桑枝皮纤维素纳米晶须的制备及其增强再生蚕丝蛋白纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然桑蚕丝是一种综合性能优异的生物质蛋白纤维,其织物光泽华丽、透气性好、质地柔软、手感好、穿着舒适,几千年来一直作为一种高档的纺织原料而闻名于世。作为天然高分子纤维的桑蚕丝,其独特的物理化学性能和优异的纤维特性一直是众多学者人工模拟纺制所追求的目标。然而在人们对蚕丝的溶解、再生蛋白原液的种类和浓度、凝固浴以及后处理等纺丝条件进行了一系列广泛而深入的研究后,所得再生丝纤维的力学强度仍然无法与天然蚕丝相媲美。
     另一方面,纤维素是自然界中分布最广、含量最多的天然生物质原料,它来源丰富、质轻价廉、生物相容性好、可生物降解;而纤维素纳米晶须(Cellulose nanowhisker, CNW)是一种源于纤维素的纳米单晶体,其杨氏模量和抗张强度比纤维素有指数级增长,分别高达150 GPa和10 GPa左右,且其长径比大,表面含有大量羟基。因此,CNW作为聚合物基质的增强体具有无可比拟的优势。
     本论文针对目前人工纺制再生丝蛋白纤维力学强度差的问题,以蚕桑业的废弃资源——桑枝皮和废蚕茧为主要原料,首先从桑枝皮中提取桑枝皮纤维素并制备纤维素纳米晶须,再将其与废弃茧丝的丝素蛋白(Silk fibroin, SF)溶液相混合,制备高浓度的再生丝素蛋白/纤维素纳米晶须(SF/CNW)混合溶液作为纺丝液,利用自制的纺丝设备,以甲醇为凝固浴,湿法纺丝制备纤维素纳米晶须增强再生蚕丝蛋白纤维。研究了纤维素纳米晶须增强再生蚕丝蛋白纤维形成过程中聚集态结构的变化,考察了纳米晶须的引入对再生蚕丝蛋白复合纤维结构、性能的影响,以及晶须与丝素蛋白基质间的相互作用,初步探讨了纳米晶须对再生蚕丝纤维的增强机制,对高分子材料的发展具有积极的促进作用,同时也为制备高性能的新型纺织材料提供科学依据;另外,在纤维素纳米晶须制备过程中,为实现桑枝皮纤维的清洁化生产及废弃桑枝皮的高值化利用,采用酸抽—碱煮两步法从桑枝皮中先提取副产物——果胶,再采用二次碱煮提取桑枝皮纤维,并对碱煮脱胶废液进行回收处理,提高桑蚕业资源利用附加值并降低脱胶过程中对环境造成的二次污染。
     采用酸抽—碱煮两步法从桑枝皮中先后提取出桑枝皮果胶和纤维素,所得果胶具有不同的酯化度;桑枝皮纤维经硫酸水解制得的纤维素晶须呈纳米级棒状,长度约为300~400 nm,直径约为20 nm,其结晶度高达86.4%,表现出不同于普通纤维素的热分解行为,具有低温和高温两个热分解阶段,最高热分解温度达567℃,纤维素纳米晶须大的长径比、高的结晶度和热稳定性显示了其作为聚合物基质增强体的巨大潜力。
     通过对再生丝素蛋白溶液浓度可纺性研究发现,当浓度为27%左右时,再生丝素蛋白溶液具有良好的可纺性,初生纤维表面和截面形貌最佳,综合力学性能最好;确定了27%为SF/CNW混合液的纺丝浓度,不同比例SF/CNW混合液流变特性研究表明,混合溶液呈切力变稀型流体特性,且在较低剪切速率时,较小的速率改变,即会引起表观黏度的明显下降,因此剪切速率应控制在表观黏度变化比较稳定的初始阶段,随着纺丝液中CNW含量由1%增加至7%,SF/CNW混合液的表观黏度呈现先增后降的趋势,其流动特性指数n变小,结构黏度指数△η变大,因此应控制CNW含量低于7%;混合液表观黏度对温度和时间稳定性研究表明,SF/CNW混合液表观黏度在5-25℃范围内保持稳定,当温度超过25℃时,混合溶液黏度开始下降,且存放5d仍可以保持其流变学特性稳定。
     在优化的纺丝工艺条件下,成功制备了力学强度优异的纤维素纳米晶须增强再生蚕丝蛋白纤维,且力学强度随着CNW含量的增加而升高,当CNW含量为5%时,再生丝纤维的力学性能达到最佳,其杨氏模量、拉伸强度分别达到28.84GPa、728.51 MPa,是天然桑蚕丝的1.8倍和1.5倍,而断裂伸长率为20.3%,与天然桑蚕丝相近。通过对纤维素纳米晶须增强再生蚕丝蛋白纤维形成过程中结构与性能的关系研究发现,经60℃热空气拉伸处理的再生纤维具有较好的结晶性和分子取向;纤维素纳米晶须在丝素蛋白基质中均匀分散,纳米晶须与基体之间存在强的界面结合;动态热机械分析也表明,由于纤维素纳米晶须的加入,限制了其附近丝素蛋白无定形区分子链的自由运动,在CNW分散相和SF连续相之间形成了界面相互作用,显著提高了再生丝纤维的储能模量,从而使其玻璃化转变温度升高。
     在丝素蛋白基质中引入引入长径比大、结晶性好、强度高的纤维素纳米晶须,显著提高了再生蚕丝蛋白复合纤维的力学强度和热稳定性,说明利用纳米晶须改善人工纺制再生蚕丝蛋白纤维的力学性能,是十分有效的。再生蚕丝纤维的优良性能一直是人们追求的目标,通过探明纤维素晶须增强蚕丝纤维的凝聚态形成过程、结构与功能的关系,以及晶须——蛋白质之间相互作用等,提出了晶须分散相与丝素蛋白连续相之间形成微界面区,在后拉伸过程中,丝蛋白纤维分子链规整性进一步调整,纤维状晶须沿纤维轴向排列的增强机制,这对功能高分子纤维的发展具有积极的促进作用;同时,本论文是蚕桑业废弃物的再加工、循环利用,使其物尽其用,延长了蚕桑产业链,对实现农民增收、保护环境具有良好的经济和社会效益,且符合国家发展循环经济的政策。
Bombyx mori silk is one of the most valuable materials for clothing industry due to its outstanding glossiness property, wearing comfort, and physiological properties (compatibility, biodegradability, thermo-insulating, etc). In order to produce specialty materials, silk processing techniques have been investigated for artificial silk, including spin dopes, concentration, coagulation bath, post-drawn, etc. But the mechanical properties of artificial silk fibre do not compete with native silk yet.
