M. Patrick, J.J. Turchi, S.M. Yannone, D. Chen, and B. Shen, Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep,2005.6(1):p.83-9.
    12. Murante, R.S., L. Huang, J.J. Turchi, and R.A. Bambara, The calf 5'-to 3'-exonuclease is also an endonuclease with both activities dependent on primers annealed upstream of the point of cleavage. J Biol Chem,1994.269(2):p.1191-6.
    13. Lindahl, U. and O. Axelsson, Identification of iduronic acid as the major sulfated uronic acid of heparin. J Biol Chem,1971.246(1):p.74-82.
    14. Kao, H.-I., L.A. Henricksen, Y. Liu, and R.A. Bambara, Cleavage Specificity of Saccharomyces cerevisiae Flap Endonuclease 1 Suggests a Double-Flap Structure as the Cellular Substrate. Journal of Biological Chemistry,2002.277(17):p. 14379-14389.
    15. Kaiser, M.W., N. Lyamicheva, W. Ma, C. Miller, B. Neri, L. Fors, and V.I. Lyamichev, A comparison of eubacterial and archaeal structure-specific 5'-exonucleases. J Biol Chem,1999.274(30):p.21387-94.
    16. Xu, Y, N.D.F. Grindley, and C.M. Joyce, Coordination between the Polymerase and 5'-Nuclease Components of DNA Polymerase I of Escherichia coli. Journal of Biological Chemistry,2000.275(27):p.20949-20955.
    17. Finger, L.D., M.S. Blanchard, C.A. Theimer, B. Sengerov, P. Singh, V. Chavez, F. Liu, J.A. Grasby, and B. Shen, The 3'-Flap Pocket of Human Flap Endonuclease 1 Is Critical for Substrate Binding and Catalysis. Journal of Biological Chemistry, 2009.284(33):p.22184-22194.
    18. Storici, F., G. Henneke, E. Ferrari, D.A. Gordenin, U. Hubscher, and M.A. Resnick, The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair. Embo J,2002.21(21):p.5930-42.
    19. Finger LD, S.B., FEN1(flap structure-specific endonuclease 1). Atlas Genet Cytogenet Oncol Haematol, January 2010.
    20. Barnes, C.J., A.F. Wahl, B. Shen, M.S. Park, and R.A. Bambara, Mechanism of tracking and cleavage of adduct-damaged DNA substrates by the mammalian 5'-to 3'-exonuclease/endonuclease RAD2 homologue 1 or flap endonuclease 1. J Biol Chem,1996.271(47):p.29624-31.
    21. Chapados, B.R., D.J. Hosfield, S. Han, J. Qiu, B. Yelent, B. Shen, and J.A. Tainer, Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Cell,2004.116(1):p.39-50.
    22. Ceska, T.A., J.R. Sayers, G. Stier, and D. Suck, A helical arch allowing single-stranded DNA to thread through T55'-exonuclease. Nature,1996.382(6586): p.90-3.
    23. Hosfield, D.J., C.D. Mol, B. Shen, and J.A. Tainer, Structure of the DNA repair and replication endonuclease and exonuclease FEN-1:coupling DNA and PCNA binding to FEN-1 activity. Cell,1998.95(1):p.135-46.
    24. Shen, B., P. Singh, R. Liu, J. Qiu, L. Zheng, L.D. Finger, and S. Alas, Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays,2005.27(7):p.717-29.
    25. Hwang, K.Y., K. Baek, H.Y. Kim, and Y. Cho, The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol,1998.5(8):p. 707-13.
    26. Bornarth, C.J., T.A. Ranalli, L.A. Henricksen, A.F. Wahl, and R.A. Bambara, Effect of flap modifications on human FEN1 cleavage. Biochemistry,1999.38(40): p.13347-54.
    27. Kim, C.-Y., B. Shen, M.S. Park, and G.A. Olah, Structural Changes Measured by X-ray Scattering from Human Flap Endonuclease-1 Complexed with Mg2+ and Flap DNA Substrate. Journal of Biological Chemistry,1999.274(3):p.1233-1239.
    28. Kim, C.-Y., M.S. Park, and R.B. Dyer, Human Flap Endonuclease-1:Conformational Change upon Binding to the Flap DNA Substrate and Location of the Mg2+ Binding Site. Biochemistry,2001.40(10):p.3208-3214.
    29. Kenny, M.K. and J. Hurwitz, Initiation of adenovirus DNA replication. Ⅱ. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem,1988.263(20):p.9809-17.
    30. Kornberg A, B.T., DNA Replication. New York:Freeman,1992.
    31. Bambara, R.A., R.S. Murante, and L.A. Henricksen, Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem,1997.272(8):p.4647-50.
