电磁辐射中低能电子诱导DNA直接损伤的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁辐射生物效应多年来一直是一个受到关注的研究课题,在生物学多个研究领域和空间科学研究中均被涉及。其中,辐射诱导DNA (Deoxyribonucleic acid)损伤是辐射生物效应机理研究的核心问题,DNA的损伤可能导致细胞死亡、基因突变以及严重的生物学后果。因此,研究DNA损伤对解释辐射生物效应机理以及相关的应用具有十分重要的科学意义。
     几乎所有类型的电离辐射在生物组织中都会产生大量的低能二次电子,这些电子进一步与生物分子相互作用使之电离或激发,因而各种电离辐射与生物材料的相互作用都必然涉及或转化为低能电子与生物材料的相互作用。Monte Carlo模拟是辐射诱导DNA损伤研究的一个重要理论方法,亦称径迹结构理论方法。应用这一方法,目前国际上关于辐射诱导DNA损伤的研究主要集中在辐射的直接和间接作用引起单链断裂、双链断裂及其相应的簇损伤上。这些研究对DNA碱基损伤的确定采用了经验的判定方法,而不能分辨碱基损伤发生在哪一种碱基或碱基对上。然而,DNA的复杂性就在于组成它的碱基对A-T和G-C的不同以及它们不同的相对含量和不同的排序,这种复杂性决定了DNA的遗传特性,详尽的碱基损伤谱对于DNA损伤的研究具有更深刻的理论意义。此外,迄今关于DNA损伤的径迹结构理论方法基本上都是将辐射在水中产生的直接能量沉积代替辐射在DNA中产生的直接能量沉积,这种近似忽略了低能电子与水和低能电子与DNA碱基相互作用时它们的散射截面之间存在的差异,而最新的理论研究表明了这种差异是明显的。尤其,近年来关于辐射诱导DNA损伤的实验研究揭示了能量低于几电子伏特的亚电离电子可以通过离解电子俘获(dissociative electron attachment, DEA)机制诱导DNA的碱基释出和链断裂,这一机制突破了亚电离电子不能引起DNA链断裂的传统观点,是在传统的辐射诱导DNA损伤径迹结构研究中未被认知而忽视的。同时,这一机制还表明了DNA碱基发生离解俘获,在碱基释出的同时离解的电子转移到磷酸基团导致DNA链断裂,这一DNA链断裂的重要途径表明了碱基损伤与DNA链断裂的关联,这种关联对于辐射生物效应机理的研究十分重要。
     本文对包括亚电离电子的低能电子直接作用诱导DNA损伤作系统深入的研究。在理论模拟方法上:建立更严格的低能电子在液态水中径迹结构Monte Carlo模拟方法、对低能电子与DNA碱基的非弹性相互作用将突破传统的近似方法,作更严格的理论处理、计及亚电离电子经离解电子俘获机制诱导DNA的碱基释出和链断裂、研究在上述理论考虑下DNA损伤的模拟计算方法;在DNA损伤谱的计算分析上:研究DNA损伤谱的碱基构成特征、研究亚电离电子对DNA损伤的贡献、以亚电离电子作为损伤源刻画损伤的复杂性、研究DNA簇损伤与其碱基构成的关联特征。通过大量模拟计算,获得不同初始能量低能电子作用下各种碱基损伤、单链断裂和双链断裂的产额和频率分布,揭示亚电离电子诱导的不同复杂性DNA簇损伤的分布规律,揭示DNA簇损伤与其碱基构成的关联特征,为辐射生物效应机理研究提供更为深刻和基础的理论依据。论文包含了以下方面的内容及结果:
     1、论文的第一章,简要介绍了电离辐射下低能电子诱导DNA损伤的研究背景及意义,分析了国内外在该领域的研究现状和研究方法。
     2、论文的第二章,描述了低能电子与水相互作用的原理和理论模型,在此基础上建立了一个模拟低能电子在液态水中径迹结构的Monte Carlo模拟方法。该方法中使用平均散射截面概念与Mott模型结合,给出一个计算几eV到10 keV能量范围低能电子在液态水中弹性散射的方法。此外,对于电子与水相互作用非弹性散射,使用Emfietzoglou等给出的基于介电响应理论的最新液态水光学数据模型,并结合Ochkur的交换效应校正和经典Coulomb场低能Born校正,建立了一个计算低能电子与液态水相互作用非弹性散射的方法。本章建立的模型为低能电子诱导DNA损伤的理论研究提供了更为准确的径迹结构。
     3、论文的第三章,对基于本文建立的低能电子在水中散射径迹结构模拟方法的程序TSLWD2和TSLWD3与较常用的程序MOCA8b、KURBU和CPA100作了系统的计算比较。对于这五个程序,就描述电子在水中的弹性和非弹性散射截面、计算的水中非弹性散射事件空间分布和能量沉积分布、靶元中能量沉积绝对频率分布以及电子在水中的作用范围等方面作了系统的计算比较。结果表明,电子初始能量较低时,五个程序的CCPI分布状况非常接近,而电子初始能量较高时,程序MOCA8b和KURBUC计算的CCPI明显高于程序TSLWD2和TSLWD3的;程序TSLWD2、TSLWD3、MOCA8b和KURBUC在非弹性散射能量沉积空间分布上具有相同的规律;在统计生物靶元内能量沉积绝对频率时,靶元模型的大小同样影响频率的分布;程序TSLED2和TSLED3计算的不同初始能量电子在水中的最大作用距离平均值符合很好。可见,不同的散射截面及模拟模型将会体现不同的径迹结构特征,纳米尺度的径迹结构直接关系着生物大分子的损伤程度,因此,本章所作的比较研究对电离辐射生物效应的探索具有重要的参考价值。
     4、论文的第四章,提出了一个模拟详细碱基损伤的方法,该方法包括DNA体积模型的改进、DNA碱基序列排列的产生方法、将液态水中DNA片段击中点发生的电离事件转换为电子与DNA碱基的非弹性散射事件的计算方法、将DNA碱基电离产生的碱基基转化为碱基损伤的计算方法等。应用提出的模拟方法,系统地模拟了低能电子诱导的DNA直接损伤,获得了具有详尽碱基损伤的DNA损伤谱。给出了不同初始能量低能电子作用下,不同碱基对相对含量下,DNA碱基损伤、链断裂和复杂簇损伤的产额和频率分布以及DNA片段损伤点长度分布及损伤点个数的分布,部分计算与已有的实验结果或其它的理论计算作了比较。模拟结果表明:碱基对G-C比A-T发生损伤的概率略大,而且1 keV低能电子作用时,嘌呤对电子辐射的作用比嘧啶更为敏感,这一结果对探索碱基损伤与DNA糖磷酸链可能出现的断裂位置之间的关联性有重要的参考价值;DNA单链断裂ssb与碱基损伤结合构成的簇损伤在所有簇损伤中数量最多;碱基对A-T和G-C的相对含量不同对各种链断裂和簇损伤的相对产额影响较小,而对各种碱基损伤的相对产额有直接的影响;大部分损伤的DNA片段只有很小的损伤范围,并且只含有1-2个损伤点。本章的模拟结果更加深刻地揭示了DNA损伤的复杂性和更基本的损伤特征,为研究可能导致严重生物学后果的DNA簇损伤的形成和分类提供了更基础的损伤谱。
     5、论文的第五章,将辐射诱导DNA损伤的机制从传统的直接损伤和间接损伤拓展到亚电离电子经离解电子俘获过程诱导DNA的损伤。描述了离解电子俘获作用的原理,给出了亚电离电子与DNA各组分的弹性散射截面和离解电子俘获截面,建立了计及离解电子俘获机制的低能电子诱导DNA直接损伤的模拟方法。基于建立的模拟方法,系统地模拟计算了计及亚电离电子作用的低能电子诱导DNA碱基损伤、DNA链断裂及相应的簇损伤。定量计算了离解电子俘获作用对DNA链断裂和碱基损伤的贡献,以亚电离电子作为损伤源刻画损伤的复杂性,研究了DNA簇损伤与其碱基构成的关联特征。模拟结果表明,计及离解电子俘获机制的DNA链断裂的产额中,这一机制的贡献约占40-70%;此机制诱导产生的DNA碱基损伤产额约为DNA碱基损伤总产额的20-40%,且不同碱基损伤的产额,直接受控于DNA各碱基电子离解俘获截面的大小;A-T碱基对比G-C碱基对更容易被损伤;碱基对相对含量的差异对亚电离电子诱导产生的各种链断裂和簇损伤产额分布影响较小,而对诱导产生的碱基损伤产额分布有较大影响。本章的模拟研究,揭示了亚电离电子诱导的不同复杂性DNA簇损伤的分布规律,揭示了DNA簇损伤与其碱基构成的关联特征,为辐射生物效应机理研究提供了更为深刻和基础的理论依据。
