智能水凝胶—去细胞瓣复合支架制备和生物学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:基质金属蛋白酶酶解控释血管内皮生长因子聚乙二醇水凝胶制备与鉴定
     第一节四枝化状丙烯酰化聚乙二醇的合成与鉴定
     目的:运用接枝聚合方法制备四枝化状丙烯酰化聚乙二醇(4branched-PEG-DA),并鉴定其化学结构及属性是否符合实验设计要求。
     方法:以分子量20,000Da线性聚乙二醇(PEG)单体为原料,通过四步合成方法,在单体末端引入四个丙烯酰基双键官能团。经红外光谱、1H核磁波谱、高效液相色谱、基质辅助激光解吸电离及凝胶过滤色谱检测聚合物产品在分子结构、目标官能团置换度、终产物产率、分子量及产物纯度方面是否符合实验设计、满足后续实验要求。
     结果:自制4branched-PEG-DA产物经红外光谱、1H核磁共振检测证实分子结构与设计相符、末端双键官能团置换度96.3%;高效液相色谱检测显示产物纯度为98.4%;基质辅助激光解吸电离检测提示产物实际平均分子量与设计结构分子量相符;凝胶过滤色谱检测结果显示产物多分散性数值为1.02,产物分子量均一,纯度较高。
     结论:通过接枝聚合方法制备4branched-PEG-DA在分子结构、目标官能团置换度、终产物产率、分子量及产物纯度方面均符合实验设计、满足后续实验要求。
     第二节基质金属蛋白酶酶解控释血管内皮生长因子聚乙二醇水凝胶制备及释药性能研究
     目的:制备基质金属蛋白酶酶解控释血管内皮生长因子聚乙二醇水凝胶(VEGF-MMP多肽PEG gel),观察其形貌结构并研究酶解控释效应,为后续实验奠定基础。
     方法:运用9-芴甲氧羰基(Fmoc)多肽固相法合成含有巯基(-SH)的基质金属蛋白酶(matrix metalloproteinase, MMP)底物多肽。利用4branched-PEG-DA与血管内皮生长因子165(vascular endothelial growth factor 165, VEGF-165)共价结合后,根据Michael加成反应原理,与含有巯基的MMP底物多肽结合生成VEGF载药聚乙二醇水凝胶(VEGF-MMP多肽PEG gel)。通过大体形态及扫描电镜观察VEGF-MMP多肽-PEG gel形貌及微观结构。运用酶联免疫吸附测定(enzyme linked immunosorbent assay, ELISA),研究基质金属蛋白酶2(MMP-2)与VEGF-MMP多肽PEG gel之间酶解释药的关系。
     结果:室温下VEGF-MMP多肽PEG gel大体形态为透明果冻状。经扫描电镜观察,水凝胶表面微观形态呈网状。其中对MMP敏感的VEGF-MMP多肽PEG gel (VEGF-MMP (W) X-PEG gel)表面孔隙平均直径为0.251±0.10lum,孔隙率为10.1±1.21%。ELISA检测结果显示,VEGF-MMP多肽-PEG gel对VEGF-165包封率为84.33±1.18%。凝胶形态崩解时相及ELISA检测结果显示,在不同浓度MMP-2作用下,VEGF-MMP (W) X-PEG gel具有稳定的VEGF释放速率。
     结论:通过Michael加成反应制备的VEGF-MMP (W) X-PEG gel与MMP-2具有稳定的控释关系,满足后续实验要求。
     第二部分:VEGF控释水凝胶-去细胞瓣复合支架制备及体外生物相容性研究
     第一节VEGF控释水凝胶-去细胞瓣复合支架的制备与鉴定
     目的:制备VEGF控释水凝胶-去细胞瓣复合支架,并通过形态学观察和免疫荧光染色鉴定是否成功构建复合支架
     方法:运用生物素(Sulfo-NHS-SS-Biotin)修饰去细胞瓣支架,行免疫荧光染色鉴定。根据亲和素-生物素结合原理,将含有生物素的VEGF控释水凝胶(VEGF-bio-MMP(W)X-PEG gel)与去细胞瓣支架复合,行HE染色和扫描电镜观察。
     结果:结合生物素的去细胞瓣支架,经携带Cy3荧光亲和素染色,荧光显微镜显示瓣膜基质呈红色。形态学观察显示,水凝胶-去细胞瓣复合支架具有去细胞瓣三层基质结构和凝胶规则网状孔隙微观结构。
     结论:按实验设计成功制备VEGF控释水凝胶-去细胞瓣复合支架。
     第二节VEGF控释水凝胶-去细胞瓣复合支架体外生物相容性研究
     目的:参照GB/T1688国家标准,体外研究VEGF控释水凝胶-去细胞瓣复合支架生物相容性。
     方法:参照GB/T1688国家标准,对复合支架进行血液相互作用实验,研究其对血小板激活、凝血时间、溶血的影响;对复合支架及其浸提液进行细胞毒性实验,研究其对细胞增殖与凋亡的影响。
     结果:经扫描电镜,流式细胞仪检测,证实复合支架可减少去细胞瓣对血小板的粘附与激活;经PT/APTT/INR检测,证实复合支架对凝血时间无明显影响;经间接、直接溶血实验,证实复合支架溶血率低于GB/T16886国家标准;经细胞增殖、凋亡检测,证实复合支架及其浸提液对MRC-5人胚肺细胞无明显影响。
     结论:参照GB/T1688国家标准,VEGF控释水凝胶-去细胞瓣复合支架具有良好的生物相容性。
     第三部分:智能水凝胶-去细胞瓣复合支架制备及体内生物学性能研究
     第一节智能水凝胶-去细胞瓣复合支架的制备与鉴定
     目的:制备抗CD34抗体-VEGF控释水凝胶-去细胞瓣复合支架(智能水凝胶-去细胞瓣复合支架),并通过免疫荧光染色鉴定是否成功构建复合支架
     方法:运用生物素(Sulfo-NHS-SS-Biotin)修饰去细胞瓣支架。根据亲和素-生物素结合原理,将VEGF-b i o-MMP(W)X-PEG gel与去细胞瓣支架复合。同样原理,将经生物素化抗CD34抗体与水凝胶-去细胞瓣支架复合,行免疫荧光染色鉴定。
     结果:结合抗CD34抗体水凝胶-去细胞瓣复合支架,经FITC标记抗IgG抗体染色,荧光显微镜显示瓣膜基质呈绿色。
     结论:按实验设计成功制备智能水凝胶-去细胞瓣复合支架。
     第二节智能水凝胶-去细胞瓣复合支架体内生物学性能研究
     目的:建立兔颈动脉瓣膜管道移植模型,评估智能水凝胶-去细胞瓣复合支架体内生物学性能
     方法:运用改良兔颈动脉"Cuff"套管技术,建立兔颈动脉瓣膜管道移植模型。分别于术后24小时和7天,通过多普勒彩色超声检测管道通畅与否,判断动物模型建立是否成功。术后24小时,取出移植物,根据组织形态学检测,评估移植管道对CD34+细胞的粘附能力。术后7天,取出移植物,根据组织形态学检测及eNOS mRNA定量分析,评估移植管道内皮化程度。
     结果:超声结果显示移植管道通畅,兔颈动脉瓣膜管道移植模型建立成功。术后24小时,相应检测结果显示,本实验制备复合支架对CD34+细胞有明显的粘附能力。术后7天,相应检测结果显示,本实验制备复合支架内皮化程度优于对照组支架。
     结论:智能水凝胶-去细胞瓣复合支架具有优良的生物学性能。
PartⅡThe preparation of poly (ethylene glycol) hydrogeland the research of its matrix metalloproteinase enzymatic release of vascular endothelial growth factor
     Chapter one The preparation and identification of four branched propylene acylation poly (ethylene glycol) (4branched-PEG-DA)
