氨法制电锌新工艺及电积添加剂影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对用常规酸法处理工艺复杂的含杂质元素铁、镉、铜较高的氧化锌矿,采用了氨法工艺。着重研究和探讨了工艺流程选择、工艺参数优化及各参数对结果的影响。
     本工艺采用氯化铵—氨水溶液作浸出剂,使之与氧化锌矿反应得锌氨配合离子而使锌进入溶液。通过理论分析及探索实验确定浸出剂浓度为:NH_4Cl 5mol/L,NH_3·H_2O 2.5mol/L;通过正交实验考察温度,时间,液固比,转速这几个因素对锌矿浸出率的影响,确定浸出过程优化条件为:温度:40℃;时间:3h;液固比:8:1;转速:730r/min。在此优化条件下,锌矿浸出率可达74.2%。实验结果表明:液固比和时间对锌矿浸出率影响显著,其中液固比对浸出率影响最大;转速和浸出温度对锌矿浸出率影响不大。
     净化工艺中采用胶体吸附法除砷和锑;锌粉置换法除去铜、镉等其他标准电极电位比锌高的重金属离子。净化过程优化条件为:温度为常温25℃,净化时间为90min,FeCl_3和H_2O_2加入量分别为2.5 g/L和1.5ml/L,锌粉加入量为3g/L。净化后液达到电解标准。
     通过电积过程分析选择涂钌钛板为阳极,铝板为阴极。电积优化条件为:温度为常温;阴极电流密度为500A/m~2;异极距37mm;添加剂T-A胶、T-B和T-C醇加入量分别为0.1g/l、0.05 g/l和0.1g/l。在上述条件下可得到表面平整致密,符合工业要求的锌片。
     通过考察添加剂和锌离子浓度对电积工艺的影响得出:T-A胶量对电积工艺影响较大,T-A量过少或过多均会使镀层产生条纹或露底;T-B和T-C量对电积工艺影响较小。锌离子浓度对电积工艺影响很大,随着锌离子浓度的降低,合适的电流密度范围大大减小。
     综合电积实验表明通过该工艺可以得到符合工业要求的锌片,该工艺具有流程短、简单,原料广,锌回收率高,净化容易,常温操作能耗低,投资少,污染小等优点,是一种很有发展前景的新工艺。
According to the question that it is difficult to treat zinc oxide ores whichcontain many kinds of impurities such as Fe, Cd, Cu by usual acid process, this thesisstudy theammonia process, decide the flow, optimize the parameters and discuss theireffect on the result.
     In this process, a solution of NH4C1 and NH3 is used as leaching agent whichreacts with zinc oxide, and the zinc is dissolved in the form of Zn(NH_3)_i~(2+). Firstdecide the concentration of leaching agents as following: NH_4Cl 5mol/L, NH_3·H_2O2.5mol/L. Then study the effect of temperature, time, the ratio of liquid to solid,rotate speed on the ratio of zinc leaching by orthogonal test. The best leachingcondition is that the temperature is 40℃; the time is 3 hours; the ratio of liquid tosolid is 8:1 and the rotate speed is 730 r/min. Under this best condition the ratio ofzinc leaching can reach 74.2%. The orthogonal test also shows that effect of theratio of liquid to solid and time is significant and the former is the most significant,while rotate speed and temperature are not so.
     In the purification process, we use colloid to absorb the As and Sb, then use zincpowder to replace. Cu, Cd and so on which has higher electrode potential thanzinc.The best condition is that the temperature is normal temperature 25℃, the time is90 mins, the FeCl_3 and H202 is 2.5g/L and 1.5ml/L and the zinc is 3g/L. The liquid after purification accord the electrolysis standard.
     In the electrolysis process, we choose the titanium plate coated with rutheniumas anode material and the pure aluminium plate as cathode material. The bestcondition is that the temperature is normal temperature, the distance between twoelectrodes is 37mm and the quantities of additives T-A glue, T-B andT-C are 0.1g/l,0.05g/1 and 0.1g/1. Under these, conditions, the smooth and compact zinc plate can begot.
