耐辐射球菌recQ及相关基因的生化和突变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射球菌能在电离紫外辐射、化学毒剂、热、干燥等极端环境下存活。这得益于它不同寻常的DNA修复能力,特别是对电离辐射导致的双链断裂的重组修复。这种难以置信的DNA修复能力令D. radiodurans成为很好的模式生物。尽管如此,该细菌的修复机理至今仍知之甚少,需要进一步研究。
     RecQ家族的DNA解旋酶对基因组稳定性的维持起到必要的作用。耐辐射球菌中的RecQ是RecQ家族中特别的一员,不同于其他物种来源RecQ的是,它在C端有着三个串联HRDC结构域。而与RecQ蛋白互作的单链DNA结合蛋白(SSB)在所有的DNA代谢进程中非常重要,包括DNA复制,重组和修复。与其他细菌SSB蛋白均以同源四聚体行使功能不同,耐辐射球菌SSB是同源二聚体的,每个单体含有两个OB fold.本文主要系统研究耐辐射球菌RecQ和SSB蛋白的生化活性及突变分析系统分析。具体结果如下:
     1.首先构建了RecQ突变株。RecQ突变株对辐照、UV、过氧化氢和丝裂霉素C均非常敏感。通过补偿突变株以RecQ的不同部分,发现解旋酶和三个HRDC结构域对DNA损伤抗性均为不可缺少。解旋酶结构域对解旋酶活性和ATP酶活性均为必需,而三个串联HRDC结构域则促进了这些活性。
     2.基于其晶体结构构建四个SSB截断突变体。凝胶过滤结果表明DrSSB、DSCT和DSCC是同源二聚体,而DSN和DSNC是单体。这支持了N端在二聚体形成过程中起主要作用的假设。我们使用EMSA和FRET对每个OBfold在DNA结合中的作用进行了探索。
     3.在uvsE uvrAl uvrA2的基础上,敲除了recQ构建了四突变株。用rpoB/Rif系统测量了野生株、突变株recQ(MQ)、uvsE uvrA1 uvrA2 (TNK006),和uvsE uvrA1 uvrA2 recQ(TQ)的突变频率和突变率。然后分离Rif的突变体,并对rpoB基因进行了测序。结果表明,recQ通过与uvsE uvrA1 uvrA2的互作参与了紫外损伤修复途径。
     4.测定在不同利福平浓度下(从5到50μg/ml的浓度梯度)的突变率。耐辐射球菌在5μg/ml利福平筛选压力下的突变率显著高于其在25μg/ml和50μg/ml下的突变率。耐辐射球菌突变的利福平浓度依赖效应,不仅表现在突变率上,也表现在突变谱上。我们推测,在低利福平浓度下,耐辐射球菌重点防止碱基替换突变,因为活性氧ROS主要造成氧化碱基损伤
     5.使用DNA芯片技术和生化实验来鉴定耐辐射球菌p亚基中突变是如何通过调控其他基因转录来改变生长速度的。可从这些结果中分析p亚基中突变是如何调控其他基因转录的分子机制。
     综上所述,RecQ解旋酶的三个HRDC结构域不仅对DNA损伤抗性不可缺少,对解旋酶和ATPase活性也很重要。其互作蛋白SSB的ssDNA结合活性需要两个OB fold的互作。突变分析系统的研究表明了RecQ与紫外损伤修复系统的互作关系。耐辐射球菌突变的利福平浓度依赖效应,不仅表现在突变率上,也表现在突变谱上。芯片分析则展示了β亚基中突变是如何调控其他基因转录。
Deinococcus raidoudrans can survive extreme DNA damage caused by ionizing radiation and other DNA damage agents at levels that would otherwise kill Escherichia coli and other related organisms. The survive of D. raidoudrans in such extreme conditions is due to its extraordinary DNA repair ability, especially in the reconstruction of dsDNA breaks induced by ionizing radiation. The incredible DNA repair capacity makes D. radiodurans an excellent model system. However, current studies have only touched the surface, and much is still to be learned from D. radiodurans.
     The RecQ family of DNA helicases performs essential functions in the maintenance of genomic stability in all organisms. In D. radiodurans, DR1289 is a special member of RecQ family with unique arrangement of three tandem HRDC domains in the C-terminus. Moreover, single stranded binding protein (SSB) that interacted with RecQ plays crucial in all kind of DNA metabolic processes includeing DNA replication, recombination and repair. In contrast to other bacterial SSB proteins, which are functionally active in homotetramers, Deinococcus SSB-like proteins are homodimers in nature and contain two OB fold per monomer. In this study, we investigated biochemical characterization and mutational pattern of recQ and its related gene in D. radiodurans. The results were listed as below:
     1. RecQ mutant was constructed at first. A dr1289 mutant is hypersensitive toγ-irradiation, UV, H2O2 and mitomycin C. By complementing the dr1289 mutant with various domains of Dr1289 in vivo, we have determined that the helicase and all three HRDC domains are indispensable for complete DNA damage resistance. We also found that the helicase domain is necessary for the unwinding and ATPase activity, and the three tandem HRDC domains increase the efficiency of these activities.
     2. Four truncated variants of DrSSB proteins were generated based on their crystal structures. Gel filtration showed that DrSSB, DSCT and DSCC were homodimers, and DSN and DSNC were monomers. The gel filtration analysis supported the hypothesis that the N-terminal domain played a predominant role in dimerisation. Biochemical characterization was used to determine the role of each OB fold in DNA binding, by electrophoretic mobility shift assay (EMSA) and fluorescence resonance energy transfer analysis (FRET).
     4. A four-gene mutant strain was created by constructing recQ knockout mutant in uvrAl, uvrA2, and uvsE knockout backgrounds. Using the rpoB/Rif system, we measured the mutation frequencies and rates in wild type, recQ (MQ), uvsE uvrAl uvrA2 (TNK006), and uvsE uvrAl uvrA2 recQ (TQ). We then isolated Rif mutants of these strains and sequenced the rpoB gene. The results indicate that recQ is involved in the ultraviolet damage repair pathway via the interaction between recQ and uvrAl, uvrA2, and uvsE in D. radiodurans.
     5. The mutation frequencies and rates of D. radiodurans were measured at a wide concentration range from 5 to 50μg/ml of rifampin. We found that the mutation rate of the bacterium in the presence of 5μg/ml of rifampin was significantly higher than in the presence of 25μg/ml and 50μg/ml rifampin. Rifampin had concentration-denpendent effect not only on the mutation rate, but also on the mutation spectrum. It is speculated that D. radiodurans mainly prevents base substitution mutation at low concentration of rifampin, since ROS induced mainly oxidative base damage
     6. DNA microarrays and biochemical assays were used to identify the molecular details of how the Rif mutation in the P-subunit led to changes in growth rate via altered regulation of multiple genes in D. radiodurans. The results provided a molecular insight into the mechanism of Rif mutation in theβ-subunit on altering the regulation of multiple genes.
     Taken together, the three HRDC domains of RecQ helicase is important not only for radiation resistance, but also for helicase activity and ATPase activity of RecQ. SSB that interacted with RecQ needed the interaction between two OB folds. Mutational analysis suggested that recQ is involved in the ultraviolet damage repair pathway. Rifampin had concentration-denpendent effect not only on the mutation rate, but also on the mutation spectrum in D. radiodurans. The microarray results provided a insight into the mechanism that Rif mutation inβsubunit alter the regulation of multiple genes.
引文
1. Anderson, A.W., H.C. Nordon, R.F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant micrococcus. Ⅰ. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technology, 10,575-578.
    2. 宋道军,余增亮.1999.耐辐射异常球菌抗辐射机理的研究新进展.生命科学,11.
    3. 华跃进,高冠军.2003.耐辐射异常球菌DNA损伤与修复相关基因的比较基因组研究.微生物学报,43.
    4. 易龙,马翔宇.2003.一种新型的生物除污菌--耐放射异常球菌.国外医学卫生学分册,30.
