变色腈纶纤维与功能化腈纶纤维催化剂的设计、合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腈纶纤维因其独特的结构和性能被广泛应用于纺织和服装领域,近年来腈纶纤维的功能化发展非常迅速并成为化学家研究的热点。本论文在腈纶纤维功能化的研究基础上,通过对腈纶纤维的有效修饰,得到了重金属离子吸附变色纤维、酸碱双变色纤维、叔胺功能化纤维催化剂、多胺功能化纤维催化剂和脯氨酸功能化纤维催化剂。
     设计合成了4-(2-吡啶偶氮)间苯二酚(PAR)功能化的重金属离子吸附变色纤维,并通过表征证实了PAR通过C–N共价键连接到纤维上,对该功能化纤维吸附金属离子的变色性能和吸附变色机理进行了系统的研究;发现该PAR功能化纤维在pH=6的条件下只对重金属离子吸附变色(如Hg~(2+)、Pb~(2+)、Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)等),对轻金属离子不变色(如Ca~(2+)、Mg~(2+)、Al~(3+)等);其选择性随着pH的下降而提高,当pH=3时,该纤维只对Hg~(2+)和Cu~(2+)选择性变色;裸眼检测限达1×10~(–6)mol/L;具有很高的重复变色性能(50次以上);很好的耐日光性(日光照射30天,吸附变色性能不变)。
     设计合成了具有双变色功能基团的酸碱变色纤维,并通过表征证实了乙基橙和酚酞基团通过C–N共价键连接到纤维上;对该功能化纤维的光谱性质、变色性能和变色机理进行了系统的研究;发现该酸碱双变色纤维在中性条件下为鲜黄色,遇酸变为深粉色,遇碱变为深紫色,颜色变化明显,易区分,pH变色范围分别为0-1和13-14;该纤维对多种酸碱溶液均响应变色(如柠檬酸、盐酸、硫酸、氢氧化钠、氢氧化钙、磷酸钠等等);可重复变色300次以上;且对强酸强碱和光都具有很好的稳定性(日光照射60天,变色不受影响)。
     设计合成了系列单胺型和多胺型的功能化纤维催化剂。首次对单胺型含有伯、仲、叔胺基团的功能化纤维催化剂催化Knoevenagel反应的活性进行考察和筛选,对催化效果最好的叔胺功能化纤维催化剂进行了深入的研究,对叔胺功能化纤维催化剂的结构和表面形貌等进行了系统表征。对其催化Knoevenagel缩合的反应条件、溶剂适用性、底物的扩展、可重复使用性等进行了系统的研究。实验发现该纤维催化剂可在多种有机溶剂中高效催化Knoevenagel缩合反应,收率均在90%以上;底物的适用性非常广泛;纤维催化剂重复使用10次,催化性能几乎不变。
     在合成的一系列多胺(如二乙烯三胺、三乙烯四胺等)功能化纤维催化剂中,选择对Knoevenagel反应催化效果最好的三乙烯四胺功能化纤维催化剂进行深入的研究;对三乙烯四胺功能化纤维催化剂的结构和表面形貌等进行了系统表征。对其催化Knoevenagel缩合反应条件、溶剂适用性、底物的扩展、可重复使用性等都分别进行了系统的研究。实验发现该纤维催化剂可在水中高效催化Knoevenagel缩合反应,收率均在94%以上;以水作为溶剂绿色、经济、环保;底物的适用性非常广泛;纤维催化剂重复使用21次,催化活性略有下降,但适当延长反应时间,反应收率仍接近定量(98%)。
     最后,本文首次将催化领域研究热点的脯氨酸引入到纤维上,设计合成了脯氨酸功能化纤维催化剂,并对该纤维催化剂的结构和表面形貌等进行了系统表征。对其催化Knoevenagel缩合反应的反应条件、溶剂适用性、底物的扩展、可重复使用性等进行了系统的研究。实验发现该纤维催化剂可在醇类溶剂中高效催化Knoevenagel反应,收率均在92%以上,底物的适用性广泛,催化剂用量少(2mol%),甚至当纤维催化剂为0.5mol%时,通过延长反应时间,收率仍可接近定量(98%)。该脯氨酸功能化纤维催化剂可重复使用20次以上。
Polyacrylonitrile fiber is widely used in textile and garment area for its uniquestructure and properties. In recent years, the functionalization of polyacrylonitrilefiber has been developed rapidly and become interest of the chemists. Based on thefunctionalization of polyacrylonitrile fiber, this paper provides a colorimetric fiber forheavy metal ions detection and adsorption, a dual colorimetric fiber for acids andbases detection, a tertiary-amine functionalized fiber catalyst, a series of polyaminefunctionalized fiber catalysts, and a proline functionalized fiber catalyst.