     The study on the effect of additives and concentration of Zn~(2+) onelectrodeposition process shows that the quantity of T-A glue has great effect onelectrodeposition process; while the T-B and T-C's effect is less. The concentration ofZn~(2+) has great effect on electrodeposition process too, as the concentration of Zn~(2+)reduce, the range of appropriate current density become narrow.
     The synthetical electrodeposition experiment shows that through this processwecan get zinc plate accord to industrial require. This process for treating zinc oxideores to produce electrolysis zinc has the advantages of simplified flow; many kindsof raw materials; high recovery rate of zinc; easy purification; operation at roomtemperature, low power consumption; little pollution and investment, and so on. Itmust be a new process that will develop well in future.
引文
1 梅光贵,王德润,周敬元,王辉.湿法炼锌学[M].长沙:中南大学出版社,2001.
    2 东北工学院有色重金属冶炼教研室等.锌冶金[M].北京:冶金工业出版社,1978.
    3 刘志宏.国内外锌冶炼技术的现状及发展动向[J].世界有色金属,2000,(1):23~26.
    4 王忠实.中国锌冶金现状[J].有色冶炼,1996,(6):1~5.
    5 陈邦俊.世界铅锌工业现状与展望[J].世界有色金属,1997,(5):19~24.
    6 杨声海.Zn(Ⅱ)—NH_3—NH_4Cl—H_2O体系制备高纯锌理论及应用[D].长沙:中南大学有色冶金系,2003.17-18.
    7 张保平.氨法处理氧化锌矿制电锌新工艺及其基础理论研究[D].长沙:中南工业大学有色金属冶金系,2001.26-41.
    8 《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003.
    9 彭容秋.有色金属提取冶金手册(锌镉铅铋)[M].冶金工业出版社,1992.
    10 Gray, P.The Warner process [metal recovery] [J]. Materials World, March 2006 (14), p 30-32
    11 Surapunt, Itagaki, Kimio.Thermochemical evaluation of new zinc production processes using liquid copper as smelting medium. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1994 (11), p 84-103.
    12 伊藤 聪等.用铁还原挥发法从锌焙砂中回收锌(上)[J].有色矿冶,1991(4):33~40.
    13 伊藤 聪等’用铁还原挥发法从锌焙砂中回收锌(下)[J].有色矿冶,1992(1):40~48.
    14 后藤佐吉,李敦.喷射炼锌法[J].中国有色冶金.1983,(8).
    15 后藤佐吉,李敦.喷射炼锌法的改进[J].中国有色冶金.1987,(6).
    16 J.O.Claassen, R.F.Sandenbergh.Influence of temperature and pH on the quality of metastable iron phases produced in zinc-rich solutions[J].Hydrometallurgy,2007, 86 (3): 178~190.
    17 李夏湘,何醒民.论常规法与热酸浸出黄钾铁矾法炼锌工艺流程的选择[J].湖南有色金属.2000,16(6):15~16.
    18 王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践[J].有色冶炼.2000,(2):19~22.
    19 钟竹前,梅光贵,李云瑶等.高温锌焙砂热酸浸出_亚硫酸锌还原_针铁矿法试验研究[J].1980,32(1):82~87.
    20 林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用[J].有色金属(冶炼部分),1996,(5):4~6
    21 M.Loan, O.M.G.Newman, R.M.G.Cooper etc.Defining the Paragoethite process for iron removal in zinc hydrometallurgy [J]. Hydrometallurgy, 2006, 81 (2): 104~129.
    22 P. A. Riveros, J. E. Dutrizac The precipitation of hematite from ferric chloride media[J]. Hydrometallurgy, 1997, 46 (1): 85~104.
    23 刘中清,唐漠堂.硫酸锌溶液低温锑盐除钻研究[J].湿法冶金,1999,72(4):22~27.
    24 郭天立.硫酸锌溶液逆锑净化实践[J].有色金属(冶炼部分),1995,(6):22~24.