    5. Daly M J, O.L., Minton KW,.1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol.,176, 3508-3517.
    6. Battista, J.R. 1997. Against all odds:the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol.,51,203-224.
    7. Salzberg SL, S.A., Kerlavage AR, Tomb JF. 1998. Skewed oligomers and origins of replication, gene,217,57-67.
    8. Rainey, F.A., Ray, K., Ferreira, M., Gatz, B.Z., Nobre, M.F., Bagaley, D., Rash, B.A., Park, M.-J., Earl, A.M., Shank, N.C. et al.2005. Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample. Appl. Environ. Microbiol, 71,5225-5235.
    9. Weon, H.-Y, Kim, B.-Y., Schumann, P., Son, J.-A., Jang, J., Go, S.-J. and Kwon, S.-W.2007. Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol,57,1685-1688.
    10. de Groot, A., Chapon, V., Servant, P., Christen, R., Saux, M.F.-L., Sommer, S. and Heulin, T.2005. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol,55,2441-2446.
    11. Lai, W.-A., Kampfer, P., Arun, A.B., Shen, F.-T., Huber, B., Rekha, P.D. and Young, C.-C.2006. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol,56,787-791.
    12. Hirsch, P., Gallikowski, C., Siebert, J., Peissl, K., Kroppenstedt, R., Schumann, P., Stackebrandt, E. and Anderson, R.2004. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Systematic and applied microbiology,27,636-645.
    13. Ferreira, A., Nobre, M., Rainey, F., Silva, M., Wait, R., Burghardt, J., Chung, A. and Da Costa, M.1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. International Journal of Systematic and Evolutionary Microbiology,47,939.
    14. Oyaizu, H., Stackebrandt, E., Schleifer, K., Ludwig, W., Pohla, H., Ito, H., Hirata, A., Oyaizu, Y. and Komagata, K.1987. A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. International Journal of Systematic and Evolutionary Microbiology,37,62.
    15. Suresh, K., Reddy, G.S.N., Sengupta, S. and Shivaji, S.2004. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol,54,457-461.
    16. Rainey, F.A., Ferreira, M., Nobre, M.F., Ray, K., Bagaley, D., Earl, A.M., Battista, J.R., Gomez-Silva, B., McKay, C.P. and da Costa, M.S.2007. Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol,57,1408-1412.
    17. BROOKS, B.W. and MURRAY, R.G.E. 1981. Nomenclature for "Micrococcus radiodurans" and Other Radiation-Resistant Cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., Including Five Species. Int J Syst Bacteriol,31,353-360.
    18. Albuquerque, L., Simoes, C., Nobre, M.F., Pino, N.M., Battista, J.R., Silva, M.T., Rainey, F.A. and da Costa, M.S.2005. Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiol Lett,247,161-169.
    19. Zhang, Y.-Q., Sun, C.-H., Li, W.-J., Yu, L.-Y., Zhou, J.-Q., Zhang, Y.-Q., Xu, L.-H. and Jiang, C.-L.2007. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol,57,370-375.
    20. Rainey, F.A., Ferreira, M., Nobre, M.F., Ray, K., Bagaley, D., Earl, A.M., Battista, J.R., Gomez-Silva, B., McKay, C.P. and da Costa, M.S.2007. Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol,57,1408-1412.
    21. Im, W.-T., Jung, H.-M., Ten, L.N., Kim, M.K., Bora, N., Goodfellow, M., Lim, S., Jung, J. and Lee, S.-T.2008. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol,58,2348-2353.
    22. Kampfer, P., Lodders, N., Huber, B., Falsen, E. and Busse, H.-J. 2008. Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol,58,2803-2806.
    23. Asker, D., Awad, T.S., Beppu, T. and Ueda, K.2009.Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol,59,144-149.
    24. Peng, F., Zhang, L., Luo, X., Dai, J., An, H., Tang, Y and Fang, C. 2009. Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol,59,709-713.
    25. Yuan, M., Zhang, W., Dai, S., Wu, J., Wang, Y., Tao, T., Chen, M. and Lin, M.2009. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol,59,1513-1517.
    26. Yang, Y., Itoh, T., Yokobori, S.-i., Itahashi, S., Shimada, H., Satoh, K., Ohba, H., Narumi, I. and Yamagishi, A.2009. Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol,59,1862-1866.
    27. Yang, Y., Itoh, T., Yokobori, S.-I., Shimada, H., Itahashi, S., Satoh, K., Ohba, H., Narumi, I. and Yamagishi, A.2009. Deinococcus aetherius sp. nov., isolated from the stratosphere. Int J Syst Evol Microbiol.
    28. Yoo, S.-H., Weon, H.-Y, Kim, S.-J., Kim, Y.-S., Kim, B.-Y. and Kwon, S.-W. 2009. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol.
    29. Wang, W., Mao, J., Zhang, Z., Tang, Q., Xie, Y., Zhu, J., Zhang, L., Liu, Z., Shi, Y. and Goodfellow, M.2009. Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol.
    30. Shashidhar, R. and Bandekar, J.R. 2009. Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol,59,2714-2717.
    31. Asker, D., Awad, T.S., Beppu, T. and Ueda, K. 2008. Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol,31,43-49.
    32. Ferreira AC, N.M., Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS.1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly .thermophilic species from hot springs. Int J Syst Bacteriol.,47,939-947.
    33. White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C. and Richardson, D.L. 1999. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science,286,1571-1577.
    34. Makarova, K.S., L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. and Koonin, a.M.J.D.2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev.,65,44-79.
    35. Battista, J.R., Earl, A.M. and Park, M.J.1999. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol,7,362-365.
    36. Battista, J.R.1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol,51,203-224.
    37. Minton, K.W.1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol.,13,9-15.
    38. Makarova, K.S., Aravind, L., Wolf, Y.I., Tatusov, R.L., Minton, K.W., Koonin, E.V. and Daly, M.J.2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev,65,44-79.
    39. Aravind L, W.D.R., Koonin E V.1999. Conserved domains in DNA repair proteins-and evolution of repair system. Nucleic Acids Research,27, 1223-1242.
    40. Wood R D, M.M., Sgouros J,. 2001. Human DNA repair genes. Science,291,1284-1289.
    41. Chung S Y, S.S.A.1996. A structural explanation for the twilight zone of protein sequence homology. Structure,4,1123-1127.
    42. Doetsch, P.W., Henner, W.D., Cunningham, R.P., Toney, J.H. and Helland, D.E.1987. A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Mol Cell Biol,7,26-32.
    43.马爱国,刘四朝,杜卫.2000.核酸内切酶在DNA断裂损伤检测中的应用研究.中国公共卫生,16,145-146.
    44. Rossman, T.G. and Goncharova, E.I. 1998. Spontaneous mutagenesis in mammalian cells is caused mainly by oxidative events and can be blocked by antioxidants and metallothionein. Mutat Res,402,103-110.
    45. Hutchinson, F.1985. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol,32,115-154.
    46. Minton, K.W.1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol,13,9-15.
    47. Moseley, B.E. and Evans, D.M.1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA:evidence for two excision pathways. J Gen Microbiol,129,2437-2445.
    48. Petit, C. and Sancar, A.1999. Nucleotide excision repair:from E. coli to man. Biochimie,81,15-25.
    49. Narumi, I., Cherdchu, K., Kitayama, S. and Watanabe, H.1997. The Deinococcus radiodurans uvr A gene:identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene,198,115-126.
    50. Agostini, H., Carroll, J. and Minton, K.1996. Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Journal of Bacteriology,178,6759.
    51. Earl, A.M., Rankin, S.K., Kim, K.P., Lamendola, O.N. and Battista, J.R. 2002. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol,184,1003-1009.