     Objective:To prepare four branched propylene acylation poly (ethylene glycol) (4branched-PEG-DA) by grafted polymerization method, and identify the chemical structure and properties are in accordance with the experiment design and requirements
     Methods:The linear polyethylene glycol (PEG) monomers (Molecular weight 20, OOODa) as raw materials, through the four-step synthesis method, four acryloyl functional groups were introduced at the monomer ends. By detections of infrared spectrometry (IR),1H-nuclear magnetic resonance (1H-NMR), high performance liquid chromatography(HPLC), Matrix-assisted laser desorption/ionization(MALDI) and gel filtration chromatography (GFC), the polymer products are in accordance with the experimental design to meet the follow-up requirements, in molecular structure, substitution of functional groups, final production rate, molecular weight and molecular weight uniformity.
     Results:By IR and 1HNMR detection, our 4branched-PEG-DA was confirmed the molecular structure matched the design and the substitution of functional groups was 96.3%; HPLC showed that the purity of the product was 98.4%; MALDI indicated the actual average molecular weight of the product matched the design; GFC results showed that the product Poly-dispersity value was 1.02, proved molecular weight was uniform.
     Conclusion:4branched-PEG-DA prepared by the grafted polymerization method is in accordance with the design of experiment and meets the requirements of follow-up, in aspects of molecular structure, functional groups substitution, final production rate, molecular weight and molecular weight uniformity.
     Chapter two The research of matrix metalloproteinase enzymatic release of vascular endothelial growth factor in poly (ethylene glycol) hydrogel
     Objective:To prepare poly (ethylene glycol) hydrogel released vascular endothelial growth factor by matrixmetalloproteinase (VEGF-MMP peptide-PEG gel),and observe the morphology and their enzymatic controlled release effect for the subsequent experiments.
     Methods:Using 9-fluorenyl methoxy carbonyl (Fmoc) solid phase peptide synthesis, we synthesized matrix metalloproteinase (MMP) substrate peptide containing thiol groups (-SH). After 4branched-PEG-DA and vascular endothelial growth factor 165 (VEGF-165) covalently bounded, according to Michael addition reaction, the combination of MMP substrate peptide containing-SH generated the poly (ethylene glycol) hydrogel loading VEGF (VEGF-MMP peptide-PEG gel) Observation of morphology and microstructure of VEGF-MMP peptide-PEG gel were fulfilled by camera and scanning electron microscopy. Use of enzyme-linked immunosorbent assay (ELISA), to reveal the relationship between matrix metalloproteinase 2 (MMP-2) and VEGF-MMP peptide-PEG gel.
     Results:At room temperature, the VEGF-MMP peptide-PEG gel was jelly-like. The scanning electron microscopy showed the microstructure of the hydrogel was reticular. The VEGF-MMP peptide-PEG gel sensitive to MMP (VEGF-MMP (W) X-PEG gel) was 0.251±0.101um in surface pore average diameter and 10.1±1.21% of porosity. ELISA showed that VEGF-165 encapsulation efficiency of VEGF-MMP peptide-PEG gel was 84.33±1.18%. The collapsed phase and ELISA results showed that under different concentrations of MMP-2, VEGF-MMP (W) X-PEG gel possessed a stable VEGF release rates.