     A4-(2-pyridylazo)-1,3-benzenediol (PAR) functionalized colorimetric fiber forheavy metal ions detection and adsorption has been designed and synthesized. Thisfiber has been fully characterized and PAR has been confirmed to be covalentlygrafted on the fiber by the C–N bond formation. The color change capabilities andmechanism of the fiber have been systemically studied. After adsorbing heavy metalions at pH=6(such as Hg~(2+), Pb~(2+), Cd~(2+), Zn~(2+), Ni~(2+)and Cu~(2+)), this fiber changed itscolor from red orange to dark-brown. However, no color change was observed forlight metal ions such as Ca~(2+), Mg~(2+)and Al~(3+). The selectivity of the fiber increasedwith the pH value decreased. The fiber changed its color only for Hg~(2+)and Cu~(2+)at pH=3. This fiber also presented a high visual detection limit (1×10~(–6)mol/L), excellentreusability (>50times) and high photostability (>30days under direct exposure tosunlight with no loss in capability of color change and adsorption for heavy metalions).
     A dual colorimetric fiber based on ethyl orange and phenolphthalein for acids andbases has been designed and synthesized. This fiber has been fully characterized.Ethyl orange and phenolphthalein have been confirmed to be covalently grafted on thefiber by the C–N bond formation. The spectroscopic properties, color changecapability and mechanism of the fiber have been systemically studied. This fiberpresented a fresh yellow color in neutral condition, deep pink in acidic condition (pH=0-1) and dark violet in basic condition (pH=13-14), which was easy to bedistinguished. The color change of the fiber could be induced by many acid or basesolutions such as citric acid, HCl, H2SO4, NaOH, Ca(OH)2and Na3PO4. This fiber also presented excellent reusability (>300times), good stability in strong acid andbase, and high photostability (>60days under direct exposure to sunlight).
     In addition, series of monoamine and polyamine functionalized fiber catalystshave been designed and synthesized. For the monoamine functionalized fiber catalystscontaining primary, secondary and tertiary-amine, the catalytic activities of these fibercatalysts have been evaluated and the tertiary-amine functionalized fiber catalyst withhighest catalytic activity was selected for detail research. The structure and surface ofthe fiber catalyst have been characterized. The Knoevenagel reaction conditions,solvent effect, substrate expansion and reusability have been systemically studied.This fiber catalyst could efficiently catalyze Knoevenagel condensation in variousorganic solvents (yield>90%). This catalyst was applicable to many substrates andpresented excellent reusability (10times, almost no loss in catalytic activity).
     For the polyamine (such as diethylenetriamine and triethylenetetramine)functionalized fiber catalysts, the catalytic activities of these fiber catalysts have beenevaluated and the triethylenetetramine fiber catalyst with the highest catalytic activitywas selected for detail research. The structure and surface of the fiber catalyst havebeen characterized. The reaction conditions, solvent effect, substrate expansion andreusability have been systemically studied. This fiber catalyst could efficientlycatalyze Knoevenagel condensation in water (yield>94%). Water was used as thesolvent for its green, economic and eco-friendly. This fiber catalyst was applicable tomany substrates and presented excellent reusability (21times, a slightly decrease,after prolonging the reaction time, an almost quantitative yield98%was obatained).
     Proline, which is one of the hotspots in the catalytic field, was firstly introducedinto the fiber and a proline functionalized fiber catalysts have been designed andsynthesized. The structure and surface of the fiber catalyst have been characterized.The reaction conditions, solvent effect, substrate expansion and reusability have beensystemically studied. This fiber catalyst could efficiently catalyze Knoevenagelcondensation in acohol (yield>92%). This catalyst was applicable to many substratesand presented excellent reusability (20times, almost no loss in catalytic activity).Catalyst loading was only2mol%. Even decreased the catalyst loading to0.5mol%,an almost quantitative yield98%was able to obtain by prolonging the reaction time.
引文
[1]高洁,王香梅,李青山,功能纤维与智能材料,北京:中国纺织出版社,2004.
    [2]曾汉民,功能纤维,北京:化学工业出版社,2005.
    [3] Jia Z., Yang Y., Surface modification of polyacrylonitrile (PAN) fibers by graftingof natural polymer-soybean protein (SP). Polym. Bull.,2007,59,13-23.
    [4] Qiao H., Cai Y., Chen F., et al., Influences of organic-modified Fe-montmorilloniteon structure, morphology and properties of polyacrylonitrile nanocomposite fibers.Fiber Polym.,2009,10,750-755.
    [5] Saeed K., Park S.-Y., Oh T.-J., Preparation of Hydrazine-modifiedpolyacrylonitrile nanofibers for the extraction of metal ions from aqueous media. J.Appl. Polym. Sci.,2011,121,869-873.
    [6] Deng S., Bai R., Chen J. P., Aminated polyacrylonitrile fibers for lead and copperremoval. Langmuir,2003,19,5058-5064.
    [7] Deng S., Bai R., Removal of trivalent and hexavalent chromium with aminatedpolyacrylonitrile fibers: performance and mechanisms. Water Res.,2004,38,2424-2432.