    32. Arezi, B. and R.D. Kuchta, Eukaryotic DNA primase. Trends in Biochemical Sciences,2000.25(11):p.572-576.
    33. Konrad, E.B. and I.R. Lehman, A conditional lethal mutant of Escherichia coli K12 defective in the 5'leads to 3'exonuclease associated with DNA polymerase Ⅰ. Proc Natl Acad Sci U S A,1974.71(5):p.2048-51.
    34. Murante, R.S., L. Rust, and R.A. Bambara, Calf 5'to 3'exo/endonuclease must slide from a 5'end of the substrate to perform structure-specific cleavage. J Biol Chem,1995.270(51):p.30377-83.
    35. Murante, R.S., J.A. Rumbaugh, C.J. Barnes, J.R. Norton, and R.A. Bambara, Calf RTH-1 nuclease can remove the initiator RNAs of Okazaki fragments by endonuclease activity. J Biol Chem,1996.271(42):p.25888-97.
    36. Bae, S.H. and Y.S. Seo, Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem,2000.275(48):p.38022-31.
    37. Bae, S.H., K.H. Bae, J.A. Kim, and Y.S. Seo, RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature,2001. 412(6845):p.456-61.
    38. Lindahl, T., Instability and decay of the primary structure of DNA. Nature,1993. 362(6422):p.709-15.
    39. Kabat, D., Targeting retroviral vectors to specific cells. Science,1995. 269(5222):p.417.
    40. Singhal, R.K., R. Prasad, and S.H. Wilson, DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J Biol Chem,1995.270(2):p.949-57.
    41. Memisoglu, A. and L. Samson, Base excision repair in yeast and mammals. Mutat Res,2000.451(1-2):p.39-51.
    42. Sattler, U., P. Frit, B. Salles, and P. Calsou, Long-patch DNA repair synthesis during base excision repair in mammalian cells. EMBO Rep,2003.4(4):p.363-7.
    43. Klungland, A. and T. Lindahl, Second pathway for completion of human DNA base excision-repair:reconstitution with purified proteins and requirement for DNase IV (FEN1). Embo J,1997.16(11):p.3341-8.
    44. Liu, P., L. Qian, J.S. Sung, N.C. de Souza-Pinto, L. Zheng, D.F. Bogenhagen, V.A. Bohr, D.M. Wilson,3rd, B. Shen, and B. Demple, Removal of oxidative DNA damage via FEN 1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol,2008.28(16):p.4975-87.
    45. Gary, R., M.S. Park, J.P. Nolan, H.L. Cornelius, O.G. Kozyreva, H.T. Tran, K.S. Lobachev, M.A. Resnick, and D.A. Gordenin, A novel role in DNA metabolism for the binding of Fenl/Rad27 to PCNA and implications for genetic risk. Mol Cell Biol, 1999.19(8):p.5373-82.
    46. Liu, Y., W.A. Beard, D.D. Shock, R. Prasad, E.W. Hou, and S.H. Wilson, DNA polymerase beta and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair. J Biol Chem,2005.280(5):p. 3665-74.
    47. Dianov, G. and T. Lindahl, Reconstitution of the DNA base excision-repair pathway. Curr Biol,1994.4(12):p.1069-76.
    48. Budd, M.E. and J.L. Campbell, Purification and enzymatic and functional characterization of DNA polymerase beta-like enzyme, POL4. expressed during yeast meiosis. Methods Enzymol,1995.262:p.108-30.
    49. Budd, M.E. and J.L. Campbell, The roles of the eukaryotic DNA polymerases in DNA repair synthesis. Mutat Res,1997.384(3):p.157-67.
    50. Haltiwanger, B.M., Y. Matsumoto, E. Nicolas, G.L. Dianov, V.A. Bohr, and T.F. Taraschi, DNA base excision repair in human malaria parasites is predominantly by a long-patch pathway. Biochemistry,2000.39(4):p.763-72.
    51. Prakash, S., P. Sung, and L. Prakash, DNA repair genes and proteins of Saccharomyces cerevisiae. Annu Rev Genet,1993.27:p.33-70.
    52. Reagan, M.S., C. Pittenger, W. Siede, and E.C. Friedberg, Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol,1995. 177(2):p.364-71.
    53. Sommers, C.H., E.J. Miller, B. Dujon, S. Prakash, and L. Prakash, Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5'-to 3'-exonuclease required for lagging strand DNA synthesis in reconstituted systems. J Biol Chem,1995,270(9):p.4193-6.
    54. Paulson, H.L. and K.H. Fischbeck, Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci,1996.19:p.79-107.
    55. Debrauwere, H., C.G. Gendrel, S. Lechat, and M. Dutreix, Differences and similarities between various tandem repeat sequences:minisatellites and microsatellites. Biochimie,1997.79(9-10):p.577-86.
    56. Sutherland, G.R. and R.I. Richards, Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A,1995.92(9):p.3636-41.
    57. Ionov, Y., M.A. Peinado, S. Malkhosyan, D. Shibata, and M. Perucho, Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature,1993.363(6429):p.558-61.
