DNA甲基嘌呤糖苷酶MPG与p53的相互作用及对细胞周期相关基因的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑癌基因p53是人类肿瘤中最常见的突变基因之一,大约在50%肿瘤中可以检测到p53的突变。p53蛋白作为序列特异性转录因子,能通过调节大量靶基因的表达介导不同的下游功能,参与细胞周期阻滞、凋亡、老化和DNA损伤修复等诸多细胞事件。在非刺激条件下,p53通过快速的蛋白酶体途径降解维持极低的表达水平。当细胞受到刺激时,p53表达被稳定并从抑制状态释放。这种活化主要通过两种方式实现:(1)翻译后修饰;(2)与不同蛋白发生相互作用。在以往的研究中,已经发现部分蛋白在不同的条件下,通过与p53发生相互作用从而选择性调控p53下游靶基因的表达。但是,由p53介导的细胞周期负调控机制并不清楚。
     为了寻找p53新的调控分子,我们利用高通量的蛋白芯片筛选新的p53相互作用蛋白。发现MPG (3-methyladenine glycosylase)能在肿瘤细胞中直接与p53相互作用并选择性抑制p53介导的细胞周期阻滞。
     MPG是DNA碱基切除修复途径(base excision repair, BER)中的关键限速酶。当细胞在自身代谢和受到外界损伤性刺激,产生碱基损伤时,MPG能识别多种损伤碱基,与其结合、切除,产生AP位点,启动BER,维持基因组的稳定性。在肿瘤治疗中常用的烷化剂产生的DNA损伤是MPG识别的主要底物。
     我们的研究发现,MPG的N端34-79位氨基酸(该区域与MPG的糖苷酶活性无关)能与野生型p53的DNA结合区直接结合,特异性抑制p53介导的细胞周期阻滞,但对p53介导的细胞凋亡没有影响。在p53野生型的肿瘤细胞中,给予烷化剂刺激,能特异的使MPG与p53相互作用解离,MPG对p53的抑制作用消失,转而主要发挥损伤碱基的修复功能,从而降低这些肿瘤细胞对烷化剂的敏感性。相反,在p53突变型的肿瘤细胞中,烷化剂造成的损伤难以完全修复,对细胞的杀伤效应高于p53野生型细胞。因此,MPG通过与p53的结合和解离,协调了自身糖苷酶活性依赖和非糖苷酶活性在DNA损伤修复中的作用。在乳腺癌,肺癌和结肠癌中,MPG在癌组织中的阳性率分别为38.7%,43.4%和25.3%,在所有癌旁组织中MPG表达均为阴性。提示在肿瘤中,p53和MPG的状态共同决定了肿瘤细胞对烷化剂的敏感性。
     综上所述,本论文首次发现了一个DNA损伤修复酶MPG作为p53选择性调控因子的直接证据,并阐述了其调控的具体机制。这一研究为进一步探讨MPG与p53在肿瘤治疗中的功能联系提供了新的启示。
p53is one of the most studied tumor suppressors in the cancer research field. Extensive mutation searches demonstrated that over50%of human tumors carry p53mutations. It is widely accepted that p53is a sequence-specific transcription factor and plays a pivotal role in the regulation of cell cycle progression, apoptosis and DNA repair in response to diverse stress signals. In unstressed conditions, p53is kept at an extremely low level due to rapid proteasomal degradation. When under stress, however, p53is stabilized and released from suppression. There are at least two ways in which p53is activated:posttranslational modifications and interactions with various proteins. A few proteins have been identified that associate with p53to selectively regulate the expression of p53downstream targets. In unstressed conditions, the regulation of p53-mediated cell cycle arrest, particularly the negative regulation, is still not fully understood.
     To search for novel regulators of p53, we used high-density protein microarrays. Among the novel potential p53-interacting proteins, we found that N-methylpurine DNA glycosylase (MPG, also called AAG or ANPG), the first identified enzyme in the base excision repair (BER) pathway, can bind to p53and selectively repress p53-mediated cell cycle arrest in cancer cells under unstressed situations.
     As a core enzyme in BER, MPG has been shown to recognize and excise a broad range of modified bases, in addition to normal bases, in DNA. The removal of bases leaves repair intermediates, abasic (apurinic/apyrimidic) AP sites, which are cytotoxic and mutagenic, which makes it apparent that the removal of these BER intermediates is crucial. Alkylating agents have been frequently used in the treatment of human cancers.The major DNA damage produced by alkylating agents is recognized and repaired by MPG.