    52. Tanaka, M., Narumi, I., Funayama, T., Kikuchi, M., Watanabe, H., Matsunaga, T., Nikaido, O. and Yamamoto, K.2005. Characterization of Pathways Dependent on the uvsE, uvrA1, or uvrA2 Gene Product for UV Resistance in Deinococcus radiodurans. Journal of Bacteriology,187, 3693-3697.
    53. Mennecier, S., Coste, G., Servant, P., Bailone, A. and Sommer, S. 2004. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Molecular Genetics and Genomics,272,460-469.
    54. Mennecier, S., Servant, P., Coste, G., Bailone, A. and Sommer, S. 2006. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol Microbiol,59,317-325.
    55. Bregeon, D., Matic, I., Radman, M. and Taddei, F. 1999. Inefficient mismatch repair: genetic defects and down regulation. Journal of Genetics, 78, 21-28.
    56. Gutman, P., Fuchs, P., Ouyang, L. and Minton, K.1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J Bacteriol,175,3581-3590.
    57. Heinz, K. and Marx, A. 2007. Lesion bypass activity of DNA polymerase A from the extremely radioresistant organism Deinococcus radiodurans. Journal of Biological Chemistry,282,10908.
    58. Paques, F. and Haber, J.E.1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiology and molecular biology reviews:MMBR,63,349-404.
    59. Rocha, E.P.C., Cornet, E. and Michel, B.2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS genetics,1, e15.
    60. Wang, J. and Julin, D.A. 2004. DNA helicase activity of the RecD protein from Deinococcus radiodurans. The Journal of biological chemistry, 279,52024-52032.
    61. Zhou, Q., Zhang, X., Xu, H., Xu, B. and Hua, Y.2007. A new role of Deinococcus radiodurans RecD in antioxidant pathway. FEMS Microbiology Letters,271,118-125.
    62. Servinsky, M.D. and Julin, D.A.2007. Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans. Journal of Bacteriology,189,5101-5107.
    63. Khairnar, N.P., Kamble, V.A. and Misra, H.S.2008. RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans. DNA repair,7,40-47.
    64. Sanchez, H., Kidane, D., Castillo Cozar, M., Graumann, P.L. and Alonso, J.C.2006. Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. J Bacteriol,188, 353-360.
    65. Sanchez, H. and Alonso, J.C.2005. Bacillus subtilis RecN binds and protects 3'-single-stranded DNA extensions in the presence of ATP. Nucleic Acids Res,33,2343-2350.
    66. Funayama, T., Narumi, I., Kikuchi, M., Kitayama, S., Watanabe, H. and Yamamoto, K.1999. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res,435,151-161.
    67. Gutman, P.D., Carroll, J.D., Masters, C.I. and Minton, K.W.1994. Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene,141,31-37.
    68. Kim, J.I., Sharma, A.K., Abbott, S.N., Wood, E.A., Dwyer, D.W., Jambura, A., Minton, K.W., Inman, R.B., Daly, M.J. and Cox, M.M.2002. RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans:expression, purification, and characterization. J Bacteriol,184, 1649-1660.
    69. Kim, J.I. and Cox, M.M.2002. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci USA,99,7917-7921.
    70. Bonacossa de Almeida, C., Coste, G., Sommer, S. and Bailone, A. 2002. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics, 268,28-41.
    71. Jolivet, E., Lecointe, F., Coste, G., Satoh, K., Narumi, I., Bailone, A. and Sommer, S.2006. Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1. Mol Microbiol,59, 338-349.
    72. Harris, D.R., Tanaka, M., Saveliev, S.V., Jolivet, E., Earl, A.M., Cox, M.M. and Battista, J.R.2004. Preserving genome integrity:the DdrA protein of Deinococcus radiodurans R1. PLoS Biol,2, e304.
    73. Eggington, J.M., Haruta, N., Wood, E.A. and Cox, M.M.2004. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol,4.
    74. Witte, G., Urbanke, C. and Curth, U.2005. Single-stranded DNA-binding protein of Deinococcus radiodurans:a biophysical characterization. Nucleic Acids Research,33,1662.
    75. Filipkowski, P., Duraj-Thatte, A. and Kur, J.2006. Novel thermostable single-stranded DNA-binding protein (SSB) from Deinococcus geothermalis. Archives of microbiology,186,129-137.
    76. Filipkowski, P., Koziatek, M. and Kur, J.2006. A highly thermostable, homodimeric single-stranded DNA-binding protein from Deinococcus radiopugnans. Extremophiles,10,607-614.
    77. Filipkowski, P. and Kur, J.2007. Identification and properties of the Deinococcus grandis and Deinococcus proteolyticus single-stranded DNA binding proteins (SSB). ACTA BIOCHIMICA POLONICA-ENGLISH EDITION-,54,79.
    78. Filipkowski, P., Duraj-Thatte, A. and Kur, J.2007. Identification, cloning, expression, and characterization of a highly thermostable single-stranded-DNA-binding protein (SSB) from Deinococcus murrayi. Protein Expression and Purification,53,201-208.
    79. Eggington, J.M., Kozlov, A.G., Cox, M.M. and Lohman, T.M.2006. Polar destabilization of DNA duplexes with single-stranded overhangs by the Deinococcus radiodurans SSB protein. Biochemistry (Washington),45, 14490-14502.
    80. Mijakovic, I., Petranovic, D., Macek, B., Cepo, T., Mann, M., Davies, J., Jensen, P.R. and Vujaklija, D.2006. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res,34, 1588-1596.
    81. Cromie, G.A. and Leach, D.R. 2001. Recombinational repair of chromosomal DNA double-strand breaks generated by a restriction endonuclease. Mol Microbiol,41,873-883.
    82. Mascarenhas, J., Sanchez, H., Tadesse, S., Kidane, D., Krisnamurthy, M., Alonso, J.C. and Graumann, P.L .2006. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair. BMC Mol Biol, 7,20.
    83. Bentchikou, E., Servant, P., Coste, G. and Sommer, S.2007. Additive effects of SbcCD and PolX deficiencies in the in vivo repair of DNA double-strand breaks in Deinococcus radiodurans. J Bacteriol,189, 4784-4790.
    84. Hu, Y, Ma, C., Tian, B., Lin, J. and Hua, Y.2007. Functional analysis of the sbcD (drl921) gene of the extremely radioresistant bacterium Deinococcus radiodurans. Chinese Science Bulletin,52,2506-2513.
    85. Hu, Y, Tian, B., Xu, G, Yin, L., Hua, X., Lin, J. and Hua, Y 2009. Characteristics of Nuclease Activity of the SbcCD Complex from Deinococcus radiodurans. Journal of Biochemistry.
    86. Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. and Rehrauer, W.M.1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev,58,401-465.
    87. Misra, H.S., Khairnar, N.P., Kota, S., Shrivastava, S., Joshi, V.P. and Apte, S.K.2006. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol,59,1308-1316.
    88. Connelly, J.C., de Leau, E.S. and Leach, D.R.1999. DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucleic Acids Res,27,1039-1046.
    89. Kitayama, S., Narumi, I., Kikuchi, M. and Watanabe, H.2000. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutat Res,461, 179-187.
    90. Lee, B.I., Kim, K.H., Park, S.J., Eom, S.H., Song, H.K. and Suh, S.W.2004. Ring-shaped architecture of RecR:implications for its role in homologous recombinational DNA repair. Embo J,23,2029-2038.
    91. Kantake, N., Madiraju, M.V., Sugiyama, T. and Kowalczykowski, S.C.2002. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein:A common step in genetic recombination. Proc Natl Acad Sci U S A,99,15327-15332.
    92. Xu, G., Wang, L., Chen, H., Lu, H., Ying, N., Tian, B. and Hua, Y. 2008. RecO Is Essential for DNA Damage Repair in Deinococcus radiodurans? Journal of Bacteriology,190,2624-2628.
    93. Leiros, I., Timmins, J., Hall, D.R. and McSweeney, S.2005. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. Embo J,24,906-918.