     Conclusion:VEGF-MMP (W) X-PEG gel prepared by Michael addition reaction possessed a stable enzymatic controlled release with MMP-2, which to meet the further experiment requirements.
     PartⅡThe preparation of VEGF controlled release hydrogel-decellularized scaffold and the research of its biocompatibility in vitro
     Chapter one The preparation and identification of VEGF controlled release hydrogel-decellularized scaffold
     Objective:To prepare VEGF controlled release hydrogel- decellularized scaffold, and identify the structure by the morphology and immunofluorescence staining.
     Methods:Decellularized valve modified with Sulfo-NHS-SS-Biotin was identified by immunofluorescence staining. According to avidin-biotin combination, biotinylated VEGF controlled release hydrogel (VEGF-bio-MMP (W) X-PEG gel) and decellularized scaffold were compound, and identified by HE staining and scanning electron microscopy.
     Results:The decellularized scaffold modified with biotin was stained by avidin-Cy3, while fluorescence microscopy showed the valve matrix was red. Morphological observation showed that the hydrogel-decellularized scaffold possessed decellularized matrix structure andreticular microstructure of the hydrogel.
     Conclusion:VEGF controlled release hydrogel-decellularized scaffold was successfully prepared in accordance with the design of experiment.
     Chapter two The research of biocompatibility of VEGF controlled release hydrogel-decellularized scaffold in vitro
     Objective:To study the biocompatibility of VEGF controlled release hydrogel-decellularized scaffold in vitro, according to GB/T1688 national standards.
     Methods:Refer to GB/T1688 national standards, the hybrid scaffold, for blood interaction experiments, was studied on the influence to platelet activation, clotting time, hemolysis; the hybrid scaffold and its extract, for cytotoxic experiment, were studied on the influence to cell proliferation and apoptosis.
     Results:The scanning electron microscopy and flow cytometry testing, confirmed that the hybrid scaffold can reduce the decellularized influence to platelet adhesion and activation; PT/APTT/INR test showed that the hybrid scaffold had no significant effect on the clotting time; indirect and direct hemolytic experiments confirmed that the hybrid scaffold hemolysis rate was lower than the the GB/T16886 national standards; by cell proliferation and apoptosis detection, the hybrid scaffold and its extract were proved that had no significant effect on MRC-5 human embryonic lung cells.
     Conclusion:Refer to GB/T1688 national standards, VEGF controlled release hydrogel-decellularized scaffold possessed fine biocompatibility.
     PARTⅢThe preparation of Anti CD34-VEGF controlled release hydrogel-decellularized scaffold and the research of its biological properties in vivo
     Chapter one The preparation and identification of Anti CD34-VEGF controlled release hydrogel-decellularized scaffold
     Objective:To prepare Anti CD34-VEGF controlled release hydrogel-decellularized scaffold (smart hydrogel-decellularized scaffold), and identify the structure by the immunofluorescence staining.
     Methods:decellularized valve was modified with Sulfo-NHS-SS- Biotin. According to avidin-biotin combination, biotinylated VEGF controlled release hydrogel (VEGF-bio-MMP (W) X-PEG gel) and decellularized scaffold were compound. In the same way, the biotinylated Anti CD34 antibody and hydrogel-decellularized scaffold were compound, and identified by immunofluorescence staining.
     Results:Under fluorescence microscopy, hydrogel-decellularized scaffold combined with Anti CD34 antibody showed that the valve matrix was green while stained by anti-IgG-FITC.
     Conclusion:The smart hydrogel-decellularized scaffold was successfully prepared in accordance with the design of experiment.
     Chapter two The research of biological properties of smart hydrogel-decellularized scaffold in vivo
     Objective:To establish a rabbit carotid artery valve pipeline transplantation model, and evaluate the biological properties of smart hydrogel-decellularized scaffold in vivo.
     Methods:Using a modified "Cuff" method, to establish rabbit carotid artery valve pipeline transplantation model. To determine the animal model is successful by the Color Doppler Ultrasound detecting the pipes are open or not in postoperative 24 hours and 7 days. After 24 hours, take out the pipes to evaluate the adhesion to CD34+ cells by histomorphology analysis. After 7 days, take out the pipes to assess the degree of endothelialization by histomorphology and eNOS mRNA quantitative analysis.
     Results:The rabbit carotid artery valve pipeline transplantationmodel were successful, by the ultrasound results showing that the transplanted pipes were open. After 24 hours, the corresponding test results showed that our scaffold had an obvious adhesion to the CD34+ cells. After 7 days, the corresponding test results showed that the degree of endothelialization of our scaffold were superior to the controls.
     Conclusion:smart hydrogel-decellularized scaffold possessed excellent biological properties.
引文
[1]Sales V L, Mettler B A, Engelmayr G J, et al. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves [J]. Tissue Eng Part A.2010,16(1):257-267.
    [2]Schmidt D, Dijkman P E, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves:a comprehensive approach from autologous vascular cells to stem cells[J]. J Am Coll Cardiol.2010,56(6):510-520.
    [3]Dainese L, Guarino A, Burba I, et al. Heart valve engineering:decellularized aortic homograft seeded with human cardiac stromal cells[J]. J Heart Valve Dis.2012, 21(1):125-134.
    [4]周建良,邹明晖,陈义初,等.共价结合血管内皮生长因子促进内皮祖细胞在去细胞瓣上的粘附和增殖[J].南方医科大学学报.2011(9):1474-1479.