     Our current findings show that the MPG N-terminus plays an important role for p53binding and regulation. MPG specifically inhibits p53-mediated cell cycle arrest but not apoptosis. In response to alkylation damage, in p53wild-type tumor cells, MPG dissociated from p53, resulting in the release of p53and cell cycle arrest to repair damaged bases. Then, high MPG combination with wild-type p53in certain tumor cells led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy and the killing effects were higher than the p53wild-type cells. Therefore, MPG coordinates its glycosylase and non-glycosylase modules to participate in the DNA damage repair. Also, the p53status coordinates with MPG to play a pivotal role in determination of cancer sensitivity to alkylating drugs. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into functional linkage between MPG and p53in the cancer therapy.
引文
1. Vousden KH and Lu X:Live or let die:the cell's response to p53. Nat Rev Cancer 2: 594-604,2002.
    2. Harris SL and Levine AJ:The p53 pathway:positive and negative feedback loops. Oncogene 24:2899-908,2005.
    3. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C and Vogelstein B: Identification of p53 as a sequence-specific DNA-binding protein. Science 252: 1708-11,1991.
    4. Jayaraman J and Prives C:Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81:1021-9,1995.
    5. Kubbutat MH, Jones SN and Vousden KH:Regulation of p53 stability by Mdm2. Nature 387:299-303,1997.
    6. Appella E and Anderson CW:Signaling to p53:breaking the posttranslational modification code. Pathol Biol (Paris) 48:227-45,2000.
    7. Dumaz N and Meek DW:Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18:7002-10,1999.
    8. Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, Li L, Gao M, Zhang L and He F: KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol 11:580-91,2009.
    9. Sullivan A and Lu X:ASPP:a new family of oncogenes and tumour suppressor genes. Br J Cancer 96:196-200,2007.
    10. Tanaka T, Ohkubo S, Tatsuno I and Prives C:hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130:638-50, 2007.
    11. Das S, Raj L, Zhao B, Kimura Y, Bernstein A, Aaronson SA and Lee SW:Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130:624-37,2007.
    12. Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M and Fersht AR: Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci U S A 96:8438-42,1999.
    13. Hollstein M Fau-Sidransky D, Sidransky D Fau-Vogelstein B, Vogelstein B Fau-Harris CC and Harris CC:p53 mutations in human cancers. Science 253:1991.
    14. Dittmer D Fau-Pati S, Pati S Fau-Zambetti G, Zambetti G Fau-Chu S, Chu S Fau-Teresky AK, Teresky Ak Fau-Moore M, Moore M Fau-Finlay C, Finlay C Fau-Levine AJ and Levine AJ:Gain of function mutations in p53. Nat Genet: 1993.
    15. Hoeijmakers JH:Genome maintenance mechanisms for preventing cancer. Nature 411:366-74,2001.
    16. Sengupta S and Harris CC:p53:traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44-55,2005.
    17. Friedberg EC:How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22-33,2001.
    18. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K and Linn S:Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39-85,2004.
    19. Tang J and Chu G:Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair (Amst) 1:601-16,2002.
    20. Ford JM and Hanawalt PC:Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272:28073-80,1997.
    21. Smith ML, Chen IT, Zhan Q, O'Connor PM and Fornace AJ, Jr.:Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 10:1053-9, 1995.
    22. Adimoolam S and Ford JM:p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A 99:12985-90, 2002.
    23. Itoh T, O'Shea C and Linn S:Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene:mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol 23:7540-53,2003.
    24. Wang QE, Zhu Q, Wani MA, Wani G, Chen J and Wani AA:Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage. DNA Repair (Amst) 2:483-99,2003.
    25. Fitch ME, Nakajima S, Yasui A and Ford JM:In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278:46906-10,2003.
    26. Wang QE, Zhu Q, Wani G, Chen J and Wani AA:UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25:1033-43,2004.
    27. Fitch ME, Cross IV and Ford JM:p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo. Carcinogenesis 24:843-50,2003.
    28. Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH and Harris CC:The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10: 1219-32,1996.
    29. Leveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM and Wasylyk B:Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J 15:1615-24,1996.
    30. Rubbi CP and Milner J:p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 22:975-86,2003.
    31. Adimoolam S and Ford JM:p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (Amst) 2:947-54,2003.
    32. Therrien JP, Drouin R, Baril C and Drobetsky EA:Human cells compromised for p53 function exhibit defective global and transcription-coupled nucleotide excision repair, whereas cells compromised for pRb function are defective only in global repair. Proc Natl Acad Sci U S A 96:15038-43,1999.
    33. Ford JM and Hanawalt PC:Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci U S A 92:8876-80,1995.
    34. Adimoolam S, Lin CX and Ford JM:The p53-regulated cyclin-dependent kinase inhibitor, p21 (cipl, wafl, sdil), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J Biol Chem 276:25813-22,2001.
    35. Engelward BP, Weeda G, Wyatt MD, Broekhof JL, de Wit J, Donker I, Allan JM, Gold B, Hoeijmakers JH and Samson LD:Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A 94: 13087-92,1997.