Biological effect of electromagnetic radiation is a subject of longstanding interest, and involved in many fields of biological research and in space science. A crucial issue in studies on radiation biological effect is to explore DNA damages induced by radiations. DNA damage can lead to cell death, gene mutation and other serious biological sequences. Therefore, the study on DNA damage is of great significance for explanations of the mechanism of radiation biological effects and for their related applications.
     Almost all types of ionizing radiation will produce a large number of low-energy secondary electrons in biological tissues, and these electrons interact further with biological molecules, resulting in the ionization or excitation of biological molecules. Due to these, interactions between ionizing radiations and biological materials should be extended to those of low-energy electrons with biological materials. Monte Carlo simulation is an important theoretical method for study of DNA damage induced by radiations, and it is also referred to as track structure method. At present, the researches on DNA damage by means of Monte Carlo method are focused on single-strand breaks, double-strand breaks and corresponding clustered damages induced by direct and indirect inactions of radiation. Generally, in these researches the empirical method is used to estimate base damage, and thus the base damage to adenine (A), guanine (G), thymine (T) or cytosine (C) is not taken into account directly. However, the complexity of DNA is mainly determined by base pairs A-T and G-C as well as by their arrangement sequence, and this complexity governs the genetic information in the DNA. To obtain the detailed spectrum of base damage is, therefore, of essential theoretical significance for study of DNA damage. Additionally, in almost all theoretical methods of simulating DNA damage, track interactions in water are applied to direct effects in DNA, i.e. direct energy deposition, which ignore the differences between the cross sections for the interactions of low-energy electrons with water and for the interactions of low-energy electrons with DNA bases. However, these differences are obvious according to recent theoretical studies. Especially, the recent investigations on DNA damages induced by radiations indicate that direct DNA damage, base release and DNA strand breaks, occurs well below the ionization threshold, and the mechanisms involve mainly dissociative electron attachment and possibly dissociative excitation. This mechanism of inducing DNA damage denies the traditional point of view that sub-ionization electrons can not induce the DNA damage, and is not taken into account in traditional investigations of radiation induced DNA damage. Also, this mechanism shows that for DNA strand breaks induced by such low-energy electrons, an important pathway is electrons transfer from transient base anions to the phosphate group, besides direct dissociative electron attachment, which reveals the correlation between base damage and DNA strand breaks. It is clear that this correlation is of importance for studies on the mechanisms of radiation biological effects.