     Cellulose is one of the most ubiquitous and abundant bioresourse polymers on the planet, giving the renewability and biocompatibility. Cellulose nanowhisker (CNW), a nanocrystal prepared by acid hydrolysis of native cellulose, usually has good mechanical properties, high aspect ratio, and strong interfacial adhesion between the CNW and the matrix. Thus, it can be used as the reinforcing agent in environmental-friendly composite materials due to its special physical properties.
     In an effect to improve the mechanical properties of artificial silk fiber and utilize waste materials, CNW suspension was prepared by acid hydrolysis of cellulose from mulberry branch-barks (Morus alba L.), and subsequently mixed with regenerated silk fibroin (SF) solution to obtain concentrated SF/CNW aqueous solutions as spinning dopes. Then reinforced artificial silk fibers by cellulose nanowhisker (SF/CNW) were produced by wet spinning through methanol coagulant to investigate the relationship between SF matrix and CNW reinforcing agent. To realize the environmental-friendly production of mulberry cellulose and maximum utilization of sericultural resources, mulberry pectin and cellulose were extracted via two-step method, i.e. acid extraction-alkali treatment, respectively, and the degumming waste liquid was further treated to recycle pectin, hemicellulose, lignin.
     The extracted pectins from mulberry barks had different degrees of esterification. And the cellulose nanowhiskers presented rod-like with a length of 300-400 nm, and a diameter of 20 nm, and had a crystallinity of 86.4%. The thermal analysis showed a two-stage thermal decomposition behavior of cellulose nanowhisker with a maximum weight loss attained at 567℃. The obtained cellulose nanowhiskers may have the potential application as a reinforcing agent in the field of composite materials.
     From the research about the spinnability of regenerated SF solution, it was found that the concentration of spinning dope play an important role on the morphologies and mechanical properties of artificial neat SF fibers, when the dope concentration is about 27%, the artificial fibers presented a good surface and cross-section morphology, excellent mechanical properties. There was a rapid initial shear thinning at low shear rate for SF/CNW solution with different CNW content, so it was necessary to control the shear rate according to initial stage of stabile apparent viscosity. Moreover, the characteristic indexes decreased, while the degree of entanglement of SF molecular enhanced with the increase of CNW content from 1% to 7%. And the studies on stability of solution to temperature and storage time indicated that apparent viscosity remained almost unchanged below 25℃, and the SF/CNW dope is rheologically stable for at least 5 days.