    58. Merlo, A., M. Mabry, E. Gabrielson, R. Vollmer, S.B. Baylin, and D. Sidransky, Frequent microsatellite instability in primary small cell lung cancer. Cancer Res, 1994.54(8):p.2098-101.
    59. Bates, G. and H. Lehrach, Trinucleotide repeat expansions and human genetic disease. Bioessays,1994.16(4):p.277-84.
    60. Miret, J.J., L. Pessoa-Brandao, and R.S. Lahue, Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A,1998.95(21):p.12438-43.
    61. Usdin, K. and E. Grabczyk, DNA repeat expansions and human disease. Cell Mol Life Sci,2000.57(6):p.914-31.
    62. Mirkin, S.M. and E.V. Smirnova, Positioned to expand. Nat Genet,2002.31(1): p.5-6.
    63. Wells, R.D., Molecular basis of genetic instability of triplet repeats. J Biol Chem,1996.271(6):p.2875-8.
    64. Gordenin, D.A., T.A. Kunkel, and M.A. Resnick, Repeat expansion--all in a flap? Nat Genet,1997.16(2):p.116-8.
    65. Spiro, C., R. Pelletier, M.L. Rolfsmeier, M.J. Dixon, R.S. Lahue, G. Gupta, M.S. Park, X. Chen, S.V. Mariappan, and C.T. McMurray, Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell,1999.4(6):p. 1079-85.
    66. Henricksen, L.A., S. Tom, Y. Liu, and R.A. Bambara, Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J Biol Chem,2000.275(22):p.16420-7.
    67. Parrish, J.Z., C. Yang, B. Shen, and D. Xue, CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. Embo J,2003.22(13):p.3451-60.
    68. Zheng, L., H. Dai, M. Zhou, M. Li, P. Singh, J. Qiu, W. Tsark, Q. Huang, K. Kernstine, X. Zhang, D. Lin, and B. Shen, Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med,2007.13(7):p.812-9.
    69. Saharia, A., L. Guittat, S. Crocker, A. Lim, M. Steffen, S. Kulkarni, and S.A. Stewart, Flap endonuclease 1 contributes to telomere stability. Curr Biol,2008. 18(7):p.496-500.
    70. Parenteau, J. and R. J. Wellinger, Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol Cell Biol,1999.19(6):p.4143-52.
    71. Saharia, A. and S.A. Stewart, FEN1 contributes to telomere stability in ALT-positive tumor cells. Oncogene,2009.28(8):p.1162-7.
    72. Vallur, A.C. and N. Maizels, Complementary roles for exonuclease 1 and Flap endonuclease 1 in maintenance of triplet repeats. J Biol Chem,2010.285(37):p. 28514-9.
    73. Sharma, S.; M. Otterlei, J.A. Sommers, H.C. Driscoll, G.L. Dianov, H.I. Kao, R.A. Bambara, and R.M. Brosh, Jr., WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol Biol Cell,2004.15(2):p.734-50.
    74. Zheng, L., J. Jia, L. David Finger, Z. Guo, C. Zer, and B. Shen, Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res,2010.
    75. Qiu, J., X. Li, G. Frank, and B. Shen, Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J Biol Chem,2001.276(7):p.4901-8.
    76. Guo, Z., L. Qian, R. Liu, H. Dai, M. Zhou, L. Zheng, and B. Shen, Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol,2008.28(13):p.4310-9.
    77. Szczesny, B., A.W. Tann, M.J. Longley, W.C. Copeland, and S. Mitra, Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem, 2008.283(39):p.26349-56.
    78. Kalifa, L., G. Beutner, N. Phadnis, S.S. Sheu, and E.A. Sia, Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst),2009.
    79. Frossi, B., G. Tell, P. Spessotto, A. Colombatti, G. Vitale, and C. Pucillo, H(2)O(2) induces translocation of APE/Ref-1 to mitochondria in the Raji B-cell line. J Cell Physiol,2002.193(2):p.180-6.
    80. Kang, D., J. Nishida, A. Iyama, Y. Nakabeppu, M. Furuichi, T. Fujiwara, M. Sekiguchi, and K. Takeshige, Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem, 1995.270(24):p.14659-65.
    81. Waga, S. and B. Stillman, The DNA replication fork in eukaryotic cells. Annu Rev Biochem,1998.67:p.721-51.
    82. Biswas, E.E., F.X. Zhu, and S.B. Biswas, Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A. Biochemistry,1997.36(20): p.5955-62.
    83. Li, X., J. Li, J. Harrington, M.R. Lieber, and P.M. Burgers, Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem,1995.270(38):p. 22109-12.
    84. Siegal, G., J.J. Turchi, T.W. Myers, and R.A. Bambara, A 5'to 3'exonuclease functionally interacts with calf DNA polymerase epsilon. Proc Natl Acad Sci U S A, 1992.89(20):p.9377-81.