    36. Gaiddon C, Moorthy NC and Prives C:Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J 18:5609-21,1999.
    37. Offer H, Zurer I, Banfalvi G, Reha'k M, Falcovitz A, Milyavsky M, Goldfinger N and Rotter V:p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res 61:88-96,2001.
    38. Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z and Rotter V:Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett 450:197-204,1999.
    39. Offer H, Erez N, Zurer I, Tang X, Milyavsky M, Goldfinger N and Rotter V:The onset of p53-dependent DNA repair or apoptosis is determined by the level of accumulated damaged DNA. Carcinogenesis 23:1025-32,2002.
    40. Zurer I, Hofseth LJ, Cohen Y, Xu-Welliver M, Hussain SP, Harris CC and Rotter V: The role of p53 in base excision repair following genotoxic stress. Carcinogenesis 25:11-9,2004.
    41. Peltomaki P:Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 21:1174-9,2003.
    42. Luo Y, Lin FT and Lin WC:ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol Cell Biol 24: 6430-44,2004.
    43. Saito T, Oda Y, Kawaguchi K, Takahira T, Yamamoto H, Sakamoto A, Tamiya S, Iwamoto Y and Tsuneyoshi M:Possible association between tumor-suppressor gene mutations and hMSH2/hMLH1 inactivation in alveolar soft part sarcoma. Hum Pathol 34:841-9,2003.
    44. Cranston A, Bocker T, Reitmair A, Palazzo J, Wilson T, Mak T and Fishel R:Female embryonic lethality in mice nullizygous for both Msh2 and p53. Nat Genet 17: 114-8,1997.
    45. Scherer SJ, Maier SM, Seifert M, Hanselmann RG, Zang KD, Muller-Hermelink HK, Angel P, Welter C and Schartl M:p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J Biol Chem 275: 37469-73,2000.
    46. Subramanian D and Griffith JD:Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res 30:2427-34, 2002.
    47. Lin X, Ramamurthi K, Mishima M, Kondo A, Christen RD and Howell SB:P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res 61: 1508-16,2001.
    48. Zink D, Mayr C, Janz C and Wiesmuller L:Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 21:4788-800,2002.
    49. Xinarianos G, Liloglou T, Prime W, Sourvinos G, Karachristos A, Gosney JR, Spandidos DA and Field JK:p53 status correlates with the differential expression of the DNA mismatch repair protein MSH2 in non-small cell lung carcinoma. Int J Cancer 101:248-52,2002.
    50. Staibano S, Lo Muzio L, Pannone G, Somma P, Farronato G, Franco R, Bambini F, Serpico R and De Rosa G:P53 and hMSH2 expression in basal cell carcinomas and malignant melanomas from photoexposed areas of head and neck region. Int J Oncol 19:551-9,2001.
    51. Yano M, Asahara T, Dohi K, Mizuno T, Iwamoto KS and Seyama T:Close correlation between a p53 or hMSH2 gene mutation in the tumor and survival of hepatocellular carcinoma patients. Int J Oncol 14:447-51,1999.
    52. Zhu YM, Das-Gupta EP and Russell NH:Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 94:733-40,1999.
    53. Leung SY, Yuen ST, Chan TL, Chan AS, Ho JW, Kwan K, Fan YW, Hung KN, Chung LP and Wyllie AH:Chromosomal instability and p53 inactivation are required for genesis of glioblastoma but not for colorectal cancer in patients with germline mismatch repair gene mutation. Oncogene 19:4079-83,2000.
    54. Rothkamm K, Kruger I, Thompson LH and Lobrich M:Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706-15,2003.
    55. Shieh SY, Ikeda M, Taya Y and Prives C:DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325-34,1997.
    56. Wang S, Guo M, Ouyang H, Li X, Cordon-Cardo C, Kurimasa A, Chen DJ, Fuks Z, Ling CC and Li GC:The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc Natl Acad Sci U S A 97:1584-8,2000.
    57. Jhappan C, Yusufzai TM, Anderson S, Anver MR and Merlino G:The p53 response to DNA damage in vivo is independent of DNA-dependent protein kinase. Mol Cell Biol 20:4075-83,2000.
    58. Achanta G, Pelicano H, Feng L, Plunkett W and Huang P:Interaction of p53 and DNA-PK in response to nucleoside analogues:potential role as a sensor complex for DNA damage. Cancer Res 61:8723-9,2001.
    59. Yang T, Namba H, Hara T, Takmura N, Nagayama Y, Fukata S, Ishikawa N, Kuma K, Ito K and Yamashita S:p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 14:1511-9,1997.
    60. Tang W, Willers H and Powell SN:p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res 59:2562-5,1999.
    61. Bristow RG, Hu Q, Jang A, Chung S, Peacock J, Benchimol S and Hill R: Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation. Oncogene 16:1789-802, 1998.