    94. Timmins, J., Leiros, I. and McSweeney, S.2007. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. Embo J,26,3260-3271.
    95. Koroleva, O., Makharashvili, N., Courcelle, C.T., Courcelle, J. and Korolev, S.2007. Structural conservation of RecF and Rad50:implications for DNA recognition and RecF function. Embo J,26,867-877.
    96. Lovett, S.T. and Clark, A.J.1984. Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol,157,190-196.
    97. Cao, Z., Mueller, C.W. and Julin, D.A.2009. Analysis of the recJ gene and protein from Deinococcus radiodurans. DNA Repair (Amst).
    98. Huang, L., Hua, X., Lu, H., Gao, G, Tian, B., Shen, B. and Hua, Y. 2007. Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. DNA Repair (Amst),6,167-176.
    99. Huang, L.F., Hua, X.T., Lu, H.M., Gao, G.J., Tian, B., Shen, B.H. and Hua, Y.J.2006. Functional analysis of helicase and three tandem HRDC domains of RecQ in Deinococcus radiodurans. J Zhejiang Univ Sci B,7, 373-376.
    100. Huang, L.F., Zhang, S.W., Hua, X.T., Gao, G.J. and Hua, Y.J.2006. [Construction of the recQ double mutants and analysis of adversity in Deinococcus radiodurans]. Wei Sheng Wu Xue Bao,46,205-209.
    101. Hua, Y.J., Huang, L.F., Hua, X.T., Lu, H.M., Gao, G.J. and Tian, B. 2006. Functional analysis of helicase and three tandem HRDC domains of RecQ in Deinococcus radiodurans. Environmental And Molecular Mutagenesis,47,421-421.
    102. Killoran, M.P. and Keck, J.L.2006. Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemical activity. JBiol Chem,281,12849-12857.
    103. Kitayama, S., Kohoroku, M., Takagi, A. and Itoh, H.1997. Mutation of D. radiodurans in a gene homologous to ruvB of E. coli. Mutat Res,385, 151-157.
    104. Wu, Y., Chen, W., Zhao, Y., Xu, H. and Hua, Y 2009. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can J Microbiol,55,841-848.
    105. Bronner, C.E., Baker, S.M., Morrison, P.T., Warren, G., Smith, L.G., Lescoe, M.K., Kane, M., Earabino, C., Lipford, J., Lindblom, A. et al.1994. Mutation in-the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature,368,258-261.
    106. Fishel, R., Lescoe, M.K., Rao, M.R., Copeland, N.G., Jenkins, N.A., Garber, J., Kane, M. and Kolodner, R.1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell,75,1027-1038.
    107. Leach, F.S., Nicolaides, N.C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., Peltomaki, P., Sistonen, P., Aaltonen, L.A., Nystrom-Lahti, M. et al.1993. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell,75,1215-1225.
    108. Langley, C.H. and Ito, K.1976. Spontaneous mutability in Drosophila melanogaster, in natural and laboratory environments. Mutat Res, 36,385-386.
    109. Miyake, T.1960. Mutator Factor in Salmonella Typhimurium. Genetics, 45,11-14.
    110. Treffers, H.P., Spinelli, V. and Belser, N.O. 1954. A Factor (or Mutator Gene) Influencing Mutation Rates in Escherichia coli. Proc Natl Acad Sci USA,40,1064-1071.
    111. Degnen, G.E. and Cox, E.C.1974. Conditional mutator gene in Escherichia coli:isolation, mapping, and effector studies. J Bacteriol,117, 477-487.
    112. Liberfarb, R.M. and Bryson, V.1970. Isolation, characterization, and genetic analysis of mutator genes in Escherichia coli B and K-12. J Bacteriol,104,363-375.
    113. Konrad, E.B.1978. Isolation of an Escherichia coli K-12 dnaE mutation as a mutator. J Bacteriol,133,1197-1202.
    114. Miller, J. (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Pr.
    115. Nghiem, Y., Cabrera, M., Cupples, C.G. and Miller, J.H.1988. The mutY gene:a mutator locus in Escherichia coli that generates G:C->T:A transversions. Proc Natl Acad Sci U S A,85,2709-2713.
    116. Cupples, C.G. and Miller, J.H. 1989. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A,86,5345-5349.
    117. Michaels, M.L., Cruz, C. and Miller, J.H.1990. mutA and mutC: two mutator loci in Escherichia coli that stimulate transversions: Proc Natl Acad Sci U S A,87,9211-9215.
    118. Helling, R.B.1968. Selection of a mutant of Escherichia coli which has high mutation rates. J Bacteriol,96,975-980.
    119. Hoess, R.H. and Herman, R.K.1975. Isolation and characterization of mutator strains of Escherichia coli K-12. J Bacteriol,122,474-484.
    120. Gross, M.D. and Siegel, E.C.1981. Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat Res,91,107-110.
    121. Jyssum, K.1960. Observations on two types of genetic instability in Escherichia coli. Acta-pathologica et microbiologica Scandinavica,48,113.
    122. Mardis, E.R.2008. Next-generation DNA sequencing methods. Annu-Rev Genomics Hum Genet,9,387-402.
    123. Shendure, J. and Ji, H.2008. Next-generation DNA sequencing. Nat Biotechnol,26, 1135-1145.
    124. Ansorge, W.J.2009. Next-generation DNA sequencing techniques. N Biotechnol,25,195-203.
    125. Ovchinnikov, Y., Monastyrskaya, G., Guriev, S., Kalinina, N., Sverdlov, E., Gragerov, A., Bass, I., Kiver, I., Moiseyeva, E. and Igumnov, V. 1983. RNA polymerase rifampicin resistance mutations in Escherichia coli: sequence changes and dominance. Molecular and General Genetics MGG, 190,344-348.
    126. Jin, D. and Gross, C.1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. Journal of Molecular Biology,202,45.
    127. Severinov, K., Soushko, M., Goldfarb, A. and Nikiforov, V.1993. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. Journal of Biological Chemistry,268,14820.
    128. Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., Diep, A., Hu, K., Iverson, A., Yang, H. et al.2003. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst),2,593-608.
    129. Campbell, E., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A. and Darst, S.2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell,104,901-912.
    130. Musser, J.1995. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clinical microbiology reviews,8,496.
    131. Heep, M., Odenbreit, S., Beck, D., Decker, J., Prohaska, E., Rieger, U. and Lehn, N.2000. Mutations at four distinct regions of the rpoB gene can reduce the susceptibility of Helicobacter pylori to rifamycins. Antimicrobial Agents and Chemotherapy,44,1713.
    132. Aubry-Damon, H., Soussy, C. and Courvalin, P.1998. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy,42,2590.
    133.Mariam, D., Mengistu, Y., Hoffner, S. and Andersson, D.2004. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy,48, 1289.
    134. Myllykallio, H., Leduc, D., Filee, J. and Liebl, U.2003. Life without dihydrofolate reductase FolA. Trends in Microbiology,11,220-223.
    135. Sekowska, A. and Danchin, A.1999. Identification of yrrU as the methylthioadenosine nucleosidase gene in Bacillus subtilis. DNA research: an international journal for rapid publication of reports on genes and genomes,6,255-264.
    1. Mattimore, V. and Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. JBacteriol,178,633-637.
    2. White,O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C. and Richardson, D.L. 1999. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science,286,1571-1577.
    3. Minton, K.W.1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol,13,9-15.
    4. Liu, Y., Zhou, J., Omelchenko, M.V., Beliaev, A.S., Venkateswaran, A., Stair, J., Wu, L., Thompson, D.K., Xu, D., Rogozin, I.B. et al.2003. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A,100,4191-4196.
    5. Edwards, J.S. and Battista, J.R.2003. Using DNA microarray data to understand the ionizing radiation resistance of Deinococcus radiodurans. Trends Biotechnol,21,381-382.