    85. Zhu, F.X., E.E. Biswas, and S.B. Biswas, Purification and characterization of the DNA polymerase alpha associated exonuclease:the RTH1 gene product. Biochemistry,1997.36(20):p.5947-54.
    86. Chai, Q., L. Zheng, M. Zhou, J.J. Turchi, and B. Shen, Interaction and stimulation of human FEN-1 nuclease activities by heterogeneous nuclear ribonucleoprotein A1 in alpha-segment processing during Okazaki fragment maturation. Biochemistry,2003.42(51):p.15045-52.
    87. Brosh, R.M., Jr., C. von Kobbe, J.A. Sommers, P. Karmakar, P.L. Opresko, J. Piotrowski, I. Dianova, G.L. Dianov, and V.A. Bohr, Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. Embo J,2001.20(20):p.5791-801.
    88. Farina, A., J.H. Shin, D.H. Kim, V.P. Bermudez, Z. Kelman, Y.S. Seo, and J. Hurwitz, Studies with the human cohesin establishment factor, ChlRl. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem,2008.283(30):p.20925-36.
    89. Dianova, Ⅱ, V.A. Bohr, and G.L. Dianov, Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry,2001.40(42):p.12639-44.
    90. Gary, R., K. Kim, H.L. Cornelius, M.S. Park, and Y. Matsumoto, Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem,1999.274(7):p.4354-63.
    91. Pascal, J.M., P.J. O'Brien, A.E. Tomkinson, and T. Ellenberger, Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature,2004. 432(7016):p.473-8.
    92. Ahn, B., J.A. Harrigan, F.E. Indig, D.M. Wilson,3rd, and V.A. Bohr, Regulation of WRN helicase activity in human base excision repair. J Biol Chem,2004.279(51): p.53465-74.
    93. Wang, W., P. Brandt, M.L. Rossi, L. Lindsey-Boltz, V. Podust, E. Fanning, A. Sancar, and R.A. Bambara, The human Rad9-Radl-Husl checkpoint complex stimulates flap endonuclease 1. Proc Natl Acad Sci U S A,2004.101(48):p. 16762-7.
    94. Tseng, H.M. and A.E. Tomkinson, Processing and joining of DNA ends coordinated by interactions among Dnl4/Lifl, Pol4, and FEN-1. J Biol Chem,2004. 279(46):p.47580-8.
    95. Hasan, S., M. Stucki, P.O. Hassa, R. Imhof, P. Gehrig, P. Hunziker, U. Hubscher, and M.O. Hottiger, Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell,2001.7(6):p.1221-31.
    96. Henneke, G., S. Koundrioukoff, and U. Hubscher, Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene,2003.22(28):p.4301-13.
    97. Guo, Z., L. Zheng, H. Xu, H. Dai, M. Zhou, M.R. Pascua, Q.M. Chen, and B. Shen, Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol,2010.6(10):p.766-73.
    98. Friedrich-Heineken, E., G. Henneke, E. Ferrari, and U. Hubscher, The acetylatable lysines of human Fen1 are important for endo-and exonuclease activities. J Mol Biol,2003.328(1):p.73-84.
    99. Wood, R.D., M. Mitchell, J. Sgouros, and T. Lindahl, Human DNA repair genes. Science,2001.291(5507):p.1284-9.
    100. Thompson, L.H., K.W. Brookman, N.J. Jones, S.A. Allen, and A.V. Carrano, Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol,1990.10(12):p. 6160-71.
    101. Kubota, Y., R.A. Nash, A. Klungland, P. Schar, D.E. Barnes, and T. Lindahl, Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymer as e beta and the XRCC1 protein. EMBO J,1996. 15(23):p.6662-70.
    102. Shen, M.R., I.M. Jones, and H. Mohrenweiser, Nonconservative Amino Acid Substitution Variants Exist at Polymorphic Frequency in DNA Repair Genes in Healthy Humans. Cancer Research,1998.58(4):p.604-608.
    103. Abdel-Rahman, S.Z., A.S. Soliman, M.L. Bondy, S. Omar, S.A. El-Badawy, H.M. Khaled, I.A. Seifeldin, and B. Levin, Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer letters,2000.159(1):p. 79-86.
    104. Lunn, R.M., R.G. Langlois, L.L. Hsieh, C.L. Thompson, and D.A. Bell, XRCC1 Polymorphisms:Effects on Aflatoxin B1-DNA Adducts and Glycophorin A Variant Frequency. Cancer Research,1999.59(11):p.2557-2561.
    105. Lee, J.-M., Y.-C. Lee, S.-Y. Yang, P.-W. Yang, S.-P. Luh, C.-J. Lee, C.-J. Chen, and M.-T. Wu, Genetic polymorphisms of XRCC1 and risk of the esophageal cancer. International Journal of Cancer,2001.95(4):p.240-246.