    62. Bill CA, Yu Y, Miselis NR, Little JB and Nickoloff JA:A role for p53 in DNA end rejoining by human cell extracts. Mutat Res 385:21-9,1997.
    63. Mazin AV, Alexeev AA and Kowalczykowski SC:A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278:14029-36, 2003.
    64. Dudenhoffer C, Rohaly G, Will K, Deppert W and Wiesmuller L:Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 18:5332-42,1998.
    65. Xia F, Amundson SA, Nickoloff JA and Liber HL:Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X-irradiation. Mol Cell Biol 14:5850-7,1994.
    66. Wiesmuller L, Cammenga J and Deppert WW:In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J Virol 70: 737-44,1996.
    67. Dudenhoffer C, Kurth M, Janus F, Deppert W and Wiesmuller L:Dissociation of the recombination control and the sequence-specific transactivation function of P53. Oncogene 18:5773-84,1999.
    68. Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T and Lopez BS:Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14:1117-22,1997.
    69. Saintigny Y and Lopez BS:Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene 21:488-92,2002.
    70. Mekeel KL, Tang W, Kachnic LA, Luo CM, DeFrank JS and Powell SN: Inactivation of p53 results in high rates of homologous recombination. Oncogene 14: 1847-57,1997.
    71. Saintigny Y, Rouillard D, Chaput B, Soussi T and Lopez BS:Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 18:3553-63,1999.
    72. Bishop AJ, Hollander MC, Kosaras B, Sidman RL, Fornace AJ, Jr. and Schiestl RH: Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res 63: 5335-43,2003.
    73. Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH and Wiesmuller L:DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22:6306-17,2002.
    74. Janz C, Susse S and Wiesmuller L:p53 and recombination intermediates:role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation. Oncogene 21:2130-40,2002.
    75. Lin J, Chen J, Elenbaas B and Levine AJ:Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235-46,1994.
    76. Boehden GS, Akyuz N, Roemer K and Wiesmuller L:p53 mutated in the transactivation domain retains regulatory functions in ho mo logy-directed double-strand break repair. Oncogene 22:4111-7,2003.
    77. Hitomi K, Iwai S and Tainer JA:The intricate structural chemistry of base excision repair machinery:implications for DNA damage recognition, removal, and repair. DNA Repair (Amst) 6:410-28,2007.
    78. Wilson SH and Kunkel TA:Passing the baton in base excision repair. Nat Struct Biol 7:176-8,2000.
    79. Nakamura J, Walker VE, Upton PB, Chiang SY, Kow YW and Swenberg JA:Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res 58:222-5,1998.
    80. Hofseth LJ, Khan MA, Ambrose M, Nikolayeva O, Xu-Welliver M, Kartalou M, Hussain SP, Roth RB, Zhou X, Mechanic LE, Zurer I, Rotter V, Samson LD and Harris CC:The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. J Clin Invest 112:1887-94,2003.
    81. Lindahl T and Wood RD:Quality control by DNA repair. Science 286:1897-905, 1999.
    82. Lindahl T:Instability and decay of the primary structure of DNA. Nature 362: 709-15,1993.
    83. Wood RD, Mitchell M, Sgouros J and Lindahl T:Human DNA repair genes. Science 291:1284-9,2001.
    84. Fortini P, Pascucci B, Parlanti E, Sobol RW, Wilson SH and Dogliotti E:Different DNA polymerases are involved in the short-and long-patch base excision repair in mammalian cells. Biochemistry 37:3575-80,1998.
    85. Gary R, Kim K, Cornelius HL, Park MS and Matsumoto Y:Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem 274:4354-63,1999.
    86. Prasad R, Dianov GL, Bohr VA and Wilson SH:FEN 1 stimulation of DNA polymerase beta mediates an excision step in mammalian long patch base excision repair. J Biol Chem 275:4460-6,2000.
    87. Almeida KH and Sobol RW:A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 6:695-711,2007.
    88. Abner CW, Lau AY, Ellenberger T and Bloom LB:Base excision and DNA binding activities of human alkyladenine DNA glycosylase are sensitive to the base paired with a lesion. J Biol Chem 276:13379-87,2001.
    89. O'Brien PJ and Ellenberger T:Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J Biol Chem 279:9750-7,2004.
    90. Wyatt MD, Allan JM, Lau AY, Ellenberger TE and Samson LD:3-methyladenine DNA glycosylases:structure, function, and biological importance. Bioessays 21: 668-76,1999.
    91. Samson L, Derfler B, Boosalis M and Call K:Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc Natl Acad Sci U S A 88:9127-31,1991.
    92. Lau AY, Wyatt MD, Glassner BJ, Samson LD and Ellenberger T:Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A 97:13573-8,2000.
    93. Lau AY, Scharer OD, Samson L, Verdine GL and Ellenberger T:Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA:mechanisms for nucleotide flipping and base excision. Cell 95:249-58,1998.