    6. Bjergbaek, L., Cobb, J.A. and Gasser, S.M.2002. RecQ helicases and genome stability:lessons from model organisms and human disease. Swiss Med Wkly,132,433-442.
    7. Khakhar, R.R., Cobb, J.A., Bjergbaek, L., Hickson, I.D. and Gasser, S.M. 2003. RecQ helicases:multiple roles in genome maintenance. Trends Cell Biol,13,493-501.
    8. Nakayama, K., Irino, N. and Nakayama, H.1985. The recQ gene of Escherichia coli K12:molecular cloning and isolation of insertion mutants. Mol Gen Genet,200,266-271.
    9. Lebel, M. and Leder, P.1998. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA,95,13097-13102.
    10. Pichierri, P., Franchitto, A., Mosesso, P., Proietti de Santis, L., Balajee, A.S. and Palitti, F.2000. Werner's syndrome lymphoblastoid cells-are hypersensitive to topoisomerase Ⅱ inhibitors in the G2 phase of the cell cycle. Mutat Res,459,123-133.
    11. German, J.1995. Bloom's syndrome. Dermatol Clin,13,7-18.
    12. Shen, J.C. and Loeb, L.A.2000. The Werner syndrome gene:the molecular basis of RecQ helicase-deficiency diseases. Trends Genet,16, 213-220.
    13. Vennos, E.M. and James, W.D.1995. Rothmund-Thomson syndrome. Dermatol Clin,13,143-150.
    14. Crabbe, L., Verdun, R.E., Haggblom, C.I. and Karlseder, J.2004. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science,306,1951-1953.
    15. Karow, J.K., Constantinou, A., Li, J.L., West, S.C. and Hickson, I.D. 2000. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA,91,6504-6508.
    16. Wu, X. and Maizels, N.2001. Substrate-specific inhibition of RecQ helicase. Nucleic Acids Res,29,1765-1771.
    17. Huber, M.D., Lee, D.C. and Maizels, N.2002. G4 DNA unwinding by BLM and Sgslp:substrate specificity and substrate-specific inhibition. Nucleic Acids Res,30,3954-3961.
    18. Harmon, F.G., Brockman, J.P. and Kowalczykowski, S.C.2003. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase Ⅲ. J Biol Chem,278,42668-42678.
    19. Cobb, J.A., Bjergbaek, L. and Gasser, S.M.2002. RecQ helicases:at the heart of genetic stability. FEES Lett,529,43-48.
    20. Hishida, T., Han, Y.W., Shibata, T., Kubota, Y., Ishino, Y., Iwasaki, H. and Shinagawa, H.2004. Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks. Genes Dev,18,1886-1897.
    21. Morozov, V., Mushegian, A.R., Koonin, E.V. and Bork, P.1997. A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases. Trends Biochem Sci,22,417-418.
    22. Jain, R.I., Fais, F., Kaplan, S., Sellars, B., Brooks, R., Chartash, E., Furie, R., Hashimoto, S. and Chiorazzi, N.1995. IgH and L chain variable region gene sequence analyses of twelve synovial tissue-derived B cell lines producing IgA, IgG, and IgM rheumatoid factors structure/function comparisons of antigenic specificity, V gene sequence, and Ig isotype. Autoimmunity,22,229-243.
    23. Bernstein, D.A. and Keck, J.L.2003. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res,31,2778-2785.
    24. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. 1989. Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension. Gene,77,61-68.
    25. Guanjun, G., Huiming, L., Lifen, H. and Yuejin, H.2005. Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans. Chinese Science Bulletin,50,311-316.
    26. Kitayama, S., Asaka, S. and Totsuka, K.1983. DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol, 155,1200-1207.
    27. LeBowitz, J. (1985), Johns Hopkins University.
    28. Eggington, J.M., Haruta, N., Wood, E.A. and Cox, M.M.2004. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol,4.
    29. Eggleston, A.K., Rahim, N.A. and Kowalczykowski, S.C.1996. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res,24,1179-1186.
    30. Harmon, F.G. and Kowalczykowski, S.C.2001. Biochemical characterization of the DNA helicase activity of the escherichia coli RecQ helicase. J Biol Chem,276,232-243.
    31. Huang, L.F., Hua, X.T., Lu, H.M., Gao, G.J., Tian, B., Shen, B.H. and Hua, Y.J.2006. Functional analysis of helicase and three tandem HRDC domains of RecQ in Deinococcus radiodurans. J Zhejiang Univ Sci B,7, 373-376.
    32. Davey, S., Han, C.S., Ramer, S.A., Klassen, J.C., Jacobson, A., Eisenberger, A., Hopkins, K.M., Lieberman, H.B. and Freyer, G.A.1998. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol Cell Biol,18, 2721-2728.
    33. Bachrati, C.Z. and Hickson, I.D.2003. RecQ helicases:suppressors of tumorigenesis and premature aging. Biochem J,374,577-606.
    34. Ui, A., Satoh, Y., Onoda, F., Miyajima, A., Seki, M. and Enomoto, T. 2001. The N-terminal region of Sgsl, which interacts with Top3, is required for complementation of MMS sensitivity and suppression of hyper-recombination in sgsl disruptants. Mol Genet Genomics,265,837-850.
    35. Nakayama, M., Kawasaki, K., Matsumoto, K. and Shibata, T.2004. The possible roles of the DNA helicase and C-terminal domains in RECQ5/QE:complementation study in yeast. DNA Repair (Amst),3,369-378.
    36. Zhang, H.Y., Li, X.J., Gao, N. and Chen, L.L.2009. Antioxidants used by Deinococcus radiodurans and implications for antioxidant drug discovery. Nat Rev Microbiol,7,476; author reply 476.
    37. Umezu, K. and Nakayama, H.1993. RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol, 230,1145-1150.
    38. Killoran, M.P. and Keck, J.L.2006. Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemical activity. J Biol Chem,281,12849-12857.
    39 Wu, L., Chan, K.L., Ralf, C., Bernstein, D.A., Garcia, P.L., Bohr, V.A., Vindigni, A., Janscak, P., Keck, J.L. and Hickson, ID.2005. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. Embo J,24,2679-2687.
    40. Funayama, T., Narumi, I., Kikuchi, M., Kitayama, S., Watanabe, H. and Yamamoto, K.1999. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res,435,151-161.
    41. Wang, J. and Julin, D.A.2004. DNA helicase activity of the RecD protein from Deinococcus radiodurans. J Biol Chem,279,52024-52032.
    42. Kusano, K., Sunohara, Y., Takahashi, N., Yoshikura, H. and Kobayashi, I.1994. DNA double-strand break repair: genetic determinants of flanking crossing-over. Proc Natl Acad Sci U S A,91,1173-1177.
    43. Mendonca, V.M., Klepin, H.D. and Matson, S.W.1995. DNA helicases in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair. J Bacteriol,177, 1326-1335.
    44. Lanzov, V., Stepanova, I. and Vinogradskaja, G.1991. Genetic control of recombination exchange frequency in Escherichia coli K-12. Biochimie,73,305-312.
    45. Cooper, M.P., Machwe, A., Orren, D.K., Brosh, R.M., Ramsden, D. and Bohr, V.A.2000. Ku complex interacts with and stimulates the Werner protein. Genes Dev,14,907-912.
    46. Chen, L., Huang, S., Lee, L., Davalos, A., Schiestl, R.H., Campisi, J. and Oshima, J.2003. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell,2,191-199.
    47. Narumi, I., Satoh, K., Cui, S., Funayama, T., Kitayama, S. and Watanabe, H.2004. PprA:a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol,54,278-285.
    48. Hua, Y., Narumi, I., Gao, G., Tian, B., Satoh, K., Kitayama, S. and Shen, B.2003. PprI:a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun,306,354-360.
    1. Mattimore, V. and Battista, J.R.1996. Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. JBacteriol,178,633-637.
    2. Eggington, J.M., Kozlov, A.G., Cox, M.M. and Lohman, T.M.2006. Polar destabilization of DNA duplexes with single-stranded overhangs by the Deinococcus radiodurans SSB protein. Biochemistry (Washington),45, 14490-14502.