    [5]周建良,邹明晖,胡行健,等.血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(10):2890-2895.
    [6]Naderi H, Matin M M, Bahrami A R. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. J Biomater Appl.2011,26(4):383-417.
    [7]Giraud M N, Guex A G, Tevaearai H T. Cell therapies for heart function recovery:focus on myocardial tissue engineering and nanotechnologies[J]. Cardiol Res Pract.2012,2012:971614.
    [8]Davis M E, Hsieh P C, Grodzinsky A J, et al. Custom design of the cardiac microenvironment with biomaterials[J]. Circ Res.2005,97(1):8-15.
    [9]Naderi H, Matin M M, Bahrami A R. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. J Biomater Appl.2011,26(4):383-417.
    [10]Dijkman P E, Driessen-Mol A, Frese L, et al. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts[J]. Biomaterials.2012,33(18):4545-4554.
    [11]Sawant R R, Torchilin V P. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting[J]. Mol Membr Biol.2010,27(7):232-246.
    [12]Sugiyama I, Sadzuka Y. Correlation of fixed aqueous layer thickness around PEG-modified liposomes with in vivo efficacy of antitumor agent-containing liposomes[J]. Curr Drug Discov Technol.2011,8(4):357-366.
    [13]Carlin A, Justham D. A literature review of two laxatives:lactulose and polyethylene glycol[J]. Br J Community Nurs.2011,16(12):584,586,588-590.
    [14]Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead[J]. Biomacromolecules.2011,12(10):3381-3393.
    [15]Chen C, Constantinou A, Deonarain M. Modulating antibody pharmacokinetics using hydrophilic polymers[J]. Expert Opin Drug Deliv.2011,8(9):1221-1236.
    [16]Mumaw J, Jordan E T, Sonnet C, et al. Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs[J]. Int J Biomater.2012,2012:861794.
    [17]Kloust H, Poeselt E, Kappen S, et al. Ultra Small Biocompatible Nanocomposites: A New Approach Using Seeded Emulsion Polymerization for the Encapsulation of Nanocrystals[J]. Langmuir.2012.
    [18]Jiang X, Li L, Liu J, et al. Facile Fabrication of Thermo-Responsive and Reduction-Sensitive Polymeric Micelles for Anticancer DrugDelivery[J]. Macromol Biosci.2012.
    [19]Xiao R Z, Zeng Z W, Zhou G L, et al. Recent advances in PEG-PLA block copolymer nanoparticles[J]. Int J Nanomedicine.2010,5:1057-1065.
    [20]Karakoti A S, Das S, Thevuthasan S, et al. PEGylated inorganic nanoparticles[J]. Angew Chem Int Ed Engl.2011,50(9):1980-1994.
    [1]周建良,邹明晖,陈义初,等.共价结合血管内皮生长因子促进内皮祖细胞在去细胞瓣上的粘附和增殖[J].南方医科大学学报.2011(9):1474-1479.
    [2]邹明晖,周建良,陈义初,等.聚乙二醇交联去细胞瓣构建组织工程瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(8):2191-2196.
    [3]Callahan L A, Ganios A M, Mcburney D L, et al. ECM Production of Primary Human and Bovine Chondrocytes in Hybrid PEG Hydrogels Containing Type Ⅰ Collagen and Hyaluronic Acid[J]. Biomacromolecules.2012.
    [4]Zhong T, Deng C, Gao Y, et al. Studies of in situ-forming hydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution[J]. J Biomed Mater Res A. 2012.
    [5]Feng C, Lu C, Chen Z, et al. A facile synthesis of tetrasubstituted 2,3-dihydrofuran derivatives using poly(ethylene glycol) as soluble support[J]. Journal of Heterocyclic Chemistry.2010,47(3):671-676.
    [6]Pan Z, Cui-Fen L U, Gui-Chun Y, et al. Stereoselective Synthesis of Polysubstituted Cyclopropanes from Poly(ethylene glycol) Supported Pyridinium Ylide[J]. Chemical Research in Chinese Universities.2011,27(6):984-987.
    [7]Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead[J]. Biomacromolecules.2011,12(10):3381-3393.
    [8]Sawant R R, Torchilin V P. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting[J]. Mol Membr Biol.2010,27(7):232-246.
    [9]Sugiyama I, Sadzuka Y. Correlation of fixed aqueous layer thickness around PEG-modified liposomes with in vivo efficacy of antitumor agent-containing liposomes[J]. Curr Drug Discov Technol.2011,8(4):357-366.
    [10]Carlin A, Justham D. A literature review of two laxatives:lactulose and polyethylene glycol[J]. Br J Community Nurs.2011,16(12):584,586,588-590.
    [11]Chen C, Constantinou A, Deonarain M. Modulating antibody pharmacokinetics using hydrophilic polymers[J]. Expert Opin Drug Deliv.2011,8(9):1221-1236.
    [12]Mumaw J, Jordan E T, Sonnet C, et al. Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs[J]. Int J Biomater.2012,2012:861794.
    [13]Kloust H, Poeselt E, Kappen S, et al. Ultra Small Biocompatible Nanocomposites: A New Approach Using Seeded Emulsion Polymerization for the Encapsulation of Nanocrystals[J]. Langmuir.2012.
    [14]Jiang X, Li L, Liu J, et al. Facile Fabrication of Thermo-Responsive and Reduction-Sensitive Polymeric Micelles for Anticancer DrugDelivery[J]. Macromol Biosci.2012.