    [8] Zhang L., Zhang X., Li P., et al., Effective Cd2+chelating fiber based onpolyacrylonitrile. React. Funct. Polym.,2009,69,48-54.
    [9] Bagheri B., Abdouss M., Aslzadeh M.M., et al., Efficient removal of Cr3+, Pb2+and Hg2+ions from industrial effluents by hydrolyzed/thioamidatedpolyacrylonitrile fibers. Iran. Polym. J.,2010,19,911-925.
    [10] Wen B., Shan X.-Q., Lian J., Separation of Cr(III) and Cr(VI) in river andreservoir water with8-hydroxyquinoline immobilized polyacrylonitrile fiber fordetermination by inductively coupled plasma mass spectrometry. Talanta,2002,56,681-687.
    [11] Yu L., Yan D., Sun G., et al., Preparation and characterization of pH-sensitivehydrogel fibers based on hydrolyzed-polyacrylonitrile/soy protein. J. Appl.Polym. Sci.,2008,108,1100-1108.
    [12] Shen X., Ji Y., Wang J., Preparation and pH-sensitivity of polyacrylonitrile (PAN)based porous hollow gel fibers. J. Appl. Polym. Sci.,2008,110,313-320.
    [13] Zhang L., Li Z., Chang R., et al., Synthesis and characterization of novelphenolphthalein immobilized halochromic fiber. React. Funct. Polym.,2009,69,234-239.
    [14] Zhang C., Li Y., Wang W., et al., A novel two-nozzle electrospinning process forpreparing microfiber reinforced pH-sensitive nano-membrane with enhancedmechanical property. Eur. Polym. J.,2011,47,2228-2233.
    [15] Jain S., Chattopadhyay S., Jackeray R., et al., Surface modification ofpolyacrylonitrile fiber for immobilization of antibodies and detection of analyte.Anal. Chim. Acta,2009,654,103-110.
    [16] Eren E., Removal of copper ions by modified Unye clay, Turkey. J. Hazard.Mater.,2008,159,235-244.
    [17] Choi H.-D., Jung W.-S., Cho J.-M., et al., Adsorption of Cr(VI) onto cationicsurfactant-modified activated carbon. J. Hazard. Mater.,2009,166,642-646.
    [18] El-Safty S.A., Ismail A.A., Matsunaga H., et al., Optical nanosensor design withuniform pore geometry and large particle morphology. Chem. Eur. J.,2007,13,9245-9255.
    [19] El-Safty S.A., Prabhakaran D., Ismail A.A., et al., Nanosensor design packages:A small and compact development for metal ions sensing responses. Adv. Funct.Mater.,2007,17,3731-3745.
    [20] Lee S.J., Lee J.-E., Seo J., et al., Optical sensor based on nanomaterial for theselective detection of toxic metal ions. Adv. Funct. Mater.,2007,17,3441-3446.
    [21] Poplin J.H., Swatloski R.P., Holbrey J.D., et al., Sensor technologies based on acellulose supported platform. Chem. Commun.,2007,2025-2027.
    [22] Gupta V.K., Jain A.K., Kumar P., PVC-based membranes ofN,N’-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selectivesensor. Sens. Actuators, B,2006,120,259-265.
    [23] Oter O., Ertekin K., Kirilmis C., et al., Spectral characterization of a newlysynthesized fluorescent semicarbazone derivative and its usage as a selectivefiber optic sensor for copper(II). Anal. Chim. Acta,2007,584,308-314.
    [24] Sands T.J., Cardwell T.J., Cattrall R.W., et al., A highly versatile stable opticalsensor based on4-decyloxy-2-(2-pyridylazo)-1-naphthol in nafion for thedetermination of copper. Sens. Actuators, B,2002,85,33-41.
    [25] Morishima Y., Sato T., Kamachi M., Spectroscopic studies of competitivebinding of thallium and alkaline-earth metal cations onto poly(sodiumacrylate-co-acrylamide) tagged with optical probes. Macromolecules,1996,29,3960-3964.
    [26] Shunkevich A.A., Akulich Z.I., Mediak G.V., et al., Acid-base properties of ionexchangers. III. Anion exchangers on the basis of polyacrylonitrile fiber. React.Funct. Polym.,2005,63,27-34.
    [27] Goldstein G., Maddox W.L., Kelley M.T., Spectrophotometric analysis with theGeMSAEC fast analyzer. Determination of zinc using4-(2-pyridylazo)resorcinol(PAR). Anal. Chem.,1974,46,485-489.
    [28] Ahrland S., Herman R.G., Spectrophotometric determination of manganese(II)and zinc(II) with4-(2-pyridylazo)resorcinol (PAR). Anal. Chem.,1975,47,2422-2426.
    [29] Ghasemi J., Peyman H., Meloun M., Study of complex formation between4-(2-pyridylazo)resorcinol and Al, Fe, Zn, and Cd ions in an aqueous solution at0.1M ionic strength. J. Chem. Eng. Data,2007,52,1171-1178.