     This dissertation has performed systematic studies for direct DNA damages induced by low-energy electrons including sub-ionization electrons by using Monte Carlo method. For theoretical consideration of simulations, a more rigorous track structure model of low-energy electrons in liquid water is constructed, DNA base damages induced by low-energy electrons are simulated with the use of ionization cross section and without traditional approximate, base release and DNA strand breaks due to sub-ionization electrons are taken into account, and the simulation method of DNA damage considering the above principles is studied. For the analyses on spectrums of DNA damages, the characteristics of the constitutions of the bases in DNA damage spectrums, the contribution of sub-ionization electrons to DNA damage, how to describe the complexity of DNA damage in terms of sub-ionization electrons and the relevance of the clustered DNA damage to its base constitution are investigated. The main contents and results are summarized as follows:
     1. In chapter 1, background and significance for study of DNA damage induced by low-energy electrons are briefly introduced, and the analyses on the situations concerning with this study are made.
     2. In chapter 2, theoretical models for interactions between low-energy electrons and water are described, and thus a method of simulating track structures of low-energy electrons in liquid water are given. This method is based on a combination of mean cross section and Mott model, resulting in an approach of calculating elastic scattering of low-energy electron in liquid water over the energy range from several eV to 10 keV. In addition, Emfietzoglou et al.'s optical data model plus the Ochkur exchange correction and the classical Coulomb-field low energy correction are used for calculating inelastic interactions of low-energy electrons with liquid water. The model presented in this chapter for simulations of low-energy electrons scattering in liquid water provides more exact track structures for the theoretical research of DNA damage induced by low-energy electrons.
     3. In chapter 3, Monte Carlo codes, TSLWD2 and TSLWD3 constructed on the basis of the model of describing the track structures of low-energy electrons in liquid water given in chapter 2, are systematically compared with often used codes MOCA8、KURBU and CPA100 by means of a series of the calculations, i.e. the cross sections of describing elastic and inelastic scattering of low-energy electrons in liquid water, the spacial distributions of both electron inelastic scattering events and energy depositions, absolute frequency distributions of energy depositions in target cell, and the penetration ranges of low-energy electrons in liquid water. The comparisons show that the distributions of CCPI for the five codes are close to each other when the electrons with low initial energy, but if the initial energy of electrons is higher, the CCPI calculated by code MOCA8b and KURBUC are larger than the results of code TSLWD2 and TSLWD3 evidently. Code TSLWD2、TSLWD3、MOCA8b and KURBUC give the same performance on the spacial distributions of energy deposition of inelastic scattering. The size of the target model could also affect the absolute frequency distributions of energy deposition when calculating this frequency for biological targets. The mean values for the maximum distance calculated by codes TSLED2 and TSLED3 in water for electrons with different initial energy are in good agreement. Can be seen, different cross sections and simulation models will reflect the different characteristics of the track structures, and the track structures at nanometer levels have great effect on the damages of biological macromolecules, so the comparative study in this chapter provides some reference values for the research of biological effects of ionizing radiation.
     4. In chapter 4, a systemic method of simulating detailed base damages is suggested. This approach includes:improvement of a volume model of DNA, generation of the DNA base sequence, conversion of ionization events in liquid water at hit site to the ionization interaction of electrons with DNA bases, and development of an algorithm to convert a base radical to a damage. Using this method, the direct DNA damages induced by low-energy electrons are systematically simulated, and DNA damage spectrums containing the detailed base damages are obtained. The yields and frequency distributions of DNA base damages, DNA strand breaks and the complicated clustered DNA damages under different relative content of base pairs for low-energy electrons with different initial energy, and the distributions of the length and number of damaged sites in DNA segments are presented. The several simulated results are compared with other experimental data or theoretical calculations. It is shown that base pair G-C is of a slightly larger probability of damage than base pair A-T, and the purine is more sensitive to 1 keV electron radiations than pyrimidine, which might be important for exploring the possible correlation between the damaged base pairs and an easy break site of the DNA strand, and that the quantity of the clustered DNA damage formed by a single strand break ssb plus damaged bases is larger than other clustered DNA damages. The relative content of base pairs A-T and G-C affects slightly the relative yields of all kinds of strand breaks and clustered DNA damages, whereas this relative content has an obvious impact on the relative yield of base damages. Most of the damaged DNA segments have a small damaged range, and they contain only 1-2 damaged sites. These results reveal the complexity and more basic characteristic of DNA damages, and provide more fundamental damage spectrum for study about the formation and classification of clustered DNA damages which may lead to serious biological consequences.