    [15]Xiao R Z, Zeng Z W, Zhou G L, et al. Recent advances in PEG-PLA block copolymer nanoparticles[J]. Int J Nanomedicine.2010,5:1057-1065.
    [16]Karakoti A S, Das S, Thevuthasan S, et al. PEGylated inorganic nanoparticles[J]. Angew Chem Int Ed Engl.2011,50(9):1980-1994.
    [17]Moeinzadeh S, Jabbari E. Mesoscale simulation of the effect of a lactide segment on the nanostructure of star poly(ethylene glycol-co-lactide)-acrylate macromonomers in aqueous solution[J]. J Phys Chem B.2012,116(5):1536-1543.
    [18]Di Zhou, Ma Y, Poot A A, et al. Fluorescently labeled branched polymers and thermal responsive nanoparticles for live cell imaging[J]. Macromol Biosci.2012, 12(4):465-474.
    [19]Fu S, Ni P, Wang B, et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration [J]. Biomaterials.2012.
    [20]Burdick J A. Injectable gels for tissue/organ repair[J]. Biomed Mater.2012,7(2): 20201.
    [21]Skaalure S C, Milligan I L, Bryant S J. Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels[J]. Biomed Mater.2012,7(2):24111.
    [22]Yun E J, Yon B, Joo M K, et al. Cell Therapy for Skin Wound Using Fibroblast Encapsulated Poly(ethylene glycol)-poly(1-alanine) Thermogel[J]. Biomacromolecules.2012,13(4):1106-1111.
    [23]Yoon H Y, Koo H, Choi K Y, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy[J]. Biomaterials.2012,33(15): 3980-3989.
    [24]Frisman I, Seliktar D, Bianco-Peled H. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis [J]. Biomaterials.2011,32(31): 7839-7846.
    [25]Chawla K, Yu T B, Liao S W, et al. Biodegradable and biocompatible synthetic saccharide-Peptide hydrogels for three-dimensional stem cell culture[J]. Biomacromolecules.2011,12(3):560-567.
    [26]Su J, Chen F, Cryns V L, et al. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells[J]. J Am Chem Soc.2011,133(31):11850-11853.
    [27]周建良,邹明晖,胡行健,等.血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(10):2890-2895.
    [28]邹明晖,周建良,陈义初,等.枝化状聚乙二醇交联改善猪去细胞主动脉瓣的力学性能比较[J].中华实验外科杂志.2011,28(5):759-761.
    [1]Chawla K, Yu T B, Liao S W, et al. Biodegradable and biocompatible synthetic saccharide-Peptide hydrogels for three-dimensional stem cell culture [J]. Biomacromolecules.2011,12(3):560-567.
    [2]Kim S H, Kiick K L. Cell-mediated Delivery and Targeted Erosion of Vascular Endothelial Growth Factor-Crosslinked Hydrogels[J]. Macromol Rapid Commun. 2010,31(14):1231-1240.
    [3]Lee K, Silva E A, Mooney D J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments[J]. J R Soc Interface.2011, 8(55):153-170.
    [4]Zisch A H, Lutolf M P, Ehrbar M, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth[J]. FASEB J.2003,17(15):2260-2262.
    [5]Li L, Charati M B, Kiick K L. Elastomeric polypeptide-based biomaterials[J]. J Polym Sci A Polym Chem.2010,1(8):1160-1170.
    [6]Bae H, Ahari A F, Shin H, et al. Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation[J]. Soft Matter.2011,7(5):1903-1911.
    [7]Lutolf M P, Weber F E, Schmoekel H G, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices[J]. Nat Biotechnol.2003, 21(5):513-518.
    [8]Wu J, Jiang Y, Yang W, et al. Dual Function of RGD-Modified VEGI-192 for Breast Cancer Treatment [J]. Bioconjug Chem.2012,23(4):796-804.
    [9]Pu C Y, Xu H M, Hu J L, et al. RGD-modified endostatin fragments showed an antitumor effect through antiangiogenesis[J]. Anticancer Drugs.2012.
    [10]Frith J E, Mills R J, Hudson J E, et al. Tailored Integrin-Extracellular Matrix Interactions to Direct Human Mesenchymal Stem Cell Differentiation[J]. Stem Cells Dev.2012.
    [11]董毅,董念国,史嘉玮,等.环状RGDfK肽对肌成纤维细胞整合素αVβ3表达调控的实验研究[J].中国胸心血管外科临床杂志.2008,15(5):360-364.
    [12]Shi J, Dong N, Sun Z. Immobilization of decellularized valve scaffolds with Arg-Gly-Asp-containing peptide to promote myofibroblast adhesion[J]. J Huazhong Univ Sci Technolog Med Sci.2009,29(4):503-507.
    [13]Shields M A, Dangi-Garimella S, Redig A J, et al. Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression[J]. Biochem J.2012,441(2):541-552.
    [14]Sacharidou A, Stratman A N, Davis G E. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices[J]. Cells Tissues Organs.2012,195(1-2):122-143.
    [15]Davis E F, Newton L, Lewandowski A J, et al. Pre-eclampsia and offspring cardiovascular health:mechanistic insights from experimental studies[J]. Clin Sci (Lond).2012,123(2):53-72.
    [16]Finley S D, Popel A S. Predicting the Effects of Anti-angiogenic Agents Targeting Specific VEGF Isoforms[J]. AAPS J.2012.
    [17]Tan Y, Xiao E H, Xiao L Z, et al. VEGF(165) expressing bone marrow mesenchymal stem cells differentiate into hepatocytes under HGF and EGF induction in vitro[J]. Cytotechnology.2012.