    [30] Xiong C.H., Yao C.P., Study on the adsorption of cadmium(II) from aqueoussolution by D152resin. J. Hazard. Mater.,2009,166,815-820.
    [31] Yusof N.A., Ahmad M., Development of a flow-through optosensor fordetermination of Co(II). Spectrochim. Acta, Part A,2008,69,413-418.
    [32] Schnell S., Ratering S., Jansen K.-H., Simultaneous determination of ion(III),ion(II), and manganese(II) in environmental samples by ion chromatography.Environ. Sci. Technol.,1998,32,1530-1537.
    [33] Fischer H.-J., Lieser K.H., Cellulose exchangers with tailor-made chelatinggroups for selective separation of uranium. Fresenius J. Anal. Chem.,1993,346,934-942.
    [34] Arend M., Westermann B., Risch N., Modern variants of the Mannich reaction.Angew. Chem. Int. Ed.,1998,37,1044-1070.
    [35] Habata Y., Akabori S., Bradshaw J.S., et al., Synthesis of armed anddouble-armed macrocyclic ligands by the Mannich reaction: A short review. Ind.Eng. Chem. Res.,2000,39,3465-3470.
    [36] Joshi N.S., Whitaker L.R., Francis M.B., A three-component Mannich-typereaction for selective tyrosine bioconjugation. J. Am. Chem. Soc.,2004,126,15942-15943.
    [37] Harnsberger B.G., Riebsomer J.L., The influence of alkyl substituents on the ratesof hydrolysis of2-imidazolines. J. Hetero. Chem.,1964,1,188-192.
    [38] Lisitskii V.V., Akhmetchenko Z.A., Alekhina I.E., et al., Hydrolysis of2-substituted and1,2-disubstituted imidazolines. Russ. J. Appl. Chem.,2007,80,761-766.
    [39] Badawy S.M., Dessouki A.M., Cross-linked polyacrylonitrile prepared byradiation-induced polymerization technique. J. Phys. Chem. B,2003,107,11273-11279.
    [40] Liu R.X., Zhang B.W., Tang H.X., Synthesis and characterization ofpoly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibre. React. Funct.Polym.,1999,39,71-81.
    [41] Rouhani S., Salimi S., Haghbeen K., Development of optical pH sensors basedon derivatives of hydroxyazobenzene, and the extended linear dynamic rangeusing mixture of dyes. Dyes Pigments,2008,77,363-368.
    [42] Wang S., Choi M.-S., Kim S.-H., Multiple switching photochromicpoly(N-isopropylacrylamide) with spironaphthoxazine hydrogel. Dyes Pigments,2008,78,8-14.
    [43] Leng B., Jiang J., Tian H., A mesoporous silica supported Hg2+chemodosimeter.Aiche J.,2010,56,2957-2964.
    [44] Kim S.-H., Hwang I.-J., Gwon S.-Y., et al., Photoregulated optical switching ofpoly(N-isopropylacrylamide) hydrogel in aqueous solution with covalentlyattached spironaphthoxazine and D-π-A type pyran-based fluorescent dye. DyesPigments,2010,87,158-163.
    [45] Kim H.N., Guo Z., Zhu W., et al., Recent progress on polymer-based fluorescentand colorimetric chemosensors. Chem. Soc. Rev.,2011,40,79-93.
    [46] Shen L., Lu X., Tian H., et al., A long wavelength fluorescent hydrophiliccopolymer based on naphthalenediimide as pH sensor with broad linear responserange. Macromolecules,2011,44,5612-5618.
    [47]. Song D.H., Yoo H.Y., Kim. J.P., Synthesis of stilbene-based azo dyes andapplication for dichroic materials in poly(vinyl alcohol) polarizing films. DyesPigments,2007,75,727-731.
    [48] Brigo L., Carofiglio T., Fregonese C., et al., An optical sensor for pH supportedonto tentagel resin beads. Sens. Actuators, B,2008,130,477-482.
    [49] Wong L.S., Bradley M., Immobilisation and assessment of aniline dyes fornon-fluorescent pH sensing applications. Tetrahedron lett.,2005,46,5731-5734.
    [50] Jin Z., Su Y., Duan Y., An improve optical pH sensor based on polyaniline. Sens.Actuators, B,2000,71,118-122.
    [51]. Makedonski P., Brandes M., Grahn W., et al., Synthesis of new kinds of reactiveazo dyes and their application for fibre-optical pH-measurements. Dyes Pigments,2004,61,109-119.
    [52] Cho J.K., Wong L.S., Wean T.W., et al., pH Indicating resins. Chem. Commun.,2004,1470-1471.
    [53] Carrington N.A., Xue Z.-L., Inorganic sensing using organofunctional sol-gelmaterials. Acc. Chem. Res.,2007,40,343-350.