    106. Sturgis, E.M., E.J. Castillo, L. Li, R. Zheng, S.A. Eicher, G.L. Clayman, S.S. Strom, M.R. Spitz, and Q. Wei, Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck. Carcinogenesis,1999.20(11):p. 2125-2129.
    107. Duell, E.J., R.C. Millikan, G.S. Pittman, S. Winkel, R.M. Lunn, C.-K.J. Tse, A. Eaton, H.W. Mohrenweiser, B. Newman, and D.A. Bell, Polymorphisms in the DNA Repair Gene XRCC1 and Breast Cancer. Cancer Epidemiology Biomarkers & Prevention,2001.10(3):p.217-222.
    108. Divine, K.K., F.D. Gilliland, R.E. Crowell, C.A. Stidley, T.J. Bocklage, D.L Cook, and S.A. Belinsky, The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutation Research/DNA Repair,2001.461(4):p. 273-278.
    109. Larsen, E., L. Kleppa, T.J. Meza, L.A. Meza-Zepeda, C. Rada, C.G. Castellanos, G.F. Lien, G.J. Nesse, M.S. Neuberger, J.K. Laerdahl, R. William Doughty, and A. Klungland, Early-Onset Lymphoma and Extensive Embryonic Apoptosis in Two Domain-Specific Fen1 Mice Mutants. Cancer Research,2008. 68(12):p.4571-4579.
    110.Figueroa, J.D., N. Malats, F.X. Real, D. Silverman, M. Kogevinas, S. Chanock, R. Welch, M. Dosemeci, A. Tardon, C. Serra, A. Carrato, R. Garcia-Closas, G. Castano-Vinyals, N. Rothman, and M. Garcia-Closas, Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet,2007.121(2):p. 233-42,
    111. Zhang, Y., P.A. Newcomb, K.M. Egan, L. Titus-Ernstoff, S. Chanock, R. Welch, L.A. Brinton, J. Lissowska, A. Bardin-Mikolajczak, B. Peplonska, N. Szeszenia-Dabrowska, W. Zatonski, and M. Garcia-Closas, Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev,2006.15(2):p.353-8.
    112. Li, D., Y. Li, L. Jiao, D.Z. Chang, G. Beinart, R.A. Wolff, D.B. Evans, M.M. Hassan, and J.L. Abbruzzese, Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer,2007.120(8):p.1748-54.
    113. Chang, J.S., M.R. Wrensch, H.M. Hansen, J.D. Sison, M.C. Aldrich, C.P. Quesenberry, Jr., M.F. Seldin, K.T. Kelsey, and J.K. Wiencke, Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis,2009.30(1):p.78-87.
    114.McManus, K.J., I.J. Barrett, Y. Nouhi, and P. Hieter, Specific synthetic lethal killing of RAD 54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci U S A,2009.106(9):p.3276-81.
    115.Tumey, L.N., B. Huck, E. Gleason, J. Wang, D. Silver, K. Brunden, S. Boozer, S. Rundlett, B. Sherf, S. Murphy, A. Bailey, T. Dent, C. Leventhal, J. Harrington, and Y.L. Bennani, The identification and optimization of 2,4-diketobutyric acids as flap endonuclease 1 inhibitors. Bioorg Med Chem Lett,2004.14(19):p.4915-8.
    116.Vainio, H. and P. Boffetta, Mechanisms of the combined effect of asbestos and smoking in the etiology of lung cancer. Scand J Work Environ Health,1994.20(4):p. 235-42.
    117. Jemal, A., A. Thomas, T. Murray, and M. Thun, Cancer statistics,2002. CA Cancer J Clin,2002.52(1):p.23-47.
    118.Landi, S., F. Gemignani, S. Monnier, and F. Canzian, A database of single-nucleotide polymorphisms and a genotyping microarray for genetic epidemiology of lung cancer. Exp Lung Res,2005.31(2):p.223-58.
    119.Cistulli, C., O.I. Lavrik, R. Prasad, E. Hou, and S.H. Wilson, AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. DNA Repair (Amst),2004.3(6):p.581-91.
    120. van Gent, D.C., J.H. Hoeijmakers, and R. Kanaar, Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet,2001.2(3):p. 196-206.
    121. Figueroa, J.D., N. Malats, F.X. Real, D. Silverman, M. Kogevinas, S. Chanock, R. Welch, M. Dosemeci, A. Tardon, C. Serra, A. Carrato, R. Garcia-Closas, G. Castano-Vinyals, N. Rothman, and M. Garcia-Closas, Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet,2007.121(2):p. 233-42.
    122. Chang, J.S., M.R. Wrensch, H.M. Hansen, J.D. Sison, M.C. Aldrich, C.P. Quesenberry, Jr., M.F. Seldin, K.T. Kelsey, and J.K. Wiencke, Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis,2009.30(1):p.78-87.
