催化湿式氧化法处理炼油碱渣废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼油碱渣是石油炼制工业进行油品碱洗精制时产生的废碱液,含有酚类物质和有机硫化物等大量有毒有机物,生物降解性差,常规处理效果不理想,给环境造成严重污染。本文为解决中国石油化工股份有限公司长岭分公司炼油碱渣废水处理的技术难题,对湿式氧化及其强化处理工艺进行了研究,重点对催化湿式氧化法处理炼油碱渣废水催化剂的制备及其处理碱渣废水性能进行了研究,并对Mn基催化剂催化湿式氧化处理碱渣废水反应机理进行初探。
     湿式氧化法处理炼油碱渣废水研究表明:氧分压与处理效果呈正相关,当氧分压达2.0MPa即理论需氧量的1.18倍时,COD去除率达71.43%,且当供氧量不低于理论需氧量的0.59倍时,可从根本上解决结焦问题;采用酸化回收—湿式氧化组合工艺,酸化后COD去除71.9%[0],后续湿式氧化COD去除40.7%,总COD去除率为83.3%;采用酸化回收(后调节pH)—湿式氧化(+双氧水)组合工艺,经酸化(后调节pH)后废水COD去除78.1%[0],后续湿式氧化COD去除率提升至74.9%[0],总COD去除率高达94.4%;加入催化剂后,湿式氧化效果有明显提高。
     研制出适合碱渣废水的湿式氧化催化剂MnO_x/γ-Al_2O_3和MnOx-CeO_x/γ-Al_2O_3,MnO_x/γ-Al_2O_3对碱渣废水处理表现出较高的活性及稳定性,稀土元素Ce的加入则进一步提高了其性能。催化剂表征结果:处理碱渣废水后催化剂表面存在较多的有机官能团,结构中存在MnCO3和Al_(45)O_(45)(OH)_(45)Cl。Mn基催化剂催化湿式氧化处理炼油碱渣废水,当氧分压2MPa,反应温度220℃,催化剂用量2g/L时,废水COD去除率达91.33%;催化剂重复使用3次,COD去除率保持在85%以上,再生后催化剂活性提升1.83%,催化剂具有较好的稳定性。
     本文还对催化湿式氧化反应机理进行初步探讨,从理论上得出高的氧分压有利于提高反应速率;而锰负载量过高或者催化剂的投加过量时会抑制氧化反应,产生负催化作用;掺杂CeO_2可提高MnO_x/γ-Al_2O_3催化剂催化活性及稳定性。
Refinery spent caustic is a kind of spent alkali liquor produced in refinery industry of petroleum. The content of toxic organic compound such as phenol and organic is very high in the petrochemical spent caustic wastewater which results in the poor biodergradation, and poor performance of conventional treatment process and exerts a serious pollution on the environment. For solving the technical problems of refinery spent caustic of Changling branche of China Petrochemical Corp. This paper investigated the technology, the catalyst properties of treating refinery spent caustic wastewater in wet oxidation, and explored wastewater treatment mechanism of the reaction of wet oxidation catalyst.
     The study of Wet oxidation of refinery spent caustic wastewater was found: oxygen partial pressure was positively correlated with the effect of the treatment. When oxygen partial pressure increased to 2.0 MPa which is 1.18 times of the theory value, 71.43% COD removal efficiency can be acquired. At the same time, we founded, when the amount of oxygen which is not lower than 0.59 times of the theoretical strength, the problem of coking can be fundamentally resolved. 83.3% total COD removal rate was obtained by the combination process of acidification-wet oxidation for disposal refinery spent caustic wastewater; while 94.4% total COD removal rate was got by the assembled process of acidification-wet oxidation for treating refinery spent caustic wastewater. The effects of wet air oxidation was obviously improved, when homogeneous metal catalysts was Added.