    3. Weiner, A., Zauberman, N. and Minsky, A.2009. Recombinational DNA repair in a cellular context:a search for the homology search. Nat Rev Microbiol,1,748-755.
    4. Blasius, M., Sommer, S. and Hubscher, U.2008. Deinococcus radiodurans:what belongs to the survival kit? Crit Rev Biochem Mol Biol,43, 221-238.
    5. Lohman, T.M. and Ferrari, M.E.1994. Escherichia coli single-stranded DNA-binding protein:multiple DNA-binding modes and cooperativities. Annual review of biochemistry,63,527-570.
    6. Murzin, A.G. 1993. OB (oligonucleotide/oligosaccharide binding)-fold:common structural and functional solution for non-homologous sequences. The EMBO journal,12,861.
    7. Filipkowski, P. and Kur, J.2007. Identification and properties of the Deinococcus grandis and Deinococcus proteolyticus single-stranded DNA binding proteins (SSB). ACTA BIOCHIMICA POLONICA-ENGLISH EDITION-,54,79.
    8. Witte, G., Urbanke, C. and Curth, U.2005. Single-stranded DNA-binding protein of Deinococcus radiodurans:a biophysical characterization. Nucleic Acids Research,33,1662.
    9. Eggington, J.M., Haruta, N., Wood, E.A. and Cox, M.M.2004. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol,4.
    10. Filipkowski, P., Duraj-Thatte, A. and Kur, J.2006. Novel thermostable single-stranded DNA-binding protein (SSB) from Deinococcus geothermalis. Archives of microbiology,186,129-137.
    11. Filipkowski, P., Koziatek, M. and Kur, J.2006. A highly thermostable, homodimeric single-stranded DNA-binding protein from Deinococcus radiopugnans. Extremophiles,10,607-614.
    12. Filipkowski, P., Duraj-Thatte, A. and Kur, J.2007. Identification, cloning, expression, and characterization of a highly thermostable single-stranded-DNA-binding protein (SSB) from Deinococcus murrayi. Protein Expression and Purification,53,201-208.
    13. Bernstein, D.A., Eggington, J.M., Killoran, M.P., Misic, A.M., Cox, M.M. and Keck, J.L.2004. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proceedings of the National Academy of Sciences,101, 8575-8580.
    14. Huang, L., Hua, X., Lu, H., Gao, G., Tian, B., Shen, B. and Hua, Y. 2007. Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. DNA Repair (Amst),6,167-176.
    15. Bradford, M.M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,72,248-254.
    16. Jing, D., Beechem, J.M. and Patton, W.F.2004. The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes.Electrophoresis,25,2439-2446.
    17. Robbins, J.B., McKinney, M.C., Guzman, C.E., Sriratana, B., Fitz-Gibbon, S., Ha, T. and Cann, I.K.O.2005. The Euryarchaeota, Nature's Medium for Engineering of Single-stranded DNA-binding Proteins. J. Biol. Chem.,280,15325-15339.
    18. Roy, R., Kozlov, A.G., Lohman, T.M. and Ha, T.2007. Dynamic structural rearrangements between DNA binding modes of E. Coli SSB protein. Journal of molecular biology,369,1244.
    19. He, X. and Zhang, J.2005. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics,169,1157-1164.
    20. Tocchini-Valentini, G.D., Fruscoloni, P. and Tocchini-Valentini, G.P. 2005. Structure, function, and evolution of the tRNA endonucleases of Archaea:An example of subfunctionalization. Proceedings of the National Academy of Sciences of the United States of America,102,8933-8938.
    21. Roy, R., Kozlov, A.G., Lohman, T.M. and Ha, T.2007. Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol,369,1244-1257.
    22. Witte, G., Fedorov, R. and Curth, U.2008. Biophysical Analysis of Thermus aquaticus Single-Stranded DNA Binding Protein.94,2269.
    23. Curth, U., Genschel, J., Urbanke, C. and Greipel, J.1996. In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic acids research,24,2706.
    24. Suski, C. and Marians, K.J.2008. Resolution of converging replication forks by RecQ and topoisomerase Ⅲ. Molecular Cell,30, 779-789.
    25. Witte, G., Urbanke, C. and Curth, U.2003. DNA polymerase Ⅲ {chi} subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic acids research,31,4434.
    26. Shereda, R.D., Bernstein, D.A. and Keck, J.L.2007. A central role for SSB in Escherichia coli RecQ DNA helicase function. Journal of Biological Chemistry,282,19247.
    27. Umezu, K., Chi, N. and Kolodner, R.D.1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proceedings of the National Academy of Sciences,90,3875-3879.
    28. Buss, J.A., Kimura, Y. and Bianco, P.R. 2008. RecG interacts directly with SSB:implications for stalled replication fork regression. Nucleic Acids Research.
    29. Cadman, C.J., Lopper, M., Moon, P.B., Keck, J.L. and McGlynn, P. 2005. PriB stimulates PriA helicase via an interaction with single-stranded DNA. Journal of Biological Chemistry,280,39693.
    30. Handa, P., Acharya, N. and Varshney, U.2001. Escherichia coli and Mycobacterium tuberculosis Reveal That Their C-terminal Domains Interact with Uracil DNA Glycosylases. Journal of Biological Chemistry,276, 16992-16997.
    31. Genschel, J., Curth, U. and Urbanke, C.2000. Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem, 381,183-192.
    1. Mattimore, V. and Battista, J.R.1996. Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol,178,633-637.
    2. White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C. and Richardson, D.L 1999. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science,286,1571-1577.
    3. Earl, A.M., Rankin, S.K., Kim, K.P., Lamendola, O.N. and Battista, J.R. 2002. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol,184,1003-1009.
    4. Tanaka, M., Narumi, I., Funayama, T., Kikuchi, M., Watanabe, H., Matsunaga, T., Nikaido, O. and Yamamoto, K.2005. Characterization of Pathways Dependent on the uvsE, uvrA1, or uvrA2 Gene Product for UV Resistance in Deinococcus radiodurans. Journal of Bacteriology,187, 3693-3697.
    5. Eisen, J.A. and Hanawalt, P.C.1999. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res,435,171-213.
    6. Lovett, S.T. and Clark, A.J.1983. Genetic Analysis of Regulation of the RecF Pathway of Recombination in Escherichia coli K-12. J. Bacteriol, 153,1471-1478.
    7. Waleh, N.S. and Stocker, B.A.1979. Effect of host lex, recA, recF, and uvrD genotypes on the ultraviolet light-protecting and related properties of plasmid R46 in Escherichia coli. J. Bacteriol.,137,830-838.
    8. Wang, T.C. and Smith, K.C.1983. Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB. J. Bacteriol.,156,1093-1098.
    9. Wang, T.C. and Smith, K.C.1986. recA (Srf) suppression of recF deficiency in the postreplication repair of UV-irradiated Escherichia coli K-12. J. Bacteriol,168,940-946.
    10. Morimatsu, K. and Kowalczykowski, S.C.2003. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange:a universal step of recombinational repair. Mol Cell,11,1337-1347.
    11. Bjergbaek, L., Cobb, J.A. and Gasser, S.M.2002. RecQ helicases and genome stability:lessons from model organisms and human disease. Swiss Med Wkly,132,433-442.
    12. Killoran, M.P. and Keck, J.L.2006. Sit down, relax and unwind: structural insights into RecQ helicase mechanisms. Nucleic Acids Res,34, 4098-4105.
    13. Huang, L., Hua, X., Lu, H., Gao, G., Tian, B., Shen, B. and Hua, Y. 2007. Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. DNA Repair (Amst),6,167-176.
    14. Hanada, K., Iwasaki, M., Ihashi, S. and Ikeda, H.2000. UvrA and UvrB suppress illegitimate recombination: synergistic action with RecQ helicase. Proc Natl Acad Sci U S A,97,5989-5994.