    [18]Arana L A, Pinto A T, Chader G J, et al. Fluorescein angiography, optical coherence tomography, and histopathologic findings in a VEGF(165) animal model of retinal angiogenesis[J]. Graefes Arch Clin Exp Ophthalmol.2012.
    [19]Tongers J, Losordo D W, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease:promise, uncertainties, and challenges[J]. Eur Heart J. 2011,32(10):1197-1206.
    [20]Narang A S, Mahato R I. Biological and biomaterial approaches for improved islet transplantation[J]. Pharmacol Rev.2006,58(2):194-243.
    [21]Morais J M, Papadimitrakopoulos F, Burgess D J. Biomaterials/tissue interactions:possible solutions to overcome foreign body response[J]. AAPS J.2010, 12(2):188-196.
    [22]Zhang W, Wang X, Wang S, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials.2011,32(35):9415-9424.
    [23]Zonari A, Novikoff S, Electo N R, et al. Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh[J]. PLoS One.2012,7(4):e35422.
    [24]Deng C, Dong N, Shi J, et al. Application of decellularized scaffold combined with loaded nanoparticles for heart valve tissue engineering in vitro [J]. J Huazhong Univ Sci Technolog Med Sci.2011,31(1):88-93.
    [25]周建良,邹明晖,陈义初,等.共价结合血管内皮生长因子促进内皮祖细胞在去细胞瓣上的粘附和增殖[J].南方医科大学学报.2011(9):1474-1479.
    [26]周建良,邹明晖,胡行健,等.血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(10):2890-2895.
    [27]周建良,邹明晖,陈义初,等.人脐带血内皮祖细胞与血管内皮生长因子和碱性成纤维细胞生长因子共培养及其增殖和迁移能力[J].中国组织工程研究与临床康复.2011,15(6):1000-1004.
    [28]Hong H, Dong N, Shi J, et al. Fabrication of a novel hybrid scaffold for tissue engineered heart valve[J]. J Huazhong Univ Sci Technolog Med Sci.2009,29(5): 599-603.
    [29]Barsotti M C, Felice F, Balbarini A, et al. Fibrin as a scaffold for cardiac tissue engineering[J]. Biotechnol Appl Biochem.2011,58(5):301-310.
    [30]Dainese L, Guarino A, Burba I, et al. Heart valve engineering:decellularized aortic homograft seeded with human cardiac stromal cells[J]. J Heart Valve Dis.2012, 21(1):125-134.
    [31]Dijkman P E, Driessen-Mol A, Frese L, et al. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts[J]. Biomaterials.2012,33(18):4545-4554.
    [32]Vallet-Regi M, Izquierdo-Barba I, Colilla M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drugdelivery[J]. Philos Transact A Math Phys Eng Sci.2012,370(1963):1400-1421.
    [33]Singh A, Sharma P K, Malviya R. Release behavior of drugs from various natural gums and polymers[J]. Polim Med.2011,41(4):73-80.
    [34]Naderi H, Matin M M, Bahrami A R. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. J Biomater Appl.2011,26(4):383-417.
    [35]Canto E D, Natali M, Movia D, et al. Photo-controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes[J]. Phys Chem Chem Phys.2012,14(17):6034-6043.
    [36]Baino F, Fiorilli S, Mortera R, et al. Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release[J]. J Appl Biomater Biomech.2012:0.
    [37]Davidson D, Gu F X. Materials for sustained and controlled release of nutrients and molecules to support plant growth[J]. J Agric Food Chem.2012,60(4):870-876.
    [38]陈义初,邹明晖,周建良,等.基质金属蛋白酶-2敏感型聚乙二醇复合水凝胶的制备及性质[J].中华实验外科杂志.2011,28(10):1758-1760.
    [39]陈思,董念国,史嘉玮.主动脉瓣体外钙化模型的建立[J].临床心血管病杂 志.2010(9):697-700.
    [40]陈思,董念国,史嘉玮.主动脉瓣膜间质细胞体外诱导钙化的实验研究[J].中国胸心血管外科临床杂志.2010(5):385-389.
    [1]Deng C, Dong N, Shi J, et al. Application of decellularized scaffold combined with loaded nanoparticles for heart valve tissue engineering in vitro[J]. J Huazhong Univ Sci Technolog Med Sci.2011,31(1):88-93.
    [2]邹明晖,周建良,陈义初,等.枝化状聚乙二醇交联改善猪去细胞主动脉瓣的力学性能比较[J].中华实验外科杂志.2011,28(5):759-761.
    [3]Ye X, Zhao Q, Sun X, et al. Enhancement of mesenchymal stem cell attachment to decellularized porcine aortic valve scaffold by in vitro coating with antibody against CD90:a preliminary study on antibody-modified tissue-engineered heart valve[J]. Tissue Eng Part A. 2009,15(1):1-11.
    [4]Lesch H P, Kaikkonen M U, Pikkarainen J T, et al. Avidin-biotin technology in targeted therapy[J]. Expert Opin Drug Deliv.2010,7(5): 551-564.
    [5]Nucera E, Nicoletti C, Chiapparino C, et al. Avidin0X™ for tissue targeted delivery of biotinylated cells[J]. Int J Immunopathol Pharmacol.2012,25(1):239-246.