    [54] Hebborn P., Triggle D.J., N4-(2-Bromoethyl)-N4-ethylsulfanilamide, amonofunctional nitrogen mustard with antitumor action. J. Org. Chem.,1965,8,541-542.
    [55] Liu Z., Luo F., Chen T., Polymeric pH indicators immobilized PVA membranesfor optical sensors of high basicity based on a kinetic process. Anal. Chim. Acta,2004,519,147-153.
    [56] Sanchez A.M., Barra M., de Rossi R.H., On the mechanism of theacid/base-catalyzed thermal cis-trans isomerization of methyl orange. J. Org.Chem.,1999,64,1604-1609.
    [57] Kuwabara T., Takamura M., Matsushita A., et al., Phenolphthalein-modifiedβ-cyclodextrin as a molecule-responsive colorless-to-color change indicator. J.Org. Chem.,1998,63,8729-8735.
    [58] Asatekin A., Olivetti E.A., Mayes A.M., Fouling resistant, high fluxnanofiltration membranes from polyacrylonitrile-graft-poly(ethylene oxide). J.Membr. Sci.,2009,332,6-12.
    [59] Prevot A.B., Fabbri D., Pramauro E., et al., High-performance liquidchromatography coupled to ultraviolet diode array detection and electrosprayionization mass spectrometry for the analysis of intermediates produced in theinitial steps of the photocatalytic degradation of sulfonated azo dyes. J.Chromatogr., A,2008,1202,145-154.
    [60] Sharma Y.O., Degani M.S., CO2absorbing cost-effective ionic liquid forsynthesis of commercially important alpha cyanoacrylic acids: Asafe process foractivation of cyanoacetic acid. Green Chem.,2009,11,526-530.
    [61] Yadav J.S., Subba Reddy B.V., Basak A.K., et al., Phosphane-catalyzedKnoevenagel condensation: A facile synthesis of α-cyanoacrylates andα-cyanoacrylonitriles. Eur. J. Org. Chem.,2004,546-551.
    [62] Cabello J.A., Campelo J.M., Garcia A., et al., Knoevenagel condensation in theheterogeneous phase using AlPO4-Al2O3as a new catalyst. J. Org. Chem.,1984,49,5195-5197.
    [63] Ebitani K., Motokura K., Mori K., et al., Reconstructed hydrotalcite as a highlyactive heterogeneous base catalyst for carbon-carbon bond formation in thepresence of water. J. Org. Chem.,2006,71,5440-5447.
    [64] Trotzki R., Hoffmann M.M., Ondruschka B., The Knoevenagel condensation atroom temperature. Green Chem.,2008,10,873-878.
    [65] Jackson T., Clark J.H., Macquarrie D.J., et al., Base catalysts immobilised onsilica coated reactor walls for use in continuous flow systems. Green Chem.,2004,6,193-195.
    [66] Rodriguez I., Iborra S., Rey F., et al., Heterogeneized Br nsted base catalysts forfine chemicals production: grafted quaternary organic ammonium hydroxides ascatalyst for the production of chromenes and coumarins. Appl. Catal., A,2000,194-195,241-252.
    [67] Freeman F., Properties and reactions of ylidenemalononitriles. Chem. Rev.,1980,80,329-350.
    [68] Kraus G.A., Krolski M.E., Synthesis of a precursor to quassimarin. J. Org. Chem.,1986,51,3347-3350.
    [69] Tietze L.F., Rackelmann N., Domino reactions in the synthesis of heterocyclicnatural products and analogs. Pure Appl. Chem.,2004,76,1967-1983.
    [70] Liang F., Pu Y.-J., Kurata T., et al., Synthesis and electroluminescent property ofpoly(p-phenylenevinylene)s bearing triarylamine pendants. Polymer,2005,46,3767-3775.
    [71] Augustine J.K., Naik Y.A., Mandal A.B., et al., gem-Dibromomethylarenes: Aconvenient substitute for noncommercial aldehydes in the Knoevenagel-Doebnerreaction for the synthesis of α,β-unsaturated carboxylic acids. J. Org. Chem.,2007,72,9854-9856.
    [72] Mukhopadhyay C., Datta A., A simple, efficient and green procedure for theKnoevenagel condensation of aldehydes with N-methylpiperazine at roomtemperature under solvent-free conditions. Synth. Commun.,2008,38,2103-2112.
    [73] Yi W.-B., Cai C., Perfluoroalkylated pyridine catalyzed Knoevenagelcondensation: An impontand complement of fluorous catalysis without fluoroussolvent. Catal. Commun.,2008,9,1291-1296.
    [74] Makowski P., Weber J., Thomas A., et al., A mesoporous poly(benzimidazole)network as a purely organic heterogeneous catalyst for the Knoevenagelcondensation. Catal. Commun.,2008,10,243-247.
    [75] Aramendía M.A., Borau V., Jiménez C., et al., New aspects of Knoevenagelcondensation and Michael addition reactions on alkaline carbonates. Chem. Lett.,2000,574-575.