     The SF/CNW fibers with super mechanical strength were successfully fabricated under an optimized technologic processing. The Young's modulus and tensile strength of SF/CNW fibers with CNW content of 5% reached 28.84 GPa and 728.51 MPa, respectively, which was 1.8 and 1.5 times compared with that of raw silk, respectively, moreover, breaking elongation was 20.3%, near that of raw silk. The spun fiber had well crystallinity and was well-oriented along the long axis after postspinning treatment at 60℃. In other hand, CNW were uniformly dispersed in the SF matrix. Dynamic mechnical analysis revealed that the elastic modulus of SF/CNW fibers increased significantly as a consequence of the reinforcing effect of CNW via the procolation network held by hydrogen bonds, finally leading to increase of glass transition temperature.
     In conclusion, it was an effective approach to improve the mechanical properties of artificial silk fiber via introduction of CNW with high aspect ratio, well crystallinity, and good mechanical strength. It would be significant for exploiting novel functional materials through investigating formation of aggregation structure, relationship between structure and properties, and interaction of matrix and dispersed phase. Furthermore, this research which was a recycling of sericulture waste resource might possess the potential economic and social benefits.
引文
[1]李勇,孙波,胡兴明等.桑枝综合利用研究与开发进展[J].北方蚕业,2009,30:12-16.
    [2]虞崇江,陈枝,蒋玉莲等.浅谈利用桑枝为原料生产桑枝纤维板[J].广西蚕业,2009,46:67-70.
    [3]中国农业科学院蚕业研究所主编,中国桑树栽培学[M].上海科技出版社,1985.7.
    [4]苏州蚕桑专科学校编著,桑树栽培及育种学[M].1979.10,12-15.
    [5]Zugenmaier P. Conformation and packing of various crystalline cellulose fibers [J]. Prog. Polym. Sci.,2001,26(9):1341-1417.
    [6]Zugenmaier P. Cellulose [M]. Crystalline Cellulose and Derivatives,2008, 101-174.
    [7]Samir MASA, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field [J]. Biomacromolecules,2005,6(2):612-626.
    [8]Bhatnagar A, Sain M. Processing of cellulose nanofiber-reinforced composites [J]. J. Reinf. Plast. Comp.,2005,24:1259-1268.
    [9]de Mesquita JP, Donnici CL. Pereira FV. Biobased Nanocomposites from Layer-by-Layer Assembly of Cellulose Nanowhiskers with Chitosan [J]. Biomacromolecules,2010,11(2):473-480.
    [10]Hsieh YC, Yano H, Nogi M, et al. An estimation of the Young's modulus of bacterial cellulose filaments [J]. Cellulose,2008.15(4):507-513.
    [11]Favier V. Canova GR, Cavaille JY, et al. Nanocomposites materials from latex and cellulose whiskers [J]. Polym. Adv. Technol.,1995,6(5):351-355.
    [12]Hubbe MA, Rojas OJ, Lucia LA, et al. Cellulosic nanocomposites:A review [J]. Bioresources,2008,3(3):929-980.
    [13]Grunert M, Winter WT. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals [J]. J. Polym. Environ.,2002,10(1-2):27-30.
    [14]Liu Y, Ahmad H, Luo Y, et al. Citrus pectin:characterization and inhibitory effect on fibroblast growth factor-receptor interaction [J]. J. Agric. Food Chem., 2001,49(6):3051-3057.
    [15]Makker-Nangia P, Hogan V, Honjo Y, et al. Inhibition of Human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin [J]. J. Natl. Cancer. Ⅰ.,2002,94(24):1854-1862.
    [16]Lfgren C, Walkenstrm P, Hermansson AM. Micro structure and rheological behavior of pure and mixed pectin gel [J]. Biomacromolecules,2002,3(6): 1144-1153.
    [17]李芝庭.禾田桑枝皮纸[J].丝绸之路,2004,7:34-36.
    [18]冯恩昌.桑枝皮纸和它的制作技术[J].广西蚕业,1994,2:70.
    [19]芮刘斌.浅谈桑枝皮纸手工制作技术[J].大众文艺,2007,1 1:18-21.
    [20]沙妮娜.浅析新疆桑枝皮纸的口头与非物质文化遗产的价值体现[J].鸡西大学学报,2009, 9:142-144.
    [21]袁鹏.“活”着的桑枝皮造纸[J].人与自然,2010,3:88-93.