     5. In chapter 5, the study for DNA damages induced by radiations based on the traditional direct and indirect damage mechanisms is extended to that induced by dissociative electron attachment of sub-ionization electrons. The principles of dissociative electron attachment are described, the elastic cross sections and the cross sections of dissociative electron attachment for sub-ionization electrons interaction with DNA constitutions are given, and the method of simulating direct DNA damage induced by low-energy electrons including sub-ionization electrons are presented. Based on the approach presented in this chapter, base damages, DNA strand breaks and corresponding clustered DNA damages induced by low-energy electrons including sub-ionization electrons are systematically simulated. The contributions of sub-ionization electrons to both base damages and DNA strand breaks are calculated quantitatively, the description for the complexity of DNA damage in terms of sub-ionization electrons is given, and the characteristics of relevance of clustered DNA damage to its base constitutions are investigated. Due to the above, it is shown that the contribution of dissociative electron attachment to the yield of DNA strand breaks is about 40-70%. The yield of DNA base damages induced by dissociative electron attachment accounts for about 20-40% of the total yield, and the yields of different base damages induced by this mechanism are subject to the cross sections of dissociative electron attachment for DNA bases directly. Base pair A-T is more likely to be damaged than G-C base pair. The relative content of base pairs has little effect on the yield distributions of various strand breaks and clustered damages, but it affects the yield distributions of base damages greatly. The simulations in this chapter reveal the distribution rule of DNA clustered damages with different complexity induced by sub-ionization electrons, and reveal the related properties between DNA clustered damages and base composition, which provide deeper and more basic theory for researches of the mechanism of radiation biological effects.
引文
[1]Olivier M, Aggarwal A and Allen J, et al. A high-resolution radiation hybrid map of the human genome draft sequence[J]. Science,2001,291:1298-1302.
    [2]Xia GM, Xiang FL and Zhou AF, et al. Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Neviski[J]. Theor. Appl. Genet.,2003,107(2):299-305.
    [3]Cucinotta FA, Schimmerling W and Wilson JW, et al. Uncertainties in estimates of the risks of late effects from space radiation[J]. Adv. Space Res., 2004,34(6):1383-1389.
    [4]Semenenko VA, Steward RD and Ackerman EJ. Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. I. Model properties and predicted trends[J]. Radiat. Res.,2005,164:180-193.
    [5]Nikjoo H, Uebara S and Emfietzoglou D, et al. Track-structure codes in radiation research[J]. Radiat. Meas.,2006,41:1052-1074.
    [6]夏寿萱.分子放射生物学[M].北京:原子能出版社,1992.
    [7]丘冠英,彭银祥.生物物理学[M].武汉:武汉大学出版社,2000.
    [8]岳峰.利用径迹结构方法模拟单能电子诱发DNA早期损伤的理论计算[D].北京:中国原子能科学研究院,2007.
    [9]Natarajan AT. Recent development in the assessment of chromosomal damage [J]. Int. J. Radiat. Biol.,1994,66(5):615-624.
    [10]Thacker J. Radiation-induced mutation in mammalian cells at low doses and dose rates [J]. Adv. Radiat. Biol.,1992,16(7):77-124.
    [11]Lind MC, Bera PP, Richardson SE, et al. The deprotonated guanine-cytosine base pair[J]. Proc. Natl. Acad. Sci.,2006,103(20):7754-7559.
    [12]Andreo P. Monte Carlo techniques in medical radiation physics[J]. Phys. Med. Biol.,1991,36(7):861-920.
    [13]Nikjoo H, O'Neill P, Goodhead DT, et al. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events[J]. Int. J. Radiat. Biol.,1997,71(5):467-483.
    [14]Nikjoo H, Uehara S and Wilson WE, et al. Track structure in radiation biology: theory and applications [J]. Int. J. Radiat. Biol.,1998,73(4):355-364.
    [15]Charlton DE, Nikjoo H and Humm JL. Calculation of initial yields of single-and double-strand breaks in cell nuclei from electrons, protons, and alpha particles[J]. Int. J. Radiat. Biol.,1989,56(1):1-19.
    [16]Chaterjee A and Holley WR. Computer simulation of initial events in the biochemical mechanisms of DNA damage[J]. Adv. Radiat. Biol.,1993,17(1): 181-226.
    [17]Surdutovich E, Obolensky OI and Scifoni E, et al. Ion-induced electron production in tissue-like media and DNA damage mechanisms[J]. Eur. Phys. J. D.,2008,51(1):63-71.
    [18]ICRU report 31. International Commission on radiation Units and Measurements, Washington, DC,1979.
    [19]Panajotovic R, Martin F and Cloutier P, et al. Effective cross sections for production of single-strand breaks in plasmid DNA by 0.1 to 4.7 eV electrons[J]. Radiat. Res.,2006,165:452-459.
    [20]Boudaiffa B, Cloutier P and Hunting D, et al. Resonant formation of DNA strand breaks by low-energy (3-20 eV) electrons[J]. Science,2000,287: 1658-1660.