    94. Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY and Shen CY: Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J 27:3140-50,2008.
    95. Kim NK, An HJ, Kim HJ, Sohn TJ, Roy R, Oh D, Ahn JY, Hwang TS and Cha KY: Altered expression of the DNA repair protein, N-methylpurine-DNA glycosylase (MPG) in human gonads. Anticancer Res 22:793-8,2002.
    96.Klapacz J, Lingaraju GM, Guo HH, Shah D, Moar-Shoshani A, Loeb LA and Samson LD: Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell 37: 843-53, 2010.
    97.Posnick LM and Samson LD: Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol 181: 6763-71, 1999.
    98.Watanabe S, Ichimura T, Fujita N, Tsuruzoe S, Ohki I, Shirakawa M, Kawasuji M and Nakao M: Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc Natl Acad Sci U S A 100: 12859-64, 2003.
    99.Elder RH, Jansen JG, Weeks RJ, Willington MA, Deans B, Watson AJ, Mynett KJ, Bailey JA, Cooper DP, Rafferty JA, Heeran MC, Wijnhoven SW, van Zeeland AA and Margison GP: Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol Cell Biol 18: 5828-37, 1998.
    100.Gillen CD, Walmsley RS, Prior P, Andrews HA and Allan RN: Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut 35: 1590-2, 1994.
    101. Swain U and Subba Rao K: Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging. Mech Ageing Dev 132: 374-81, 2011.
    102. Tentori L and Graziani G: Pharmacological strategies to increase the antitumor activity of methylating agents. Curr Med Chem 9: 1285-301, 2002.
    103. Chen CY, Guo HH, Shah D, Blank A, Samson LD and Loeb LA: Substrate binding pocket residues of human alkyladenine-DNA glycosylase critical for methylating agent survival. DNA Repair (Amst) 7: 1731-45, 2008.
    104. Adhikari S, Toretsky JA, Yuan L and Roy R: Magnesium, essential for base excision repair enzymes, inhibits substrate binding of N-methylpurine-DNA glycosylase. J Biol Chem 281: 29525-32, 2006.
    105. Paik J, Duncan T, Lindahl T and Sedgwick B: Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase. Cancer Res 65: 10472-7, 2005.
    106. Fishel ML, He Y, Smith ML and Kelley MR: Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res 13: 260-7, 2007.
    107. Rinne M, Caldwell D and Kelley MR:Transient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells. Mol Cancer Ther 3:955-67,2004.
    108. Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH, Tom E, Mack DH and Levine AJ:Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14:981-93,2000.
    109. Longley DB, Harkin DP and Johnston PG:5-fluorouracil:mechanisms of action and clinical strategies. Nat Rev Cancer 3:330-8,2003.
    110. Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S and Sobol RW:The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65:6394-400,2005.
    111. Nakamura J, Asakura S, Hester SD, de Murcia G, Caldecott KW and Swenberg JA: Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time. Nucleic Acids Res 31:e104,2003.
    112. Olive PL and Banath JP:The comet assay:a method to measure DNA damage in individual cells. Nat Protoc 1:23-9,2006.
    1. Hitomi K, Iwai S, Tainer JA. The intricate structural chemistry of base excision repair machinery:Implications for DNA damage recognition, removal, and repair. DNA Repair (Amst).2007
    2. Wilson SH, Kunkel TA. Passing the baton in base excision repair. Nature Structural Biology 2000;7:176-178.
    3. Nakamura J, Walker VE, Upton PB, Chiang SY, Kow YW, Swenberg JA. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Research 1998;58:222-225.
    4. Lindahl T, Wood RD. Quality control by DNA repair. Science 1999;286:1897-1905.
    5. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993;362:709-715.
    6. Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science 2001;291:1284-1289.
    7. Wallace SS. Enzymatic processing of radiation-induced free radical damage in DNA. Radiation Research 1998;150:S60-S79.
    8. Gary R, Kim K, Cornelius HL, Park MS, Matsumoto Y. Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. Journal of Biological Chemistry 1999;274:4354-4363.
    9. Fortini P, Pascucci B, Parlanti E, Sobol RW, Wilson SH, Dogliotti E. Different DNA polymerases are involved in the short-and long-patch base excision repair in mammalian cells. Biochemistry 1998;37:3575-3580.
    10. Stucki M, Pascucci B, Parlanti E, Fortini P, Wilson SH, Hubscher U, Dogliotti E. Mammalian base excision repair by DNA polymerases delta and epsilon. Oncogene 1998;17:835-843.
    11. Prasad R, Dianov GL, Bohr VA, Wilson SH. FEN1 stimulation of DNA polymerase β mediates an excision step in mammalian long patch base excision repair. Journal of Biological Chemistry 2000;275:4460-4466.