    123. Yang, M., H. Guo, C. Wu, Y. He, D. Yu, L. Zhou, F. Wang, J. Xu, W. Tan, G. Wang, B. Shen, J. Yuan, T. Wu, and D. Lin, Functional FEN1 polymorphisms are associated with DNA damage levels and lung cancer risk. Hum Mutat,2009.30(9): p.1320-8.
    124. Ranalli, T.A., S. Tom, and R.A. Bambara, AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. J Biol Chem,2002.277(44):p.41715-24.
    125. Balakrishnan, L., P.D. Brandt, L.A. Lindsey-Boltz, A. Sancar, and R.A. Bambara, Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex. J Biol Chem,2009.284(22):p.15158-72.
    126. Asagoshi, K., Y. Liu, A. Masaoka, L. Lan, R. Prasad, J.K. Horton, A.R. Brown, X.H. Wang, H.M. Bdour, R.W. Sobol, J.S. Taylor, A. Yasui, and S.H. Wilson, DNA polymerase beta-dependent long patch base excision repair in living cells. DNA Repair (Amst),2010.9(2):p.109-19.
    127. Demple, B. and L. Harrison, Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem,1994.63:p.915-48.
    128. Sun, B., K.A. Latham, M.L. Dodson, and R.S. Lloyd, Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J Biol Chem,1995.270(33):p.19501-8.
    129. Krokan, H.E., R. Standal, and G. Slupphaug, DNA glycosylases in the base excision repair of DNA. Biochem J,1997.325 (Pt 1):p.1-16.
    130. Nakamura, J., V.E. Walker, P.B. Upton, S.Y. Chiang, Y.W. Kow, and J.A. Swenberg, Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res, 1998.58(2):p.222-5.
    131. Lindahl, T. and R.D. Wood, Quality control by DNA repair. Science,1999. 286(5446):p.1897-905.
    132. Prasad, R., V.K. Batra, X.P. Yang, J.M. Krahn, L.C. Pedersen, W.A. Beard, and S.H. Wilson, Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. DNA Repair (Amst),2005.4(12):p.1347-57.
    133. Singhal, R.K. and S.H. Wilson, Short gap-filling synthesis by DNA polymerase beta is processive. J Biol Chem,1993.268(21):p.15906-11.
    1. Harrington, J.J. and M.R. Lieber, The characterization of a mammalian DNA structure-specific endonuclease. Embo J,1994.13(5):p.1235-46.
    2. Ceska, T.A., J.R. Sayers, G. Stier, and D. Suck, A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease. Nature,1996.382(6586): p.90-3.
    3. Hwang, K.Y., K. Baek, H.Y. Kim, and Y. Cho, The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat Struct Biol,1998.5(8):p. 707-13.
    4. Hosfield, D.J., C.D. Mol, B. Shen, and J.A. Tainer, Structure of the DNA repair and replication endonuclease and exonuclease FEN-1:coupling DNA and PCNA binding to FEN-1 activity. Cell,1998.95(1):p.135-46.
    5. Kim, Y., S.H. Eom, J. Wang, D.S. Lee, S.W. Suh, and T.A. Steitz, Crystal structure of Thermus aquaticus DNA polymerase. Nature,1995.376(6541):p. 612-6.
    6. Mueser, T.C., N.G. Nossal, and C.C. Hyde, Structure of bacteriophage T4 RNase H, a 5'to 3'RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell,1996.85(7):p.1101-12.
    7. Shen, B., J.P. Nolan, L.A. Sklar, and M.S. Park, Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J Biol Chem,1996. 271(16):p.9173-6.
    8. Shen, B., J.P. Nolan, L.A. Sklar, and M.S. Park, Functional analysis of point mutations in human flap endonuclease-1 active site. Nucleic Acids Res,1997. 25(16):p.3332-8.
    9. Frank, G., J. Qiu, M. Somsouk, Y. Weng, L. Somsouk, J.P. Nolan, and B. Shen, Partial functional deficiency of E160D flap endonuclease-1 mutant in vitro and in vivo is due to defective cleavage of DNA substrates. J Biol Chem,1998.273(49):p. 33064-72.
    10. Qiu, J., D.N. Bimston, A. Partikian, and B. Shen, Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination. J Biol Chem,2002.277(27):p.24659-66.
    11. Storici, F., G. Henneke, E. Ferrari, D.A. Gordenin, U. Hubscher, and M.A. Resnick, The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair. Embo J,2002.21(21):p.5930-42.
    12. Frank, G., J. Qiu, L. Zheng, and B. Shen, Stimulation of eukaryotic flap endonuclease-1 activities by proliferating cell nuclear antigen (PCNA) is independent of its in vitro interaction via a consensus PCNA binding region. J Biol Chem,2001.276(39):p.36295-302.