    [21]Pan X, Cloutier P and Hunting D, et al. Dissociative electron attachment to DNA[J]. Phys. Rev. Lett.,2003,90(20):208102-1-4.
    [22]Zheng Y, Wagner JR and Sanche L. DNA damage induced by low-energy electrons:Electron transfer and diffraction[J]. Phys. Rev. Lett.,2006,96: 208101-1-4.
    [23]Konig C, Kopyra J and Bald I, et al. Dissociative electron attachment to phosphoric acid esters:The direct mechanism for single strand breaks in DNA[J]. Phys. Rev. Lett.,2006,97:018105-1-4.
    [24]Bao XG, Wang J and Gu J, et al. DNA strand breaks induced by near-zero-electronvolt electron attachment to pyridine nucleotides[J]. Proc. Natl. Acad. Sci.,2006,103(15):5658-5663.
    [25]Denifl S, Sulzer P and Huber D, et al. Influence of functional groups on the site-selective dissociation of adenine upon low-energy electron attachment[J]. Angew. Chem. Int. Ed.,2007,46:5238-5241.
    [26]Zheng Y, Cloutier P and Hunting DJ, et al. Chemical basis of DNA sugar-phosphate cleavage by low-energy electrons[J]. J. Am. Chem. Soc.,2005, 127:16592-16598.
    [27]Aflatooni K, Scheer AM and Burrow PD. Total dissociative electron attachment cross sections for molecular constituents of DNA[J]. J. Chem. Phys.,2006,125:054301-1-5.
    [28]Goodhead DT, Thacker J and Cox R. Effects of radiations of different qualities on cells:molecular mechanisms of damage and repair[J]. Int. J. Radiat. Biol, 1993,63(5):543-556.
    [29]Ward JF. The complexity of DNA damage:Relevance to biological consequences[J]. Int. J. Radiat. Biol.,1994,66(5):427-432.
    [30]Jenner TJ, Fulford J and O'Neill P. Contribution of base lesions to radiation-induced clustered DNA damage:Implication for models of radiation response[J]. Radiat. Res.,2001,156:590-593.
    [31]Nikjoo H, O'Neill P and Terrissol M. Quantitative modelling of DNA damage using Monte Carlo track structure method[J]. Radiat. Environ. Biophys.,1999, 38:31-38.
    [32]Tomita H, Kai M and Kusama T, et al. Monte Carlo simulation of physicochemical processes of liquid water radiolysis[J]. Radiat. Environ. Biophys.,1997,36:105-116.
    [33]Charlton DE and Humm JL. A method of calculation initial DNA strand breakage following the decay of incorporated 125I[J]. Int. J. Radiat. Biol.,1988, 53(3):353-365.
    [34]Goodhead DT and Nikjoo H. Track structure analysis of ultrasoft X-rays compared to high- and low-LET radiations[J]. Int. J. Radiat. Biol.,1989,55(4): 513-529.
    [35]Tomita H, Kai M and Kusama T, et al., Monte Carlo simulation of DNA strand-break induction in supercoiled plasmid pBR322 DNA from indirect effects[J]. Radiat. Environ. Biophys.,1998,36(4):235-241.
    [36]Nikjoo H, Bolton CE and Watanabe R, et al. Modelling of DNA damage induced by energetic electrons (100 eV to 100 keV)[J]. Radiat. Prot. Dosim., 2002,99(1-4):77-80.
    [37]Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA[J]. Int. J. Radiat. Biol.,1994,65(1):7-17.
    [38]Semenenko VA and Stewart RD. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation[J]. Radiat. Res.,2004, 161:451-457.
    [39]Wilson WE, Miller JH and Lynch DJ, et al. Analysis of low-energy electron track structure in liquid water[J]. Radiat. Res.,2004,161(5):591-596.
    [40]Cao TG, Cai MH and Geng JP, et al. Radiation induced DNA damage and related bio-chemi-physical problems[J]. Nucl. Phys. Rev.,2005,22(4): 398-401.
    [41]曹天光,马云志,卓益忠.DNA损伤谱的模拟和分析[J].生物物理学报,2004,20(6):489-495.
    [42]Bernhardt Ph and Paretzke HG. Calculation of electron impact ionization cross sections of DNA using the Deutsch-Mark and Binary-Encounter-Bethe formalisms[J]. Int. J. Mass. Spectrom.,2003,223-224:599-611.
    [43]Mozejko P and Sanche L. Cross section calculations for electron scattering from DNA and RNA bases[J]. Radiat. Environ. Biophys.,2003,42:201-211.
    [44]Tan ZY, Xia YY and Liu XD, et al. Cross sections of electron inelastic interactions in DNA[J]. Radiat. Environ. Biophys.,2004,43(3):173-182.
    [45]Tan ZY, Xia YY and Liu XD, et al. Electron inelastic interactions in bioorganic compounds in the energy range of 20-10 000 eV[J]. Appl. Phys. A,2005,81(4): 779-786.
    [46]Emfietzoglou D, Cucinotta FA and Nikjoo H. A complete dielectric response model for liquid water:a solution of the Bethe ridge problem[J]. Radiat. Res., 2005,164(2):202-211.
    [47]Alberts B, Johnson A and Lewis J, et al. Molecular Biology of the Cell[M], New York & London:Garland Science Publishing,2002.