    12. Prasad R, Lavrik OI, Kim SJ, Kedar P, Yang XP, Vande Berg BJ, Wilson SH. DNA polymerase β mediated long patch base excision repair: Poly(ADP-ribose)polymerase-1 stimulates strand displacement DNA synthesis. Journal of Biological Chemistry 2001;276:32411-32414.
    13. Fan J, Wilson DM 3rd. Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic Biol Med 2005;38:1121-1138.
    14. Friedberg, EC.; Walker, GC.; Siede, W.; Wood, RD.; Schultz, RA.; Ellenberger, T. DNA repair and mutagenesis.2. Washington, D.C:ASM Press; 2006.
    15. Caldecott KW, Aoufouchi S, Johnson P, Shall S. XRCC1 polypeptide interacts with DNA polymerase β and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular'nick-sensor'in vitro. Nucleic Acids Research 1996;24:4387-4394.
    16. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Molecular and Cellular Biology 1998;18:3563-3571.
    17. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry 2000;39:7559-7569.
    18. Leppard JB, Dong Z, Mackey ZB, Tomkinson AE. Physical and functional interaction between DNA ligase Ⅲalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Molecular and Cellular Biology 2003;23:5919-5927.
    19. Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI. Human Proliferating Cell Nuclear Antigen, Poly(ADP-ribose) Polymerase-1, and p21waf1/cip1:A DYNAMIC EXCHANGE OF PARTNERS. Journal of Biological Chemistry 2003;278:39265-39268.
    20. Daviet S, Couve-Privat S, Gros L, Shinozuka K, Ide H, Saparbaev M, Ishchenko AA. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway. DNA Repair (Amst) 2007;6:8-18.
    21. Gros L, Ishchenko AA, Ide H, Elder RH, Saparbaev MK. The major human AP endonuclease (Apel) is involved in the nucleotide incision repair pathway. Nucleic Acids Res 2004;32:73-81.
    22. Ishchenko AA, Deprez E, Maksimenko A, Brochon JC, Tauc P, Saparbaev MK. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles. Proc Natl Acad Sci U S A 2006; 103:2564-2569.
    23. Das A, Wiederhold L, Leppard JB, Kedar P, Prasad R, Wang H, Boldogh I, Karimi-Busheri F, Weinfeld M, Tomkinson AE, Wilson SH, Mitra S, Hazra TK. NEIL2-initiated, APE-independent repair of oxidized bases in DNA:Evidence for a repair complex in human cells. DNA Repair (Amst) 2006;5:1439-1448.
    24. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH, Mitra S, Hazra TK. AP endonuclease-independent DNA base excision repair in human cells. Mol Cell 2004; 15:209-220.
    25. Almeida, KH.; Sobol, RW. Increased Specificity and Efficiency of Base Excision Repair through Complex Formation. In:Siede, W.; Doetsch, PW.; Kow, YW., editors. DNA Damage Recognition. Marcel Dekker Inc.; New York:2005. p.33-64.
    26. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Molecular Cell 2002;9:265-277.
    27. Shimizu Y, Iwai S, Hanaoka F, Sugasawa K. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO Journal 2003;22:164-173.
    28. Campalans A, Marsin S, Nakabeppu Y, O'Connor TR, Boiteux S, Radicella JP. XRCC1 interactions with multiple DNA glycosylases:a model for its recruitment to base excision repair. DNA Repair (Amst) 2005;4:826-835.
    29. Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW. Substrate specificity of human endonuclease Ⅲ(hNTH1):Effect of human APE1 on hNTH1 activity. Journal of Biological Chemistry 2003;278:9005-9012.
    30. Demple B, Harrison L. Repair of oxidative damage to DNA:enzymology and biology. Annual Review of Biochemistry 1994;63:915-948.
    31. Vidal AE, Hickson ID, Boiteux S, Radicella JP. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease:bypass of the AP lyase activity step. Nucleic Acids Research 2001;29:1285-1292.
    32. Yang H, Clendenin WM, Wong D, Demple B, Slupska MM, Chiang JH, Miller JH. Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Apel) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Research 2001 29:743-752.
    33. Hill JW, Hazra TK, Izumi T, Mitra S. Stimulation of human 8-oxoguanine-DNA glycosylase by APendonuclease:potential coordination of the initial steps in base excision repair. Nucleic Acids Research 2001;29:430-438.
    34. Marsin S, Vidal AE, Sossou M, Menissier-De Murcia J, Le Page F, Boiteux S, De Murcia G, Radicella JP. Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGGl. Journal of Biological Chemistry 2003;278:44068-44074.
    35. Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Annual Review of Genetics 1986;20:201-230.
    36. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proceedings of the National Academy of Science 1996;93:8919-8923.
    37. Ludwig DL, MacInnes MA, Takiguchi Y, Purtymun PE, Henrie M, Flannery M, Meneses J, Pedersen RA, Chen DJ. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutation Research 1998;409:17-29.