    [76] Shrikhande J.J., Gawande M.B., Jayaram R.V., Cross-aldol and Knoevenagelcondensation reactions in aqueous micellar media. Catal. Commun.,2008,9,1010-1016.
    [77] Balalaie S., Bararjanian M., Tetra-n-butylammonium hydroxide(TBAH)-catalyzed Knoevenagel condensation: A facile synthesis ofα-cyanoacrylates, α-cyanoacrylonitriles, and α-cyanoacrylamides. Synth.Commun.,2006,36,533-539.
    [78] Choudary B.M., Lakshmi Kantam M., Neeraja V., et al., Layered doublehydroxide fluoride: a novel solid base catalyst for C-C bond formation. GreenChem.,2001,3,257-260.
    [79] Gao Z., Zhou J., Cui F., et al., Superparamagnetic mesoporous Mg-Fe bi-metaloxides as efficient magnetic solid-base catalysts for Knovenagel condensations.Dalton Trans.,2010,39,11132-11135.
    [80] Wei Y., Zhang S., Yin S., et al., Solid superbase derived from lanthanum–magnesium composite oxide and its catalytic performance in the Knoevenagelcondensation under solvent-free condition. Catal. Commun.,2011,12,1333-1338.
    [81] Kan-nari N., Okamura S., Fujita S., et al., Nitrogen-doped carbon materialsprepared by ammoxidation as solid base catalysts for Knoevenagel condensationand transesterification reactions. Adv. Synth. Catal.,2010,352,1476-1484.
    [82] Ranu B.C., Jana R., Ionic liquid as catalyst and reaction medium–A simple,efficient and Green procedure for Knoevenagel condensation of aliphatic andaromatic carbonyl compounds using a task-specific basic ionic liquid. Eur. J. Org.Chem.,2006,3767-3770.
    [83] Forsyth S.A., Fr hlich U., Goodrich P., et al., Functionalised ionic liquids:synthesis of ionic liquids with tethered basic groups and their use in Herk andKnoevenagel reactions. New J. Chem.,2010,34,723-731.
    [84] Lee A., Michrowska A., Sulzer-Mousse S., et al., The catalytic asymmetricKnoevenagel condensation. Angew. Chem. Int. Ed.,2011,50,1707-1710.
    [85] Rahmati A., Vakili K., L-Histidine and L-arginine promote Knoevenagel reactionin water. Amino Acids,2010,39,911-916.
    [86] Dandia A., Parewa V., Jain A.K., et al., Step-economic, efficient, ZnSnanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous mediumvia Knoevenagel condensation followed by Michael addition. Green Chem.,2011,13,2135-2145.
    [87] Leelavathi P., Ramesh Kumar S., Niobium (V) chloride catalyzed Knoevenagelcondensation: An efficient protocol for the preparation of electrophilic alkenes. J.Mol. Catal. A: Chem.,2005,240,99-102.
    [88] Bartoli G., Bosco M., Carlone A., et al., Magnesium perchlorate as efficientLewis acid for the Knoevenagel condensation between β-diketones andaldehydes. Tetrahedron lett.,2008,49,2555-2557.
    [89] Hasegawa S., Horike S., Matsuda R., et al., Three-dimensional porouscoordination polymer functionalized with amide groups based on tridentateligand: Selective sorption and catalysis. J. Am. Chem. Soc.,2007,129,2607-2614.
    [90] Fildes D., Caignaert V., Villemin D., et al., Potassium exchanged zirconiumhydrogen phosphate Zr(O3POK)2: a heterogeneous basic catalyst forKnoevenagel reaction without solvent. Green Chem.,2001,3,52-56.
    [91] Díaz S., González A., López C., Knoevenagel condensation of
    [NC-CH2C(O)-NH-CH(CO2Et)-S]2with ferrocenecarbaldehyde and theactivation of the σ(C-S) bond of [(η5-C5H5)Fe{(η5-C5H4)-CH=C(CN)-C(O)-NH-CH-(CO2Et)-CH2-S-}]2induced by palladium(II). J. Organomet.Chem.,2004,689,2284-2292.
    [92] Neogi S., Sharma M.K., Bharadwaj P.K., Knoevenagel condensation andcyanosilylation reactions catalyzed by a MOF containing coordinativelyunsaturated Zn(II) centers. J. Mol. Catal. A: Chem.,2009,299,1-4.
    [93] Zuo W.-X., Hua R., Qiu X., ReBr(CO)5-catalyzed Knoevenagel condensation.Synth. Commun.,2004,34,3219-3225.
    [94] Trotzki R., Hoffmann M.M., Ondruschka B., Studies on the solvent-free andwaste-free Knoevenagel condensation. Green Chem.,.2008,10,767-772.
    [95] Wang G.-W., Wang B.-L., Uncatalyzed and solvent-free Knoevenagelcondensation under microwave irradiation or heating conditions. Chinese J. Org.Chem.,2004,24,85-87.