     In this paper, MnO_x/γ-Al_2O_3, MnO_x-CeO_x/γ-Al_2O_3 and manganese oxides were studied for suitable refinery spent caustic wet oxidation. The results indicated that MnO_x/γ-Al_2O_3 showed high activity and stability in the system, the adding of Ce further improve its performance. Catalyst characterization results: it can been seen that the reaction of catalyst surface has more organic functional; and reaction catalyst phase of the changes reaction catalyst structure exists MnCO_3 and Al_(45)O_(45)(OH)_(45)Cl.
     This paper study the base of Mn catalyst for treating the refinery spent caustic wastewater, The removal efficiency of COD was 91.33% with the dose of catalyst 2.0 g/L at reaction temperature of 220℃and oxygen partial pressure of 2.0 MPa. More than 85.0% of COD removal rate can maintain to 10%MnO_x/γ-Al_2O_3 catalyst reused three times, and its catalytic activity was increased 1.87% by regeneration; The results indicated that the reusable catalyst can restored a high activity. and reached good stability.
     The mechanism of catalytic wet oxidation reaction was explored, high oxygen partial pressure can effectively raise the rate of reaction in theoretics, while loading and manganese catalyst too high or excessive dosage will inhibit oxidation reactions and produce negative catalyst, and adding CeO2 can enhance the activity and stability of MnOx/γ-Al_2O_3 catalyst.
引文
[1] 李静华主编. 石油化学工业固体废物治理[M]. 中国环境科学出版社. 1992,12-15
    [2] 中国石油化工总公司碱渣处理调查小组.沿江五炼厂碱渣处理技术调查[J].石油化工环境保护, 1986(1):54
    [3] 中国石油化工总公司碱渣处理调查小组,关于炼油厂碱渣及其污水的治理调查[J].炼油设计, 1986(2), 54
    [4] 刘天齐主编. 石油化工环境保护手册[M]. 烃加工出版社. 1990.
    [5] 钱伯章等译,美国石油学会编. 炼油厂废水处理手册[M]. 烃加工出版社. 1986.
    [6] 张方西编. 含酚废水的处理与利用[M]. 化学工业出版社.1983.
    [7] 曹炳炎主编. 石油化工毒物手册[M]. 中国劳动出版社. 1992.
    [8] 乌锡康主编. 有机废水治理技术[M]. 烃加工出版社(第一版). 1999.
    [9] 张振择. 碱渣处理装置的现状与展望[J].石油化工环境保护,1998(2): 48-52.
    [10] 卢功资等. 炼油厂油品精制和碱渣处理现状、问题与发展. 国石化总公司环境保护科技情报中心站,1992.
    [11] 唐受印, 戴友芝. 废水处理水热氧化技术[M]. 化学工业出版社.2002, 3-27.
    [12] 杨润昌等.高难度难降解有机废水低压湿式催化氧化处理[J].环境科学. 1997,18(2): 71
    [13] J.N.Foussard. Wet Peroxide Oxidation for Industrial Waste Water Treatment[J]. Genic.Renact, 1991, 16(5): 177-185.
    [14] 赵国方, 赵宏斌. 有机废液湿式氧化处理现状与进展[J].江苏化工, 2000, 28: 23-25.
    [15] 许谦等. 台湾中油公司的环保现状[J].石油化工环境保护, 1998, 1: 57-62.
    [16] 杨琦等. 国外对污水湿式氧化处理的研究进展[J].环境科学研究, 1998, 11: 62-64.
    [17] Liu Yogsong. Treatment of Phenol-containing waster water by sequencing contact stabilization process[J]. Water Treatment, 1990, 5(1):77-86.
    [18] 石璐,唐受印.湿式空气氧化法的工艺及应用进展[J].湘潭大学学报(自然科学版), 2002,199-200.
    [19] 肖晔远,史云鹏.湿式氧化处理污水的应用现状及展望[J].工业用水与废水, 2002, 32: 5-7.
    [20] 李洪仁等.湿式氧化法处理工业污水的应用与展望[J].工业水处理, 1999, 19: 10-11.