    [48]郑国昌.细胞生物学(第二版)[M].北京:高等教育出版社,1992.
    [49]Nikjoo H, Goodhead DT and Charlton DE, et al. Energy deposition in small cylindrical targets by ultrasoft X-rays[J]. Phys. Med. Biol.,1989,34(6): 691-705.
    [50]李强,卫增泉,马受武.低能电子径迹中能量沉积频率分布[J].高能物理与核物理,1995,19(12):1078-1083.
    [51]Atrazhev VM, Dmitrenko VV and Chernysheva Ⅳ. Electron transport in xenon-hydrogen gas mixtures[J]. Tech. Phys. Lett.,2004,30(4):301-303.
    [52]张铭诚.电子束扫描成像及微区分析[M].北京:原子能出版社,1987.
    [53]戈尔茨坦(著).张大同(译).扫描电子显微技术与X射线显微分析[M].北京:科学出版社,1988.
    [54]马云志.电离辐射生物效应的理论研究:径迹结构方法及其应用[D].北京师范大学博士论文,2005.
    [55]Uehara S, Nikjoo H and Goodhead DT. Cross-section for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region[J]. Phys. Med. Biol.,1992,37:1841-1858.
    [56]Emfietzoglou D, Papamichael G and Androulidakis I, et al. A Monte Carlo study of sub-keV electron transport in water:the influence of the condensed phase[J]. Nucl. Instrum. Methods Phys. Res. B,2005,228:341-348.
    [57]Cobut V, Frongillo Y and Patau JP, et al. Monte Carlo simulation of fast electron and proton tracks in liquid water-Ⅰ. Physical and physicochemical aspects[J]. Radiat. Phys. Chem.,1998,51(3):229-243.
    [58]谭震宇,何延才,杨进.一个改进的低能电子散射Monte Carlo计算方法[J].科学通报,1996,41(13):1245-1248.
    [59]谭震宇,何延才.低能电子在多元介质中散射Monte Carlo计算方法[J].科学通报,1997,42(22):2453-2456.
    [60]谭震宇,张黎明,高洪霞.低能电子在水中的弹性散射[J].计算物理,2010,27(6).(印刷中)
    [61]Walker DW. Relativistic effects in low energy electron scattering from atoms[J]. Adv. Phys.,1971,20(85):257-323.
    [62]Jablonski A, Salvat F and Powell CJ. NIST electron elastic-scattering cross-section database-Version 3.1[DB].2003, NIST, Gaithersburg.
    [63]Katase A, Ishibashi K and Matsumoto Y, et al. Elastic scattering of electrons by water molecules over the range 100-1000eV[J]. J. Phys. B:At. Mol. Phys., 1986,19:2715-2734.
    [64]Jiang DJ and Tan ZY. A Monte Carlo study of low-energy electron transport in liquid water influence of the rutherford formula and the Mott model [J]. Chin. Phys. Lett.,2010,27(3):033401-1-4.
    [65]Itikawa Y and Mason N. Cross sections for electron collisions with water molecules[J]. J. Phys. Chem. Ref. Data,2005,34(1):1-22.
    [66]Munoz A, Oller JC and Blanco F, et al. Electron-scattering cross sections and stopping powers in H2O[J]. Phys. Rev. A,2007,76:052707-1-7.
    [67]Danjo A and Nishimura H. Elastic scattering of electrons from H2O molecule[J]. J. Phys. Soc. Jpn.,1985,54:1224-1227.
    [68]Buckman SJ, Brunger MJ and Elford MT. Cross sections for scattering-and excitation-processes in electron-molecule collisions:integral elastic cross sections. In:Itikawa Y (Ed.) Interactions of Photons and Electrons with Molecules[M]. Landolt-Bornstein, chap 6.2, vol Ⅰ/17C. Springer, New York, 2003, pp52-84.
    [69]Cho H, Park YS and Tanaka H, et al. Measurements of elastic electron scattering by water vapour extended to backward angles[J]. J. Phys. B:At. Mol. Opt. Phys.,2004,37:625-634.
    [70]Ritchie RH. Interaction of charged particles with a degenerate Fermi-Dirac electron gas[J]. Phys. Rev.,1959,114:644-654.
    [71]Ritchie RH, Hamm RN and Turner JE, et al. Radiation interactions and energy transport in the condensed phase. In:W.A. Glass and M.N. Varma (Ed.) Physical and Chemical Mechanisms in Molecular Radiation Biology[M]. Plenum Press, New York,1991, pp99-136.
    [72]Dingfelder M, Hantke D and Inokuti M, et al. Electron inelastic-scattering cross sections in liquid water[J]. Radiat. Phys. Chem.,1998,53:1-18.
    [73]Fernandez-Varea JM, Mayol R, Liljequist D, et al. Inelastic scattering of electrons in solids from a generalized oscillator strength model using optical and photoelectric data[J]. J. Phys.:Condens. Matter.,1993,5:3593-3610.
    [74]Emfietzoglou D and Nikjoo H. The effect of model approximations on single-collision distributions of low-energy electrons in liquid water [J]. Radiat. Res.,2005,163:98-111.
    [75]Vriens L. Electron exchange in binary encounter collision theory[J]. Proc. Phys. Soc.,1966,89:13-21.