    [96] Mitra A.K., De A., Karchaudhuri N., Solvent-free microwave enhancedKnoevenagel condensation of ethyl cyanoacetate with aldehydes. Synth.Commun.,1999,29,2731-2739.
    [97] Balalaie S., Nemati N., Ammonium acetate-basic alumina catalyzed Knoevenagelcondensation under microwave irradiation under solvent-free condition. Synth.Commun.,2000,30,869-875.
    [98] Reddy C.S., Nagaraj A., Knoevenagel condensation of α,β-unsaturated aromaticaldehydes with barbituric acid under non-catalytic and solvent-free conditions.Chin. Chem. Lett.,2007,18,1431-1435.
    [99] Krishnan G. R., Sreekumar K., First example of Organocatalysis bypolystyrene-supported PAMAM dendrimers: Highly efficient and reusablecatalyst for Knoevenagel condensations. Eur. J. Org. Chem.,2008,4763-4768.
    [100] Fringuelli F., Pizzo F., Vittoriani C., et al., Polystyryl-supported TBD as anefficient and reusable catalyst under solvent-free conditions. Chem. Commun.,2004,2756-2757.
    [101] Hagiwara H., Sekifuji M., Tsubokawa N., et al., Nano-silica PAMAMdendrimer as a novel catalyst for Knoevenagel reactions. Chem. Lett.,2009,38,926-927.
    [102] Cheng S., Wang X., Chen S.-Y., Applications of amine-functionalizedmesoporous silica in fine chemical synthesis. Top. Catal.,2009,52,681-687.
    [103] Mori K., Oshiba M., Hara T., et al., Creation of monomeric La complexesapatite surfaces and their application as heterogeneous catalysts for Michaelreactions. New J. Chem.,2006,30,44-52.
    [104] Kantam M.L., Choudary B.M., Venkat Reddy C., et al., Aldol and Knoevenagelcondensations catalysed by modified Mg-Al hydrotalcite: a solid base ascatalyst useful in synthetic organic chemistry. Chem. Commun.,1998,1033-1034.
    [105] Das D.D., Harlick P.J.E., Sayari A., Applications of pore-expanded MCM-41silica:4. Synthesis of a highly active base catalyst. Catal. Commun.,2007,8,829-833.
    [106] Blasco-Jiménez D., López-Peinado A.J., Martín-Aranda R.M., et al.,Sonocatalysis in solvent-free conditions: An efficient eco-friendly methodologyto prepare N-alkyl imidazoles using amino-grafted NbMCM-41. Catal. Today,2009,142,283-287.
    [107] Wang S.-G., Amino groups immobilized on MCM-48: an efficientheterogeneous catalyst for the Knoevenagel reaction. Catal. Commun.,2003,4,469-470.
    [108] Moroi G., Bilba D., Bilba N., Thermal degradation of mercury chelatedpolyacrylamidoxine. Polym. Degrad. Stab.,2004,84,207-214.
    [109] Vatutsina O.M., Soldatov V.S., Sokolova V.I., et al., A new hybrid(polymer/inorganic) fibrous sorbent for arsenic removal from drinking water.React. Funct. Polym.,2007,67,184-201.
    [110] Tamami B., Fadavi A., Amino group immobilized on polyacrylamide: Anefficient heterogeneous catalyst for the Knoevenagel reaction in solvent-freeand aqueous media. Catal. Commun.,2005,6,747-751.
    [111] Isobe K., Hoshi T., Suzuki T., et al., Knoevenagel reaction in water catalyzed byamine supported on silica gel. Mol. Diversity,2005,9,317-320.
    [112] Xu D.-Z., Liu Y., Shi S., et al., A simple, efficient and green procedure forKnoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water.Green Chem.,2010,12,514-517.
    [113] Zhang Y., Xia C., Magnetic hydroxyapatite-encapsulated γ-Fe2O3nanoparticlesfunctionalized with basic ionic liquids for aqueous Knoevenagel condensation.Appl. Catal., A,2009,366,141-147.
    [114] Zhu R., Shen J., Wei Y., Urea-functionalized mesoporous polymeric catalyst: acooperative effect between support and secondary amine on water-mediumKnoevenagel reactions. New J. Chem.,2011,35,1861-1866.
    [115] Mori K., Hara T., Mizugaki T., et al., Hydroxyapatite-bound cationic rutheniumcomplexes as novel heterogeneous Lewis acid catalysts for Diels-Alder andAldol reactions. J. Am. Chem. Soc.,2003,125,11460-11461.
    [116] Kalbasi R.J., Kolahdoozan M., Massah A., et al., Syntesis, characterization andapplication of poly(4-metnyl vinylpyridinium hydroxide)/SBA-15composite asa highly active heterogeneous basic catalyst for the Knoevenagel reaction. Bull.Korean Chem. Soc.,2010,31,2618-2626.