    [6]Ovod V, Scott E A, Flake M M, et al. Exposure of the lysine in the gamma chain dodecapeptide of human fibrinogen is not enhanced by adsorption to poly (ethylene terephthalate) as measured by biotinylation and mass spectrometry[J]. J Biomed Mater Res A.2012,100(3):622-631.
    [7]Barsotti M C, Felice F, Balbarini A, et al. Fibrin as a scaffold for cardiac tissue engineering[J]. Biotechnol Appl Biochem.2011,58(5): 301-310.
    [8]Dainese L, Guarino A, Burba I, et al. Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells [J]. J Heart Valve Dis.2012,21(1):125-134.
    [9]Gallo M, Naso F, Poser H, et al. Physiological Performance of a Detergent Decellularized Heart Valve Implanted for 15 Months in Vietnamese Pigs:Surgical Procedure, Follow-up, and Explant Inspection[J]. Artif Organs.2012.
    [10]Jordan J E, Williams J K, Lee S J, et al. Bioengineered self-seeding heart valves [J]. J Thorac Cardiovasc Surg.2012,143(1):201-208.
    [11]Dijkman P E, Driessen-Mol A, Frese L, et al. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts[J]. Biomaterials.2012,33(18):4545-4554.
    [12]Grandi C, Martorina F, Lora S, et al. ECM-based triple layered scaffolds for vascular tissue engineering [J]. Int J Mol Med.2011,28(6): 947-952.
    [13]周建良,邹明晖,陈义初,等.共价结合血管内皮生长因子促进内皮祖细胞在去细胞瓣上的粘附和增殖[J].南方医科大学学报.2011(9):1474-1479.
    [14]周建良,邹明晖,胡行健,等.血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(10):2890-2895.
    [15]董毅,董念国,史嘉玮,等.环状RGDfK肽对肌成纤维细胞整合素αVβ3表达调控的实验研究[J].中国胸心血管外科临床杂志.2008,15(5):360-364.
    [16]Shi J, Dong N, Sun Z. Immobilization of decellularized valve scaffolds with Arg-Gly-Asp-containing peptide to promote myofibroblast adhesion [J]. J Huazhong Univ Sci Technolog Med Sci.2009,29(4):503-507.
    [17]Vallet-Regi M, Izquierdo-Barba I, Col illa M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drugdelivery[J]. Philos Transact A Math Phys Eng Sci.2012, 370(1963):1400-1421.
    [1]GBT16886.12医疗器械生物学评价第12部分:样品制备与参照样品(idt ISO10993-12)[S].
    [2]GBT16886.5医疗器械生物学评价第5部分:体外细胞毒性试验(idt ISO10993-5)[S].
    [3]李瑞,王青山.生物材料生物相容性的评价方法和发展趋势[J].中国组织工程研究与临床康复.2011(29).
    [4]GB/T16886.4医疗器械生物学评价第4部分:与血液相互作用试验选择[idtISO 10993-4)[S].
    [5]GBT16886.1医疗器械生物学评价第1部分:评价与试验(idt ISO 10993-1)[J].
    [6]Pankert M, Quilici J, Cuisset T. Role of antiplatelet therapy in secondary prevention of acute coronary syndrome[J]. J Cardiovasc Transl Res.2012,5(1): 41-51.
    [7]Kim J Y, Xin X, Moioli E K, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing[J]. Tissue Eng Part A.2010,16(10):3023-3031.
    [8]Coleman M D, Shaefi S, Sladen R N. Preventing acute kidney injury after cardiac surgery[J]. Curr Opin Anaesthesiol.2011,24(1):70-76.
    [1]Khaleque T, Abu-Salih S, Saunders J R, et al. Experimental methods of actuation, characterization and prototyping of hydrogels for bioMEMS/NEMS applications[J]. J Nanosci Nanotechnol.2011,11(3):2470-2479.
    [2]Tongers J, Losordo D W, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease:promise, uncertainties, and challenges [J]. Eur Heart J. 2011,32(10):1197-1206.
    [3]Mercola M, Ruiz-Lozano P, Schneider M D. Cardiac muscle regeneration: lessons from development[J]. Genes Dev.2011,25(4):299-309.
    [4]Naderi H, Matin M M, Bahrami A R. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. J Biomater Appl.2011,26(4):383-417.
    [5]Giraud M N, Guex A G, Tevaearai H T. Cell therapies for heart function recovery:focus on myocardial tissue engineering and nanotechnologies[J]. Cardiol Res Pract.2012,2012:971614.
    [6]Jantunen E, Fruehauf S. Importance of blood graft characteristics in auto-SCT: implications for optimizing mobilization regimens [J]. Bone Marrow Transplant.2011, 46(5):627-635.
    [7]Tongers J, Losordo D W, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease:promise, uncertainties, and challenges [J]. Eur Heart J. 2011,32(10):1197-1206.
    [8]Khosla S, Westendorf J J, Modder U I. Concise review:Insights from normal bone remodeling and stem cell-based therapies for bone repair[J]. Stem Cells.2010, 28(12):2124-2128.
    [9]Kirton J P, Xu Q. Endothelial precursors in vascular repair[J]. Microvasc Res. 2010,79(3):193-199.
    [10]周建良,邹明晖,陈义初,等.共价结合血管内皮生长因子促进内皮祖细胞在去细胞瓣上的粘附和增殖[J].南方医科大学学报.2011(9):1474-1479.
    [11]周建良,邹明晖,胡行健,等.血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(10):2890-2895.
    [12]周建良,邹明晖,陈义初,等.人脐带血内皮祖细胞与血管内皮生长因子和碱性成纤维细胞生长因子共培养及其增殖和迁移能力[J].中国组织工程研究与临床康复.2011,15(6):1000-1004.