    [76]Emfietzoglou D, Papamichael G and Moscovitch M. An event-by-event computer simulation of interactions of energetic changed particles and all their secondary electrons in water[J]. J. Phys. D:Appl. Phys.,2000,33:932-944.
    [77]宋会英.电子束光刻的Monte Carlo模拟及临近效应校正技术研究[D].济南:山东大学,2006.
    [78]谭震宇,宋传杰,裘培勇.固体中散射电子空间输运的矩阵方程[J].山东工业大学学报,1992,22(4):30-35.
    [79]Paretzke HG. Radiation track structure theory. In Freeman, GR (Ed.), Kinetics of Nan-homogeneous Processes[M]. New York:Wiley-Interscience,1987, pp 89-170.
    [80]Terrissol M and Beaudre A. Simulation of space and time evolution of radiolytic species induced by electrons in water[J]. Radiat. Prot. Dosi.,1990, 31(1-4):171-175.
    [81]Semenenko VA, Turner JE and Borak TB. NOREC, a Monte Carlo code for simulating electron tracks in liquid water[J]. Radiat. Environ. Biophys.,2003, 42(3):213-217.
    [82]Berger MJ. Monte-Carlo calculations of the penetration and diffusion of fast charged particles. In Alder B, Fernbach S and Rotenberg M (Ed.), Methods in Computational Physics[M], Vol.1, New York:Academic Press,1963, pp 135-215.
    [83]Moliere G. Theorie der Streuung schneller geladener Teilchen Ⅱ:Mehrfach-und Vielfachstreuung[J]. Zeitschrift Naturforschung Teil A,1948,3:78-97.
    [84]Drawin HW. Zur formelmaBigen Darstellung der Ionisierungsquerschnitte gegenuber ElektronenstoB[J]. Zeitschrift fur Physik A Hadrons and Nuclei, 1961,164(5):513-521.
    [85]Glupe G and Mehlhorn W. Absolute electron impact ionization cross sections of N, O and Ne[J]. J. Phys. Colloq.,1971,32(C4):40-43.
    [86]Tan KH, Brion CE and Van der leeuw PhE, et al. Absolute oscillator strengths (10-60 eV) for the photoabsorption, photoionization and fragmentation of H2O[J]. Chem. Phys.,1978,29(3):299-309.
    [87]Nikjoo H, Terrissol M and Hamm RN, et al. Comparison of energy deposition in small cylindrical volumes by electrons generated by Monte Carlo track structure codes for gaseous and liquid water [J]. Radiat. Prot. Dosim.,1994, 52(1-4):165-169.
    [88]Nishimura H. Elastic scattering cross-sections of H2O by low energy electrons. In Oda N and Takayanagi K (Ed.), Electronic and Atomic Collisions[M]. Amsterdam:Proc. XIth Int. Conf.1979, pp 314.
    [89]Seltzer SM. Cross-Sections for bremsstrahlung production and electron-impact ionization. In Jenkins TM, Nelson WR and Rindi A (Ed.), Monte Carlo Transport of Electrons and Photons[M]. New York:Plenum,1988, pp 81-114.
    [90]Paretzke HG. Simulation von Elektronenspuren im Energiebereich 0.01-10 keV. in Wasserdampf. GSF-Bericht[M]. Gesellschaft fur Strahlen-und Umwelt Forschung, Miinchen,1988, pp 24-88.
    [91]Berger MJ and Wang R. Multiple scattering angular deflections and energy-loss straggling. In Jenkins TM, Nelson WR and Rindi A (Ed.), Monte Carlo Transport of Electrons and Photons[M]. New York:Plenum,1988, pp 21-56.
    [92]Terrissol M, Bordage MC and Caudrelier V, et al. Cross-sections for 0.025 eV-1 keV electrons and 10 eV-1 keV photons. In Atomic and Molecular Data for Radiotherapy IAEA-TECDOC-506 [M]. Vienna:IAEA,1989, pp 219-233.
    [93]Tan ZY, Xia YY and Zhao MW, et al. Monte Carlo simulation on energy deposition of low-energy electrons in liquid water[J]. Chin. Phys. Lett.,2005, 22(1):91-94.
    [94]Emfietzoglou D, Karava K and Papamichael G, et al. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water[J]. Phys. Med. Biol., 2003,48:2355-2371.
    [95]Coleman R. Random paths through convex bodies[J]. J. Appl. Prob.,1969,6(2): 430-441.
    [96]Kellerer AM. Considerations on the random traversal of convex bodies and solutions for general cylinders[J]. Radiat. Res.,1971,47(2):359-376.
    [97]Fitzsimons CJ, Nikjoo H and Bolton CE, et al. A novel algorithm for tracing the interaction of a track with molecular targets-use of Delaunay triangulation[J]. Math. Biosci.,1998,154:103-115.
    [98]Charlton DE, Goodhead DT and Wilson WE, et al. Energy deposition in small cylindrical targets by high LET radiations [J]. Radiat. Prot. Dosim.,1985, 13(1-4):123-125.
    [99]Nikjoo H, Goodhead DT and Charlton DE, et al. Energy deposition in small cylindrical targets by monoenergetic electrons[J]. Int. J. Radiat. Biol.,1991, 60(5):739-756.