    [21] 李锋,李建夫,李光明.超临界水氧化技术的研究与应用进展[J]. 工业用水与废水, 2001, 32: 8-10.
    [22] 韩建华.炼油厂含硫碱渣处理工艺[J]. 石油化工环境保护.2000, 1: 34-41.
    [23] 邓德刚,韩建华. 碱渣缓和湿式氧化处理工艺的工业应用[C]. 中国石化集团公司炼油行业环保专业技术协作组 2002 年年会论文集. 2002.
    [24] 李英华, 陈宏德. 负载汽车催化剂简介[J]. 环境科学进展, 1999, 7: 52-60.
    [25] 杨少霞,冯玉杰,万家峰,蔡伟民. 湿式催化氧化技术的研究与发展概况[J].哈尔滨工业大学学报, 2002, 34: 540-544.
    [26] Imamuras. Wet oxidation catalyzed by ruthenium supported on cerium[J]. Ind Eng Chem , 1988, 27:718-721.
    [27] OKITSUK, HIGALLENBR, NAGATAK. Wet oxidation catalyzed by ruthenium [J].Ind Eng Chem, 1995, 34:208-213.
    [28] 村上幸夫. 合成有机化合物物废水的湿式酸化处理的研究[J]. 水处理技术,1998,19:901-909.
    [29] FOIZTUNY A,BENGOA C,FONTA. Binrtallic catalysts for continuous catalytic uet air oxidation of phenol[J]. J of Hazardous Mater:B, 1999, (64)1: 81-93.
    [30] 宾月景,祝万鹏,蒋展鹏等.催化湿式催化剂及处理技术研究[J]. 环境科学, 1999, 20: 42-44.
    [31] 谭亚军, 蒋展鹏, 祝万鹏等.用于有机污染物湿式氧化的 Cu 系催化剂活性研究[J]. 化工环保, 2000 , 20: 6-10.
    [32] 谭亚军,蒋展鹏,祝万鹏等. 有机污染物湿式催化氧化降解中 Cu 系催化剂的稳定性[J]. 环境科学, 2000 , 21: 82-85.
    [33] 刘建荣等. 催化氧化处理含酚废水[J].中国给水排水,1992, 8: 44-47.
    [34] 秋常研二. 湿式媒触酸化法处理有机废水[J].日化协月报, 1976, 29: 9-17.
    [35] PUTNAES, BUNLUESINT, FANXL. Ceriafilmonzirconia substrates: models for understanding oxygen-storage properties [J]. CatalToday , 1999 , 50: 343-352.
    [36] 王幸宜, 汪仁等. 氧化铈在非贵金属催化剂中的作用[J]. 高等学校化学学报, 1994, 15(6): 895-898.
    [37] OLIVIEROL, BARBIERJ, DUPREZD, etal. Catalyic wet oxidation of phone and a crylic acid over Ru/C and Ru-CeO2 /catalyst [J]. Appl Catal , 2000 , 25:267-275.
    [38] MAMURAS, AKLRAD .Wet oxidation of ammonia catalyzed by cerium based composite[J]. Ind Eng Chem Res Dev, 1985, 24:75-80.
    [39] 国家环保局编.水和废水检测分析方法[M].中国环境科学出版社,1989.
    [40] 雷乐成.水处理高级氧化技术[M].化学工业出版社,2001.
    [41] Tania Mara S.Carlos,Rio de Janeiro,etal. Wet air oxidation of refinery spent caustic: a refinery case study(R),NPRA Conference,San Antonio,Texas September 12,2000.
    [42] 曾新平, 唐文伟, 赵建夫等.湿式氧化处理高浓度难降解有机废水研究[J].环境科学学报, 2004, 24(6):945-949.
    [43] 卢义程等,高浓度乳化废水处理中铜系催化剂催化活性比较[J].上海环境科学,2002, 12(4):199-201.