    15. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. 1989. Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension. Gene,77,61-68.
    16. Drake, J.W 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A,88,7160-7164.
    17. Kim, M., Wolff, E., Huang, T., Garibyan, L., Earl, A.M., Battista, J.R. and Miller, J.H.2004. Developing a genetic system in Deinococcus radiodurans for analyzing mutations. Genetics,166,661-668.
    18. Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., Diep, A., Hu, K., Iverson, A., Yang, H. et al.2003. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst),2,593-608.
    19. Wolff, E., Kim, M., Hu, K., Yang, H. and Miller, J.H.2004. Polymerases leave fingerprints:analysis of the mutational spectrum in Escherichia coli rpoB to assess the role of polymerase IV in spontaneous mutation. J Bacteriol,186,2900-2905.
    20. Miller, J.H., Funchain, P., Clendenin, W., Huang, T., Nguyen, A., Wolff, E., Yeung, A., Chiang, J.H., Garibyan, L., Slupska, M.M. et al.2002. Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. Genetics,162,5-13.
    21. Davidsen, T., Bjoras, M., Seeberg, E.C. and Tonjum, T.2005. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol,187,2801-2809.
    22. Meier, P. and Wackernagel, W.2005. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol,187,143-154.
    23. Morlock, G.P., Plikaytis, B.B. and Crawford, J.T.2000. Characterization of spontaneous, In vitro-selected, rifampin-resistant mutants of Mycobacterium tuberculosis strain H37Rv. Antimicrob Agents Chemother, 44,3298-3301.
    24. Anthony, R.M., Schuitema, A.R., Bergval, I.L., Brown, T.J., Oskam, L. and Klatser, P.R. 2005. Acquisition of rifabutin resistance by a rifampicin resistant mutant of Mycobacterium tuberculosis involves an unusual spectrum of mutations and elevated frequency. Ann Clin Microbiol Antimicrob,4,9.
    25. Wang, G., Wilson, T.J., Jiang, Q. and Taylor, D.E.2001. Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob Agents Chemother,45,727-733.
    26. Nicholson, W.L. and Maughan, H.2002. The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 1.68 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J Bacteriol,184,4936-4940.
    27. Maughan, H., Galeano, B. and Nicholson, W.L.2004. Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis:global effects on growth, competence, sporulation, and germination. J Bacteriol,186, 2481-2486.
    28. Rosche, W.A. and Foster, P.L.2000. Determining mutation rates in bacterial populations. Methods,20,4-17.
    29. Miller, J.H. 1998. Mutators in Escherichia coli. Mutat Res,409, 99-106.
    30. Zeibell, K., Aguila, S., Yan Shi, V, Chan, A., Yang, H. and Miller, J.H.2007. Mutagenesis and repair in Bacillus anthracis: the effect of mutators. J Bacteriol,189,2331-2338.
    31. Zhang, J.2000. Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol,50,56-68.
    32. Keller, I., Bensasson, D. and Nichols, R.A.2007. Transition-Transversion Bias Is Not Universal:A Counter Example from Grasshopper Pseudogenes. PLoS Genet,3, e22.
    1. Mattimore, V. and Battista, J.R.1996. Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. JBacteriol,178,633-637.
    2. White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.X., Nelson, W.C. and Richardson, D.L. 1999. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science,286,1571-1577.
    3. Tanaka, M., Earl, A.M., Howell, H.A., Park, M.J., Eisen, J.A., Peterson, S.N. and Battista, J.R. 2004. Analysis of Deinococcus radiodurans's Transcriptional Response to Ionizing Radiation and Desiccation Reveals Novel Proteins That Contribute to Extreme Radioresistance. Genetics,168, 21-33.
    4. Kim, M., Wolff, E., Huang, T., Garibyan, L., Earl, A.M., Battista, J.R. and Miller, J.H.2004. Developing a genetic system in Deinococcus radiodurans for analyzing mutations. Genetics,166,661-668.
    5. Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., Diep, A., Hu, K., Iverson, A., Yang, H. et al.2003. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst),2,593-608.
    6. Mennecier, S., Coste, G., Servant, P., Bailone, A. and Sommer, S. 2004. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Molecular Genetics and Genomics,272,460-469.
    7. Liu, X., Wu, J., Zhang, W., Ping, S., Lu, W., Chen, M. and Lin, M. 2008. Resistance of Deinococcus radiodurans to Mutagenesis Is Facilitated by Pentose Phosphate Pathway in the mutS1 Mutant Background. Current Microbiology,57,66-71.
    8. Tanaka, M., Narumi, I., Funayama, T., Kikuchi, M., Watanabe, H., Matsunaga, T., Nikaido, O. and Yamamoto, K.2005. Characterization of Pathways Dependent on the uvsE, uvrA1, or uvrA2 Gene Product for UV Resistance in Deinococcus radiodurans. Journal of Bacteriology,187, 3693-3697.
    9. Hua, X., Huang, L., Tian, B. and Hua, Y.2008. Involvement of recQ in the ultraviolet damage repair pathway in Deinococcus radiodurans. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 641,48-53.
    10. Mennecier, S., Servant, P., Coste, G., Bailone, A. and Sommer, S. 2006. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol Microbiol,59,317-325.
    11. Drake, J.W.1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A,88,7160-7164.
    12. Hawiger, J. and Jeljaszewicz, J.1967. Antibiotic Sensitivity of Micrococcus radiodurans. Applied and Environmental Microbiology,15, 304-306.
    13. Kolodkin-Gal, I., Sat, B., Keshet, A. and Kulka, H.E.2008. The Communication Factor EDF and the Toxin-Antitoxin Module mazEF Determine the Mode of Action of Antibiotics. PLoS Biol,6, e319.
    14. Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G. and Engelberg-Kulka, H.2001. Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. Journal of Bacteriology,183, 2041-2045.
    15. Wolff, E., Kim, M., Hu, K., Yang, H. and Miller, J.H.2004. Polymerases leave fingerprints:analysis of the mutational spectrum in Escherichia coli rpoB to assess the role of polymerase Ⅳ in spontaneous mutation. J Bacteriol,186,2900-2905.
    16. Miller, J.H., Funchain, P., Clendenin, W., Huang, T., Nguyen, A., Wolff, E., Yeung, A., Chiang, J.H., Garibyan, L., Slupska, M.M. et al.2002. Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. Genetics,162,5-13.
    17. Davidsen, T., Bjoras, M., Seeberg, E.C. and Tonjum, T.2005. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol,187,2801-2809.
    18. Meier, P. and Wackernagel, W.2005. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol,187,143-154.
    19. Morlock, G.P., Plikaytis, B.B. and Crawford, J.T.2000. Characterization of spontaneous, In vitro-selected, rifampin-resistant mutants of Mycobacterium tuberculosis strain H37Rv. Antimicrob Agents Chemother, 44,3298-3301.
    20. Anthony, R.M., Schuitema, A.R., Bergval, I.L., Brown, T.J., Oskam, L. and Klatser, P.R.2005. Acquisition of rifabutin resistance by a rifampicin resistant mutant of Mycobacterium tuberculosis involves an unusual spectrum of mutations and elevated frequency. Ann Clin Microbiol Antimicrob,4,9.
    21. Wang, G., Wilson, T.J., Jiang, Q. and Taylor, D.E.2001. Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob Agents Chemother,45,727-733.
    22. Nicholson, W.L. and Maughan, H.2002. The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 168 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J Bacteriol,184,4936-4940.
    23. Maughan, H., Galeano, B. and Nicholson, W.L.2004. Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis:global effects on growth, competence, sporulation, and germination. J Bacteriol,186, 2481-2486.
    24. O'Sullivan, D.M., McHugh, T.D. and Gillespie, S.H.2008. The effect of oxidative stress on the mutation rate of Mycobacterium tuberculosis with impaired catalase/peroxidase function. J. Antimicrob. Chemother.,62, 709-712.