    [117] Garden S.J., Guimar es C.R.W., Corréa M.B., Synthetic and theoretical studieson the reduction of electron withdrawing group conjugated olefins using thehantzsch1,4-dihydropyridine ester. J. Org. Chem.,2003,68,8815-8822.
    [118] Hajos Z.G., Parrish D.R., Asymmetric synthesis of bicyclic intermediates ofnatural product chemistry. J. Org. Chem.,1974,39,1615-1621.
    [119] Eder U., Sauer G., Wiechert R., New type of asymmetric cyclization to opticallyactive steroid CD partial structures. Angew. Chem. Int. Ed.,1971,10,496-497.
    [120] List B., Lerner R.A., Barbas III C.F., Proline-catalyzed direct asymmetric aldolreactions. J. Am. Chem. Soc.,2000,122,2395-2396.
    [121] Mukherjee S., Yang J.W., Hoffmann S., et al., Asymmetric enamine catalysis.Chem. Rev.,2007,107,5471-5569.
    [122] Guillena G., Ramón D.J., Enantioselective α-heterofunctionalisation of carbonylcompounds: organocatalysis is the simplest approach. Tetrahedron: Asymmetry,2006,17,1465-1492.
    [123] Sakthivel K., Notz W., Bui T., et al., Amino acid catalyzed direct asymmetricaldol reactions: A bioorganic approach to catalytic asymmetric carbon-carbonbond-forming reactions. J. Am. Chem. Soc.,2001,123,5260-5267.
    [124] Gr ger H., Wilken J., The application of L-proline as an enzyme mimic andfurther new asymmetric syntheses using small organic molecules as chiralcatalysts. Angew. Chem. Int. Ed.,2001,40,529-532.
    [125] List B., Pojarliev P., Biller W.T., et al., The proline-catalyzed direct asymmetricthree-component Mannich reaction: Scope, optimization, and application to thehighly enantioselective synthesis of1,2-amino alcohols. J. Am. Chem. Soc.,2002,124,827-833.
    [126] List B., The direct catalytic asymmetric three-componenet Mannich reaction. J.Am. Chem. Soc.,2000,122,9336-9337.
    [127] Choudary B.M., Rajasekhar C.V., Krishna G.G., et al., L-Proline-catalyzedMichael addition of aldehydes and unmodified ketones to nitro olefinsacceletated by Et3N. Synth. Commun.,2007,37,91-98.
    [128] Moorthy J.N., Saha S., C3-Symmetric proline-functionalized organocatalysts:Enantioselective Michael addition reactions. Eur. J. Org. Chem.,2010,6359-6365.
    [129] Cardillo G., Fabbroni S., Gentilucci L., et al., A straightforward method for thesynthesis of alkylidene and arylidene malonates through proline-catalyzedKnoevenagel condensation. Synth. Commun.,2003,33,1587-1594.
    [130] Oskooie H.A., Roomizadeh E., Heravi M.M., Solvent-free L-proline catalysedcondensation of ethyl cyanoacetate with aldehydes. J. Chem. Res.,2006,246-247.
    [131] Wang Y., Shang Z., Wu T., et al., Syntetic and theoretical study onproline-catalyzed Knoevenagel condensation in ionic liquid. J. Mol. Catal. A:Chem.,2006,253,212-221.
    [132] Karade N.N., Gampawar S.V., Shinde S.V., et al., L-Proline catalyzedsolvent-free Knoevenagel condensation for the synthesis of3-substitutedcoumarins. Chin. J. Chem.,2007,25,1686-1689.
    [133] Liu X., Fan J., Liu Y., et al., L-Proline as an efficient and reusable promoter forthe synthesis of coumarins in ionic liquid. J. Zhejiang Univ. Sci. B,2008,9,990-995.
    [134] Verdía P., Santamarta F., Tojo E., Knoevenagel reaction in [MMIm][MSO4]:Synthesis of Coumarins. Molecules,2011,16,4379-4388.
    [135] Shen J., Guo J., Sun Y., et al., Knoevenagel condensation catalyzed byImmobilized ionic liquids-proline on SBA-15. Chin. J. Catal.,2010,31,827-832.
    [136] Siddiqui Z.N., Mohammed Musthafa T.N., Praveen S., et al.,Zn(Proline)2-catalyzed Knoevenagel condensation under solvent-free/aqueousconditions and biological evaluation of products. Med. Chem. Res.,2011,20,1438-1444.
    [137] Jain S., Bhimireddy N.R., Kolisetty S.R., L-Proline catalyzed Knoevenagelcondensation: Synthesis of some new indole derivatives and biologicalactivities. Int. J. ChemTech Res.,2011,3,817-824.
    [138] Oskooie H.A., Roomizadeh E., Heravi M.M., Solvent-free L-proline catalysedcondensation of ethyl cyanoacetate with aldehydes. J. Chem. Res.,2006,246-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700