    [1]朱海龙,杨景学,张卫达,等.实验性自体移植静脉内膜增生模型的建立[J].第四军医大学学报.2000(05).
    [2]Vladic N, Ge Z D, Leucker T, et al. Decreased tetrahydrobiopterin and disrupted association of Hsp90 with eNOS by hyperglycemia impair myocardial ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol.2011,301(5):H2130-H2139.
    [3]Wang S, Qu X, Zhao R C. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med.2011,5(4):372-378.
    [4]Tian L, George S C. Biomaterials to prevascularize engineered tissues [J]. J Cardiovasc Transl Res.2011,4(5):685-698.
    [5]Khan O F, Sefton M V. Endothelialized biomaterials for tissue engineering applications in vivo[J]. Trends Biotechnol.2011,29(8):379-387.
    [6]Sacks M S, Schoen F J, Mayer J E. Bioengineering challenges for heart valve tissue engineering [J]. Annu Rev Biomed Eng.2009,11:289-313.
    [7]de Heer L M, Budde R P, Vonken E J, et al. Computed tomography detects tissue formation in a stented engineered heart valve[J]. Ann Thorac Surg.2011,92(1): 344-345.
    [8]Schmidt D, Dijkman P E, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves:a comprehensive approach from autologous vascular cells to stem cells[J]. J Am Coll Cardiol.2010,56(6):510-520.
    [9]Hara H, Schwartz R S. Transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis[J]. Circ J.2010,74(8):1513-1517.
    [10]Sales V L, Mettler B A, Engelmayr G J, et al. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves[J]. Tissue Eng Part A.2010,16(1):257-267.
    [11]Syedain Z H, Tranquillo R T. Controlled cyclic stretch bioreactor for tissue-engineered heart valves [J]. Biomaterials.2009,30(25):4078-4084.
    [12]GB/T16886.4医疗器械生物学评价第4部分:与血液相互作用试验选择[idtISO 10993-4)[S].
    [13]De Visscher G, Lebacq A, Mesure L, et al. The remodeling of cardiovascular bioprostheses under influence of stem cell homing signal pathways[J]. Biomaterials. 2010,31(1):20-28.
    [14]高建朝,何巍,郑宝石,等.兔深低温保存同种带瓣主动脉移植模型的研究[J].微创医学.2011(01).
    [15]刘隽炜,董念国,史嘉玮,等.应用四枝化状聚乙二醇-乙烯砜基交联去细胞带瓣管道的实验研究[J].中国胸心血管外科临床杂志.2011(04).
    [16]Davis M E, Hsieh P C, Grodzinsky A J, et al. Custom design of the cardiac microenvironment with biomaterials[J]. Circ Res.2005,97(1):8-15.
    [17]Naderi H, Matin M M, Bahrami A R. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. J Biomater Appl.2011,26(4):383-417.
    [18]Giraud M N, Guex A G, Tevaearai H T. Cell therapies for heart function recovery:focus on myocardial tissue engineering and nanotechnologies[J]. Cardiol Res Pract.2012,2012:971614.
    [19]Dong X, Wei X, Yi W, et al. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering[J]. J Mater Sci Mater Med.2009.
    [20]Deng C, Dong N, Shi J, et al. Application of decellularized scaffold combined with loaded nanoparticles for heart valve tissue engineering in vitro[J]. J Huazhong Univ Sci Technolog Med Sci.2011,31(1):88-93.
    [21]周建良,邹明晖,陈义初,等.共价结合血管内皮生长因子促进内皮祖细胞在去细胞瓣上的粘附和增殖[J].南方医科大学学报.2011(9):1474-1479.
    [22]Naderi H, Matin M M, Bahrami A R. Review paper:critical issues in tissue engineering:biomaterials, cell sources, angiogenesis, and drug delivery systems[J]. J Biomater Appl.2011,26(4):383-417.
    [23]Ye X, Zhao Q, Sun X, et al. Enhancement of mesenchymal stem cell attachment to decellularized porcine aortic valve scaffold by in vitro coating with antibody against CD90:a preliminary study on antibody-modified tissue-engineered heart valve[J]. Tissue Eng Part A.2009,15(1):1-11.
    [24]Hong H, Dong N, Shi J, et al. Fabrication of a novel hybrid scaffold for tissue engineered heart valve[J]. J Huazhong Univ Sci Technolog Med Sci.2009,29(5): 599-603.
    [25]Chawla K, Yu T B, Liao S W, et al. Biodegradable and biocompatible synthetic saccharide-Peptide hydrogels for three-dimensional stem cell culture [J]. Biomacromolecules.2011,12(3):560-567.
    [26]周建良,邹明晖,胡行健,等.血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J].中华临床医师杂志(电子版).2011,05(10):2890-2895.
    [27]周建良,邹明晖,陈义初,等.人脐带血内皮祖细胞与血管内皮生长因子和碱性成纤维细胞生长因子共培养及其增殖和迁移能力[J].中国组织工程研究与临床康复.2011,15(6):1000-1004.
    [28]Wedgwood S, Lakshminrusimha S, Farrow K N, et al. Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn[J]. Am J Physiol Lung Cell Mol Physiol.2012,302(6):L616-L626.
    [29]朱兵,徐世安,高红,等.兔颈动脉移植后血管内皮型一氧化氮合酶基因表达的变化及意义[J].中国胸心血管外科临床杂志.2005(02).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700