    13. Gary, R., M.S. Park, J.P. Nolan, H.L. Cornelius, O.G. Kozyreva, H.T. Tran, K.S. Lobachev, M.A. Resnick, and D.A. Gordenin, A novel role in DNA metabolism for the binding of Fenl/Rad27 to PCNA and implications for genetic risk. Mol Cell Biol, 1999.19(8):p.5373-82.
    14. Qiu, J., X. Li, G. Frank, and B. Shen, Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J Biol Chem,2001.276(7):p.4901-8.
    15. Henneke, G., S. Koundrioukoff, and U. Hubscher, Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene,2003.22(28):p.4301-13.
    16. Guo, Z., L. Zheng, H. Xu, H. Dai, M. Zhou, M.R. Pascua, Q.M. Chen, and B. Shen, Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol,2010.6(10):p.766-73.
    17. Hasan, S., M. Stucki, P.O. Hassa, R. Imhof, P. Gehrig, P. Hunziker, U. Hubscher, and M.O. Hottiger, Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell,2001.7(6):p.1221-31.
    18. Zheng, L., H. Dai, J.. Qiu, Q. Huang, and B. Shen, Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol Cell Biol,2007.27(8):p. 3176-86.
    19. Zheng, L., H. Dai, M. Zhou, M. Li, P. Singh, J. Qiu, W. Tsark, Q. Huang, K. Kernstine, X. Zhang, D. Lin, and B. Shen, Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med,2007.13(7):p.812-9.
    20. Sambrrok, J., Fritsch,E.f. and Maniatis,T., Molecular cloning:A Laboratory Manual. Cold Spring harbor Laboratory Press,1989. Cold Spring Harbor.
    21. Smith, M.D., Molecular biology and biotechnology of extremophiles. Chapman & Hall,New York,1992.
    22. Parrish, J.Z., C. Yang, B. Shen, and D. Xue, CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. Embo J,2003.22(13):p.3451-60.
    23. Singh, P., L. Zheng, V. Chavez, J. Qiu, and B. Shen, Concerted action of exonuclease and Gap-dependent endonuclease activities of FEN-1 contributes to the resolution of triplet repeat sequences (CTG)n-and (GAA)n-derived secondary structures formed during maturation of Okazaki fragments. J Biol Chem,2007. 282(6):p.3465-77.
    24. Zheng, L., M. Zhou, Q. Chai, J. Parrish, D. Xue, S.M. Patrick, J.J. Turchi, S.M. Yannone, D. Chen, and B. Shen, Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep,2005.6(1):p.83-9.
    25. Reagan, M.S., C. Pittenger, W. Siede, and E.C. Friedberg, Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol,1995. 177(2):p.364-71.
    26. Kucherlapati, M., K. Yang, M. Kuraguchi, J. Zhao, M. Lia, J. Heyer, M.F. Kane, K. Fan, R. Russell, A.M. Brown, B. Kneitz, W. Edelmann, R.D. Kolodner, M. Lipkin, and R. Kucherlapati, Haploinsufficiency of Flap endonuclease (Fenl) leads to rapid tumor progression. Proc Natl Acad Sci U S A,2002.99(15):p.9924-9.
    27. Larsen, E., C. Gran, B.E. Saether, E. Seeberg, and A. Klungland, Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol Cell Biol,2003.23(15):p.5346-53.
    28. Singh, P., M. Yang, H. Dai, D. Yu, Q. Huang, W. Tan, K.H. Kernstine, D. Lin, and B. Shen, Overexpression and Hypomethylation of Flap Endonuclease 1 Gene in Breast and Other Cancers. Molecular Cancer Research,2008.6(11):p.1710-1717.
    1. Frank, G., J. Qiu, M. Somsouk, Y. Weng, L. Somsouk, J.P. Nolan, and B. Shen, Partial functional deficiency of E160D flap endonuclease-1 mutant in vitro and in vivo is due to defective cleavage ofDNA substrates. J Biol Chem,1998.273(49):p. 33064-72.
    2. Yang, M., H. Guo, C. Wu, Y. He, D. Yu, L. Zhou, F. Wang, J. Xu, W. Tan, G. Wang, B. Shen, J. Yuan, T. Wu, and D. Lin, Functional FEN1 polymorphisms are associated with DNA damage levels and lung cancer risk. Hum Mutat,2009.30(9): p.1320-8.
    3. Zheng, L., H. Dai, M. Zhou, M. Li, P. Singh, J. Qiu, W. Tsark, Q. Huang, K. Kernstine, X. Zhang, D. Lin, and B. Shen, Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med,2007.13(7):p.812-9.
    4. Liu, Y, W.A. Beard, D.D. Shock, R. Prasad, E.W. Hou, and S.H. Wilson, DNA polymerase beta and flap endonuclease 1 enzymatic specificities sustain DNA synthesis for long patch base excision repair. J Biol Chem,2005.280(5):p. 3665-74.