    25. O'Neill, A., Oliva, B., Storey, C., Hoyle, A., Fishwick, C. and Chopra, Ⅰ. (2000), Antimicrobial Agents and Chemotherapy. Am Soc Microbiol, Vol.44, pp.3163-3166.
    26. Martinez, J.L. and Baquero, F. (2000), Antimicrobial Agents and Chemotherapy. Am Soc Microbiol, Vol.44, pp.1771-1777.
    27. Kow, Y.W. and Dare, A.2000. Detection of abasic sites and oxidative DNA base damage using an ELISA-like assay. Methods,22, 164-169.
    28. Zastawny, T.H., Kruszewski, M. and Olinski, R.1998. Ionizing radiation and hydrogen peroxide induced oxidative DNA base damage in two L5178Y cell lines. Free Radical Biology and Medicine,24,1250-1255.
    29. Das, A., Boldogh, I., Lee, J.W., Harrigan, J.A., Hegde, M.L., Piotrowski, J., de Souza Pinto, N., Ramos, W., Greenberg, M.M. and Hazra, T.K.2007. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. Journal of Biological Chemistry,282,26591.
    1. Kim, M., Wolff, E., Huang, T., Garibyan, L., Earl, A.M., Battista, J.R. and Miller, J.H.2004. Developing a genetic system in Deinococcus radiodurans for analyzing mutations. Genetics,166,661-668.
    2. Zeibell, K., Aguila, S., Yan Shi, V, Chan, A., Yang, H. and Miller, J.H.2007. Mutagenesis and repair in Bacillus anthracis: the effect of mutators. J Bacteriol,189,2331-2338.
    3. Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., Diep, A., Hu, K., Iverson, A., Yang, H. et al.2003. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst),2,593-608.
    4. Mennecier, S., Coste, G., Servant, P., Bailone, A. and Sommer, S. 2004. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Molecular Genetics and Genomics,272,460-469.
    5. Liu, X., Wu, J., Zhang, W., Ping, S., Lu, W., Chen, M. and Lin, M. 2008. Resistance of Deinococcus radiodurans to Mutagenesis Is Facilitated by Pentose Phosphate Pathway in the mutS 1 Mutant Background. Current Microbiology,57,66-71.
    6. Tanaka, M., Narumi, I., Funayama, T., Kikuchi, M., Watanabe, H., Matsunaga, T., Nikaido, O. and Yamamoto, K.2005. Characterization of Pathways Dependent on the uvsE, uvrA1, or uvrA2 Gene Product for UV Resistance in Deinococcus radiodurans. Journal of Bacteriology,187, 3693-3697.
    7. Hua, X., Huang, L., Tian, B. and Hua, Y.2008. Involvement of recQ in the ultraviolet damage repair pathway in Deinococcus radiodurans. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 641,48-53.
    8. Wehrli, W., Knusel, F., Schmid, K. and Staehelin, M.1968. Interaction of rifamycin with bacterial RNA polymerase. Proceedings of the National Academy of Sciences,61,667-673.
    9. Jin, D.J. and Gross, C.A.1989. Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli. Journal of bacteriology,171,5229-5231.
    10. Maughan, H., Galeano, B. and Nicholson, W.L.2004. Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol,186, 2481-2486.
    11. Lai, C., Xu, J., Tozawa, Y., Okamoto-Hosoya, Y., Yao, X. and Ochi, K.2002. Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology,148, 3365.
    12. Carata, E., Peano, C., Tredici, S., Ferrari, F., Tal (?), A., Corti, G., Bicciato, S., De Bellis, G. and Alifano, P.2009. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant(rif) mutants affected in erythromycin production. Microbial Cell Factories,8,18.
    13. Perkins, A.E. and Nicholson, W.L.2008. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. Journal of Bacteriology,190,807.
    14. Kahnert, A., Vermeij, P., Wietek, C., James, P., Leisinger, T. and Kertesz, M. A.2000. The ssu Locus Plays a Key Role in Organosulfur Metabolism in Pseudomonas putida S-313. Journal of Bacteriology,182, 2869-2878.
    15. Mattimore, V., Udupa, K.S., Berne, G.A. and Battista, J.R.1995. Genetic characterization of forty ionizing radiation-sensitive strains of Deinococcus radiodurans:linkage information from transformation. Journal of Bacteriology,177,5232-5237.
    16. Chen, H., Huang, L., Hua, X., Ying, L., Hu, Y., Wang, C., Chen, W., Yu, X., Xu, Z., Tian, B. et al. 2009. Pleiotropic Effects of RecQ in Deinococcus radiodurans. Genomics.
    17. Rouillard, J.-M., Zuker, M. and Gulari, E. 2003. OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res,31,3057.
    18. Smyth, G.K. 2005. Limma:linear models for microarray data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor, R. Gentlemen, V. Carey, S. Dudoit, R. Irizarry, and W. Huber, eds (New York:Springer),397-420.
    19. Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and Speed, T.P.2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research,30, e15.
    20. Smyth, G.K., Michaud, J. and Scott, H.S.2005. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics,21,2067-2075.
    21. Bailey, T.L., Williams, N., Misleh, C. and Li, W.W.2006. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic acids research,34, W369.
    22. Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004), Genome research. Cold Spring Harbor Laboratory Press, Vol.14, pp. 1188-1190.
    23. Gupta, A., Rosenberger, S.F. and Bowden, GT.1999. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis,20,2063.
    24. Andrews, S.C., Robinson, A.K. and Rodriguez-Quinones, F.2003. Bacterial iron homeostasis. FEMS microbiology reviews,27,215-237.
    25. Katz, C. and Ron, E.Z.2008. Dual Role of FtsH in Regulating Lipopolysaccharide Biosynthesis in Escherichia coli. J. Bacteriol.,190, 7117-7122.
    26. Onishi, H.R., Pelak, B.A., Gerckens, L.S., Silver, L.L., Kahan, F.M., Chen, M.-H., Patchett, A.A., Galloway, S.M., Hyland, S.A., Anderson, M.S. et al.1996. Antibacterial Agents That Inhibit Lipid A Biosynthesis. Science,274, 980-982.
    27. Gottschalk, G. (1986) Bacterial metabolism. Springer.
    28. Taccone-Galluci, M., Lubrano, R., Trapasso, E., Clerico, A., Latorre, P., Meloni, C., Morosetti, M., Castello, M.A. and Casciani, C.U.1994. Oxidative Damage to RBC Membranes and Pentose Phosphate Shunt Activity in Hemodialysis Patients After Suspension of Erythropoietin Treatment. ASAIO Journal,40, M663.
    29. Pandolfi, P.P., Sonati, F., Rivi, R., Mason, P., Grosveld, F. and Luzzatto, L.1995. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD):G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. The EMBO journal, 14,5209.
    30. Bj rkman, J., Nagaev, I., Berg, O.G., Hughes, D. and Andersson, D.I. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science,287,1479.
    31. Barker, M.M., Gaal, T. and Gourse, R.L.2001. Mechanism of regulation of transcription initiation by ppGpp. Ⅱ. Models for positive control based on properties of RNAP mutants and competition for RNAP. Journal of Molecular Biology,305,689-702.
    32. Bramhill, D. and Kornberg, A.1988. A model for initiation at origins of DNA replication. Cell,54,915.
    33. Schmid, A.K. and Lidstrom, M.E.2002. Involvement of Two Putative Alternative Sigma Factors in Stress Response of the Radioresistant Bacterium Deinococcus radiodurans. J. Bacteriol.,184,6182-6189.
    34. Schmid, A.K., Howell, H.A., Battista, J.R., Peterson, S.N. and Lidstrom, M.E. 2005. Global Transcriptional and Proteomic Analysis of the Sigl Heat Shock Regulon of Deinococcus radiodurans. J. Bacteriol.,187, 3339-3351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700