    38. Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J. Cleaving the oxidative repair protein Apel enhances cell death mediated by granzyme A. Nature Immunology 2003;4:145-153.
    39. Izumi T, Brown DB, Naidu CV, Bhakat KK, Macinnes MA, Saito H, Chen DJ, Mitra S. Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci U S A 2005; 102:5739-5743.
    40. Vidal AE, Boiteux S, Hickson ID, Radicella JP. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO Journal 2001;20:6530-6539.
    41. Ischenko AA, Saparbaev MK. Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature 2002;415:183-187.
    42. Dianova VA, Bohr Ⅱ, Dianov GL. Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry 2001;40:12639-12644.
    43. Ranalli TA, Tom S, Bambara RA. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. Journal of Biological Chemistry 2002;277:41715-41724.
    44. Bandaru V, Sunkara S, Wallace SS, Bond JP. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair (Amst) 2002; 1:517-529.
    45. Hazra TK, Izumi T, Maidt L, Floyd RA, Mitra S. The presence of two distinct 8-oxoguanine repair enzymes in human cells:their potential complementary roles in preventing mutation. Nucleic Acids Research 1998;26:5116-5122.
    46. Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, Dizdaroglu M, Mitra S. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proceedings of the National Academy of Science 2002;99:3523-3528.
    47. Caldecott KW. Polynucleotide kinase:a versatile molecule makes a clean break. Structure 2002; 10:1151-1152.
    48. Sieber OM, Heinimann K, Tomlinson IP. Genomic instability--the engine of tumorigenesis? Nat Rev Cancer 2003;3:701-708.
    49. Gros L, Saparbaev MK, Laval J. Enzymology of the repair of free radicals-induced DNA damage. Oncogene 2002;21:8905-8925.
    50. Henner WD, Rodriguez LO, Hecht SM, Haseltine WA. gamma Ray induced deoxyribonucleic acid strand breaks.3'Glycolate termini. J Biol Chem 1983;258:711-713.
    51. Henner WD, Grunberg SM, Haseltine WA. Sites and structure of gamma radiation-induced DNA strand breaks. J Biol Chem 1982;257:11750-11754.
    52. Henner WD, Grunberg SM, Haseltine WA. Enzyme action at 3'termini of ionizing radiation-induced DNA strand breaks. J Biol Chem 1983;258:15198-15205.
    53. Bjornsti MA, Osheroff N. Introduction to DNA topoisomerases. Methods in Molecular Biology 1999;94:1-8.
    54. Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H, Antony S, Meng L, Liao Z, Kohlhagen G, Zhang H, Kohn KW. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutation Research 2003;532:173-203.
    55. Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. Mechanism of action of camptothecin. Annals of the New York Acadamy of Science 2000;922:1-10.
    56. Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdpl is a member of the phospholipase D superfamily. Proceedings of the National Academy of Science 2001;98:12009-12014.
    57. Liu C, Pouliot JJ, Nash HA. Repair of topoisomerase I covalent complexes in the absence of the tyrosyl-DNA phosphodiesterase Tdpl. Proceedings of the National Academy of Science 2002;99:14970-14975.
    58. Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, Lasko DD. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3'-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 1999;274:24176-24186.
    59. Boldogh I, Milligan D, Lee MS, Bassett H, Lloyd RS, McCullough AK. hMYH cell cycle-dependent expression, subcellular localization and association with replication foci:evidence suggesting replication-coupled repair of adenine:8-oxoguanine mispairs. Nucleic Acids Research 2001;29:2802-2809.
    60. Plo I, Liao ZY, Barcelo JM, Kohlhagen G, Caldecott KW, Weinfeld M, Pommier Y. Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdpl) for the repair of topoisomerase I-mediated DNA lesions. DNA Repair 2003;2:1087-1100.
    61. Plo I, Liao ZY, Barcelo JM, Kohlhagen G, Caldecott KW, Weinfeld M, Pommier Y. Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdpl) for the repair of topoisomerase I-mediated DNA lesions. DNA Repair (Amst) 2003;2:1087-1100.
    62. Flohr C, Burkle A, Radicella JP, Epe B. Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucleic Acids Research 2003;31:5332-5337.
    63. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, Weinfeld M, Caldecott KW. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 2001;104:107-117.
    64. Thompson LH, Brookman KW, Jones NJ, Allen SA, Carrano AV. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Molecular and Cellular Biology 1990;10:6160-6171.
    65. Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH.An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Molecular and Cellular Biology 1994; 14:68-76.
    66. Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, Lindahl T. Reconstitution of DNA base excision-repair with purified human proteins:interaction between DNA polymerase β and the XRCC1 protein. EMBO Journal 1996; 15:6662-6670.
    67. Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP. Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol 1999;6:884-893.