    [100]Kreipl MS, Friedland W and Paretzke HG. Time-and spaceresolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation[J]. Radiat. Environ. Biophys.,2009,48:11-20.
    [101]Kreipl MS, Friedland W and Paretzke HG. Interaction of ion tracks in spatial and temporal proximity[J]. Radiat. Environ. Biophys.,2009,48:349-359.
    [102]Nikjoo H, O'Neill P and Wilson WE, et al. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation[J]. Radiat. Res.,2001,156:577-583.
    [103]Li ZJ, Zheng Y and Cloutier P, et al. Low energy electron induced DNA damage:effects of terminal phosphate and base moieties on the distribution of damage[J]. J. Am. Chem. Soc.,2008,130:5612-5613.
    [104]Li ZJ, Cloutier P and Sanche L, et al. Low-energy electron-induced DNA damage effect of base sequence in oligonucleotide trimers[J]. J. Am. Chem. Soc.,2010,132:5422-5427.
    [105]Watson JD and Crick FHC. A Structure for Deoxyribose Nucleic Acid[J]. Nature,1953,171(4356):737-738.
    [106]德伟,张一鸣.生物化学与分子生物学[M].南京:东南大学出版社,2007.
    [107]杨岐生.分子生物学[M].杭州:浙江大学出版社,2004.
    [108]http://www.ioffe.rssi.ru/ES/Elastic/.
    [109]Mott NF. The collision between two electrons[J]. Proc. R. Soc. Lond. A.1930, 126(801):259-267.
    [110]Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie[J]. Ann. Phys.,1930,397(3):325-400.
    [111]Bethe H. Bremsformel fur elektronen relativistischer geschwindigkeit[J]. Z. Phys.,1932,76(5-6):293-299.
    [112]Kim YK and Rudd ME. Binary-encounter-dipole model for electron-impact ionization[J]. Phys. Rev. A,1994,50(5):3954-3967.
    [113]Kim YK, Hwang and Weinberger NM. WElectron-impact ionization cross sections of atmospheric molecules[J]. J. Chem. Phys,1997,106(3): 1026-1033.
    [114]Fuciarelli AF, Wegher BJ and Blakely WF, et al. Yields of radiation-induced base products in DNA:effects of DNA conformation and gassing conditions [J]. Int. J. Radiat. Biol.,1990,58(3):397-415.
    [115]Ward JF. Biochemistry of DNA lesions [J]. Radiat. Res.,1985,104:103-111.
    [116]Watanabe R and Saito K. Monte Carlo simulation of strand-break induction on plasmid DNA in aqueous solution by monoenergetic electrons[J]. Radiat. Environ. Biophys.,2002,41:207-215.
    [117]Boudaiffa B, Cloutier P and Hunting D, et al. Cross sections for low-energy (10-50 eV) electron damage to DNA[J]. Radiat. Res.,2002,157:227-234.
    [118]Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation and repairability[J]. Prog. Nucleic. Acid. Res.,1988,35:95-125.
    [119]Frankenberg D, Goodhead DT and Frankenberg-Schwager M, et al. Effectiveness of 1.5 keV aluminium K and 0.3 keV carbon K characteristic X-rays at inducing DNA double-strand breaks in yeast cells[J]. Int. J. Radiat. Biol.,1986,50(4):727-741.
    [120]Nikjoo H, O'Neill P and Terrissol M, et al. Modelling of radiation-induced DNA damage:the early physical and chemical event[J]. Int. J. Radiat. Biol., 1994,66:453-457.
    [121]Tan ZY, Xia YY and Zhao MW, et al. Electron stopping power and mean free path in organic compounds over the energy range of 20-10,000 eV[J]. Nucl. Instrum. Methods B,2004,222:27-43.
    [122]Malacinski M and Freifelder D. Essential of molecular biology[M]. Boston: Jone and Barlett Publishers,1998.
    [123]Huels MA, Boudaiffa B and Cloutier P, et al. Single, double, and multiple double strand breaks induced in DNA by 3-100 eV electrons [J]. J. Am. Chem. Soc.,2003,125:4467-4477.
    [124]Berdys J, Anusiewicz I and Skurski P, et al. Damage to model DNA fragments from very low-energy (< 1 eV) electrons[J]. J. Am. Chem. Soc.,2004,126: 6441-6447.
    [125]Pan X and Sanche L. Dissociative electron attachment to DNA basic constituents:The phosphate group[J]. Chem. Phys. Lett.,2006,421:404-408.
    [126]Ptasinska S, Denifl S and Scheier P, et al. Inelastic electron interaction (attachment/ionization) with deoxyribose[J]. J. Chem. Phys.,2004,120(18): 8505-8511.
    [127]Denifl S, Ptasinska S and Probst M, et al. Electron attachment to the gas-phase DNA bases cytosine and thymine[J]. J. Phys. Chem. A,2004,108:6562-6569.
    [128]Abdoul-Carime H, Gohlke S and Illenberger E. Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation [J]. Phys. Rev. Lett., 2004,92(16):168103-1-4.
    [129]Abdoul-Carime H, Langer J and Huels MA, et al. Decomposition of purine nucleobases by very low energy electrons [J]. Eur. Phys. J. D,2005,35: 399-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700