    [44] Sadanan A.etal. Ind. Eng.Chem.Fundam.1974, (13):127.
    [45] 今村存一郎等,水处理技术,1981, 22(3): 9.
    [46] 宾月景等,催化湿式氧化催化剂及处理技术研究[J].环境科学,1999, 20 (2):42-44.
    [47] 陈天虎,汪家权,天然锰矿物催化氧化法处理含硫废水研究[J].环境科学,1992,14(4):58-62.
    [48] Imamuras, NakamuraM ,KawabataN ,YoshidaJI."Wet oxidation of poly(ethylene glycol) catalysed by manganeset cerium composite oxide"[J]. Ind Eng Chem Res Dev 1986, 25(1):34-37.
    [49] Leitenburg C. etal. Wet Oxidation of Acetic Acid Catalyzed by Doped Ceria[J]. Applied Catalysis B: Environmental.1996, 11: L29-L35.
    [50] Haiyan Chen etal. Composition-activity effects of Mn-Ce-O composites on phenol catalytic Wet oxidation[J]. Applied Catalysis B:Environmental.2001, 31: 195-204.
    [51] 蒋晓原等, CeO2 对 CuO/Al_2O_3 分散状态及催化性能的影响[J].分子催化, 1999, 13(3): 176-180.
    [52] 卢冠忠,王幸宜,汪仁. Cu-Fe-Ce-O/γ-A12O3 催化 CO+NO 反应的 TP-FT-IR 研究[J]. 分子催化, 1995, 9(1): 53-58.
    [53] Badri, Binet C, Lavalley C. Use of methanol as an IR molecular probe to study the surface of polycrystalline ceria[J]. J. Chem. Soc. Faraday Trans, 1997, 93(6): 1159~1168.
    [54] 张蓓.石化碱渣废水催化湿式氧化处理工艺及机理研究〔D〕.上海:同济大学污染控制与资源化研究国家重点试验室,2003.
    [55] Liu Yan, Luo Mengfei, Wei Zhaobin, et al. Catalytic Oxidation of Chlorobenzene on Supported Manganese Oxide Catalysts[J]. App1 Cata1 B,2001,29:61~67.
    [56] 清山哲郎. 金属氧化物及其催化作用[M].中国科学技术大学出版社,1989.
    [57] 郑红, 汤鸿宵. 锰矿砂对取代酚的光催化作用研究[J]. 环境科学学报,1999, 19(5): 550-555.
    [58] (英)G.C.Bond. 多相催化作用-原理及应用[M]. 北京大学出版社,1982.
    [59] (美)S.N.Satterfield. 实用多相催化[M]. 北京大学出版社,1990.
    [60] Pintar,A;Levec,J. ”Catalytic Oxidation of Organics in Aqueous Solution:Kinetics of Phenol Oxidation” [J]. Journal of Catalysis, 1992, 135: 345-347.
    [61] Emanual NM,etal,”oxidation of organic compounds”.Pergamon Press,NEWYork,NY,1984
    [62] 罗孟飞, 袁贤鑫, 周烈华.氧化铈对氧化锰表面氧脱附与恢复性能的影响[J]. 高等化学学报, 1994, 15(9): 1373-1376.
    [63] 罗孟飞, 陈敏, 周烈华等. 铈-锰复合氧化物催化剂表面氧的性质[J]. 高等化学学报,1993, 14(5): 708-710.
    [64] 罗孟飞, 朱波, 袁贤鑫. 氧化铈对氧化锰结构与催化性能的影响[J]. 中国稀土学报,1995, 13(1): 31-35.
    [65] 蒋晓原等,CeO_2 对 CuO/Al_2O_3 分散状态及催化性能的影响[J].分子催化,1999, 13(3):176-180.
    [66] Barbier Jr. J, Delanoe. F, Jabouille. F, et al. Total Oxidation of Acetic Acid in Aqueous Solutions over Noble Metal Catalysts[J]. J Catal, 1998, 177: 378-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700