    68. Rice PA. Holding damaged DNA together. Nat Struct Biol 1999;6:805-806.
    69. Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP. XRCC1 interactions with base excision repair DNA intermediates. DNA Repair (Amst) 2007;6:254-264.
    70. Ziegler M, Oei SL. A cellular survival switch:poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 2001;23:543-548.
    71. Lan L, Nakajima S, Oohata Y, Takao M, Okano S, Masutani M, Wilson SH, Yasui A. In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proceedings of the National Academy of Science 2004; 101:13738-13743.
    72. Clements PM, Breslin C, Deeks ED, Byrd PJ, Ju L, Bieganowski P, Brenner C, Moreira MC, Taylor AM, Caldecott KW. The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair (Amst) 2004;3:1493-1502.
    73. Date H, Igarashi S, Sano Y, Takahashi T, Takahashi T, Takano H, Tsuji S, Nishizawa M, Onodera O. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem Biophys Res Commun 2004;325:1279-1285.
    74. Gueven N, Becherel OJ, Kijas AW, Chen P, Howe O, Rudolph JH, Gatti R, Date H, Onodera O, Taucher-Scholz G, Lavin MF. Aprataxin, a novel protein that protects against genotoxic stress. Hum Mol Genet 2004; 13:1081-1093.
    75. Luo H, Chan DW, Yang T, Rodriguez M, Chen BP, Leng M, Mu JJ, Chen D, Songyang Z, Wang Y, Qin J. A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Mol Cell Biol 2004;24:8356-8365.
    76. Sano Y, Date H, Igarashi S, Onodera O, Oyake M, Takahashi T, Hayashi S, Morimatsu M, Takahashi H, Makifuchi T, Fukuhara N, Tsuji S. Aprataxin, the causative protein for EAOH is a nuclear protein with a potential role as a DNA repair protein. Ann Neurol 2004;55:241-249.
    77. Bebenek K, Tissier A, Frank EG, McDonald JP, Prasad R, Wilson SH, Woodgate R, Kunkel TA.5'-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science 2001;291:2156-2159.
    78. Garcia-Diaz M, Bebenek K, Kunkel TA, Blanco L. Identification of an intrinsic 5'-deoxyribose-5-phosphate lyase activity in human DNA polymerase lambda:a possible role in base excision repair. J Biol Chem 2001;276:34659-34663.
    79. Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW. The Role of Base Excision Repair in the Sensitivity and Resistance to Temozolomide Mediated Cell Death. Cancer Res 2005;65.6394-6400.
    80. Braithwaite EK, Kedar PS, Lan L, Polosina YY, Asagoshi K, Poltoratsky VP, Horton JK, Miller H, Teebor GW, Yasui A, Wilson SH. DNA polymerase lambda protects mouse fibroblasts against oxidative DNA damage and is recruited to sites of DNA damage/repair. J Biol Chem 2005;280:31641-31647.
    81. Wilson DM 3rd. Properties of and substrate determinants for the exonuclease activity of human apurinic endonuclease Apel. Journal of Molecular Biology 2003;330:1027-1037.
    82. Wong D, DeMott MS, Demple B. Modulation of the 3'->5'-Exonuclease Activity of Human Apurinic Endonuclease (Apel) by Its 5'-incised Abasic DNA Product. Journal of Biological Chemistry 2003;278:36242-36249.
    83. Almeida, KH.; Sobol, RW. Increased Specificity and Efficiency of Base Excision Repair through Complex Formation. In: Siede, W.; Doetsch, PW.; Kow, YW., editors. DNA Damage Recognition. Marcel Dekker Inc.; New York: 2005.
    84.Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonca P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2001;29:189-193.
    85.Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006;443:713-716.
    86.Adelfalk C, Kontou M, Hirsch-Kauffmann M, Schweiger M. Physical and functional interaction of the Werner syndrome protein with poly-ADP ribosyl transferase. FEBS Lett 2003;554:55-58.
    87.von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Molecular and Cellular Biology 2003;23:8601-8613.
    88.Harrigan JA, Opresko PL, von Kobbe C, Kedar PS, Prasad R, Wilson SH, Bohr VA. The Werner syndrome protein stimulates DNA polymerase β strand displacement synthesis via its helicase activity. J Biol Chem 2003;278:22686-22695.
    89.Harrigan JA, Wilson DM 3rd, Prasad R, Opresko PL, Beck G, May A, Wilson SH, Bohr VA. The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res 2006;34:745-754.
    90.Marintchev A, Robertson A, Dimitriadis EK, Prasad R, Wilson SH, Mullen GP. Domain specific interaction in the XRCC1-DNA polymerase β complex. Nucleic Acids Research 2000;28:2049-2059.
    91.Beard WA, Wilson SH. Structure and mechanism of DNA polymerase Beta. Chem Rev2006;106:361-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700