    5. Guo, Z., L. Zheng, H. Dai, M. Zhou, H. Xu, and B. Shen, Human DNA polymerase beta polymorphism, Arg137Gln, impairs its polymerase activity and interaction with PCNA and the cellular base excision repair capacity. Nucleic Acids Res,2009.37(10):p.3431-41.
    6. Frank, G., J. Qiu, L. Zheng, and B. Shen, Stimulation of eukaryotic flap endonuclease-1 activities by proliferating cell nuclear antigen (PCNA) is independent of its in vitro interaction via a consensus PCNA binding region. J Biol Chem,2001.276(39):p.36295-302.
    7. Zheng, L., M. Zhou, Z. Guo, H. Lu, L. Qian, H. Dai, J. Qiu, E. Yakubovskaya, D.F. Bogenhagen, B. Demple, and B. Shen, Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell,2008.32(3):p.325-36.
    8. Wong, D. and B. Demple, Modulation of the 5'-deoxyribose-5-phosphate lyase and DNA synthesis activities of mammalian DNA polymerase beta by apurinic/apyrimidinic endonuclease 1. J Biol Chem,2004.279(24):p.25268-75.
    1. Figueroa, J.D., N. Malats, F.X. Real, D. Silverman, M. Kogevinas, S. Chanock, R. Welch, M. Dosemeci, A. Tardon, C. Serra, A. Carrato, R. Garcia-Closas, G. Castano-Vinyals, N. Rothman, and M. Garcia-Closas, Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet,2007.121(2):p. 233-42.
    2. Zhang, Y., P.A. Newcomb, K.M. Egan, L. Titus-Ernstoff, S. Chanock, R. Welch, L.A. Brinton, J. Lissowska, A. Bardin-Mikolajczak, B. Peplonska, N. Szeszenia-Dabrowska, W. Zatonski, and M. Garcia-Closas, Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev,2006.15(2):p.353-8.
    3. Li, D., Y. Li, L. Jiao, D.Z. Chang, G. Beinart, R.A. Wolff, D.B. Evans, M.M. Hassan, and J.L. Abbruzzese, Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer,2007.120(8):p.1748-54.
    4. Chang, J.S., M.R. Wrensch, H.M. Hansen, J.D. Sison, M.C. Aldrich, C.P. Quesenberry, Jr., M.F. Seldin, K.T. Kelsey, and J.K. Wiencke, Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis,2009.30(1):p.78-87.
    5. Lang, T., S. Dalal, A. Chikova, D. DiMaio, and J.B. Sweasy, The E295KDNA polymerase beta gastric cancer-associated variant interferes-with base excision repair and induces cellular transformation. Mol Cell Biol,2007.27(15):p.5587-96.
    6. Merrick, C.J., D. Jackson, and J.F. Diffley, Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem,2004.279(19):p. 20067-75.
    7. Jackson, D.A. and A. Pombo, Replicon clusters are stable units of chromosome structure:evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol,1998.140(6):p.1285-95.
    8. Ganem, N.J., Z. Storchova, and D. Pellman, Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev,2007.17(2):p.157-62.
    9. van Gent, D.C., J.H. Hoeijmakers, and R. Kanaar, Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet,2001.2(3):p.196-206.
    10. Loeb, L.A., C.F. Springgate, and N. Battula, Errors in DNA replication as a basis of malignant changes. Cancer Res,1974.34(9):p.2311-21.
    1. Rotman, G. and Y. Shiloh, ATM:from gene to function. Hum Mol Genet,1998. 7(10):p.1555-63.
    2. van Gent, D.C., J.H. Hoeijmakers, and R. Kanaar, Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet,2001.2(3):p.196-206.
    3. Gorgoulis, V.G., L.V. Vassiliou, P. Karakaidos, P. Zacharatos, A. Kotsinas, T. Liloglou, M. Venere, R.A. Ditullio, Jr., N.G. Kastrinakis, B. Levy, D. Kletsas, A. Yoneta, M. Herlyn, C. Kittas, and T.D. Halazonetis, Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature,2005. 434(7035):p.907-13.
    4. Wang, Y., C.D. Putnam, M.F. Kane, W. Zhang, L. Edelmann, R. Russell, D.V. Carrion, L. Chin, R. Kucherlapati, R.D. Kolodner, and W. Edelmann, Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet,2005.37(7):p.750-5.
    5. Rajagopalan, H. and C. Lengauer, Aneuploidy and cancer. Nature,2004. 432(7015):p.338-41.
    6. Ganem, N.J., Z. Storchova, and D. Pellman, Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev,2007.17(2):p.157-62.
    7. Zheng, L., H. Dai, M. Zhou, M. Li, P. Singh, J. Qiu, W. Tsark, Q. Huang, K. Kernstine, X. Zhang, D. Lin, and B. Shen, Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med,2007.13(7):p.812-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700