    25 王德全,林茂森.砷净液与锑净液除钴的进展[J]_有色金属(冶炼部分),1995,(6):22~24
    26 夏光祥,方兆珩.高铁硫化锌精矿直接浸出新工艺研究[J].有色金属(冶炼部分),2001,(3):8~10
    27 戴祖源,周杰南.自氯化锌溶液中电积锌[J].有色金属(冶炼部分),1987,(1):22~25.
    28 曾振欧,赵瑞荣.酸性氯化物水溶液电积锌初探[J].湖南有色金属,1990,(20):37~41.
    29 曾振欧.氯化物水溶液电积锌的电极过程动力学[J].中南矿冶学院学报,1989,20(1):45~51
    30 J.L.Limpo, A. Luis.Solubility. of zinc chloride in ammoniacal ammonium chloride solutions [J].Hydrometallurgy, 1993, 32 (2): 247~260.
    31 J. L. Limpoa, J. M. Figueiredob, S. Amera, A. Luisa.The CENIM-LNETI process: a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions [J]. Hydrometallurgy, 1992, 28 (2): 149~161.
    32 J. L. Limpo, A. Luis, C. Gomez. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process[J]. Hydrometallurgy, 1992, 28 (2): 163~178.
    33 Olper, M. EZINEX process. A new and advanced way for electrowinning zinc from a chloride solution. Proceedings of the International Symposium on Zinc, 1993: 491
    34 Olper, M. EZINEX process.TMS Annual Meeting, EPD Congress 1994.1994:513
    35 王凤琴.国内外氧化锌矿的处理方法[J].有色矿冶,1994(1):31~35.
    36 谢颂明.氨浸法制取活性氧化锌[J].无机盐工业,1995(4):8~10.
    37 倪景清.氨—碳酸铵法生产活性氧化锌工艺研究[J].无机盐工业,1992:2~5
    38 唐膜堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118~121
    39 杨新生.氨浸过程浅析[J].有色矿冶,1993(1):34~38.
    40 张铁茂,丁建国编著.试验设计与数据处理[M].北京:兵器工业出版社,1990.
    41 陈家镛,于淑秋,伍志春编著.湿法冶金中铁的分离与利用[M].北京:冶金工业出版社,1991.
    42 陈延禧编著.电解工程[M].天津:天津科学技术出版社,1993.
    43 曹华珍,郑国渠,支波等.氨络合物体系电积锌的阴极过程[J].中国有色金属学报.2005,15(4):655~660.
    44 唐谟堂,杨声海.Zn(Ⅱ)—NH_3—NH_4Cl—H_2O体系电积锌工艺及阳极反应机理[J].中南工业大学学报.1999,30(2):153~156.
    45 李仕雄,刘爱心.电解液质量对锌电积过程的影响及其在线控制.中国有色金属学报,1998,8(3):519~522.
    46 哈尔滨工业大学电化学工学教研室编.电镀工艺学[M].哈尔滨:哈尔滨市工业先进技术交流馆,1980.
    47 沈品华,屠振密编著.电镀锌及锌合金[M].北京:机械工业出版社,2002.
    48 查全性等著.电极过程动力学导论[M].北京:科学出版社,2002.
    49 冯辉.二次锌电极及抑制枝晶添加剂的研究[J].郑州工业大学学报.2001,22(1):78~80.
    50 高翠琴,王志勇,周运鸿.碱性电池中锌电极添加剂的研究[J].电池工业.1999,4(2):47~50.
    51 张莉,王建明,张春等.添加剂对碱性锌电极电化学行为的影响[J].浙江大学学报.2000,27(5):525~529.
    52 高翠琴,罗列超,石建珍等.有机物添加剂对碱性锌电极的影响[J].武汉大学学报(自然科学版).1999,45(4)427~431.
    53 赵维蓉,张胜义,章于川等.表面活性剂化学[M].合肥:安徽大学出版社,1997.
    54 刘程,江小梅,李宝珍等编著.表面活性剂应用大全[M].北京:北京工业大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700