    [22]杨草.利用桑枝皮生产人造棉新工艺[J].河南科技,1996,1:13.
    [23]羌晓阳,钱震.纺织纤维家族又一新成员[J].四川丝绸,2001,3:46-47.
    [24]邱训国,严松俊.桑枝皮纤维开发及其综合利用[J].辽宁丝绸,2002,4:10-13.
    [25]张之亮.桑枝皮纤维脱胶工艺和性能研究[D].硕士学位论文,东华大学,2005.
    [26]荆学谦,杨佩鹏,武海良.桑枝皮纤维脱胶工艺初探[J].中国麻业,2006,28:182-186.
    [27]杨佩鹏,武海良,吴长春.桑枝皮纤维生物脱胶工艺研究[J].丝绸,2006, 11:56-57.
    [28]丛锐利,董卫国.桑枝皮纤维的化学提取方法及性能测试[J].山东纺织科技,2007,48:23-25.
    [29]马君志,杜丽霞.桑枝皮纤维的制备及其产品开发[J].纺织导报,2007,5:67-69.
    [30]董震,丁志荣.桑枝皮纤维的脱胶工艺研究[J].上海纺织科技,2008,36:20-22.
    [31]庞宗文,卢珍兰,张琳等.桑枝皮微生物脱胶机理的初步研究[J].丝绸,2008,8:40-43.
    [32]李冬梅,吴长春,杨佩鹏,等.桑枝皮纤维染色性能研究[J].纺织科技进展,2008,6:78-79.
    [33]张焕然,胡心怡.桑枝皮纤维/棉纤维混纺纱线拉伸性能的研究[J]青岛大学学报,2009,24:68-71.
    [34]张焕然,胡心怡.桑枝皮纤维/棉纤维混纺针织物的力学性能研究[J].青岛大学学报,2010,25:46-49.
    [35]金玲,居明秋.桑白皮历代炮制沿革与功效[J].基层中药杂志,2000,14:39-40.
    [36]阚启明,康宁,田海涛等.桑枝皮苷的镇咳平喘作用[J].沈阳药科大学学报,2006,23:388-391.
    [37]顾寅钰,石瑞常,张凤林等.蚕桑副产品的综合利用及其药用价值[J].北方蚕业,2002,23:22-23.
    [38]林天宝,李有贵,吕志强等.桑树资源综合利用研究进展[J].蚕桑通报,2008.39:1-4.
    [39]李娜,李全宏.桑副产品的综合利用[J].中国食品工业,2006,7:22-23.
    [40]李自琼.提升桑蚕副产物的药用开发利用价值[J].广西蚕业,2006,43:51-54.
    [41]Bledzki AK, Gassan J. Composites reinforced with cellulose based fibers [J]. Pro. Polym. Sci.,1999,24(2):221-274.
    [42]Reddy N, Yang YQ. Biofibers from agricultural byproducts for industrial applications [J]. Trends. Biotechnol.,2005,23(1):22-27.
    [43]Nicherson RF, Habrle JA. Cellulose intercrystalline structure [J]. Ind. Eng. Chem.,1947,39(11):1507-1512.
    [44]Marchessault RH, Morehead FF, Koch MJ. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape [J]. J. Colloid. Sci.,1961,16(4):327-344.
    [45]Marchessault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides [J]. Nature,1959,184(22):632-633.
    [46]Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose [J]. Biomacromolecules,2008,9(1):57-65.
    [47]Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J]. Biomacromolecules,2005,6(2):1048-1054.
    [48]Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J]. Cellulose, 2006,13(2):171-180.
    [49]李杰辉.纳米纤维素晶须的制备与表面改性[D].华南理工大学学位论文,2008.
    [50]Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting [J]. Langmuir,2001,17(1):21-27.
    [51]Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J]. Colloid. Surface. A., 1998,142(1):75-82.
    [52]郭瑞,丁恩勇.纳米微晶纤维素胶体的流变学性质[J].高分子材料科学与工程.2006,22:125-127.
    [53]Dong MD, Kimura T, Revol JF, et al. Effect of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites [J]. Langmuir,1996,12(8):2076-2082.
    [54]Revol JF, Godbout L, Dong MD, et al. Chiral nematic suspensions of cellulose crystallites phase separation and magnetic field orientation [J]. Liq. Cryst.,1994, 16(1):127-134.
    [55]Revol JF, Godbout L, Gray DG. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties [J]. J. Pulp. Paper. Sci.,1998, 24(5):146-149.
    [56]Favier V, Canova GR, Cavaille JY, et al. Nanocomposites materials from latex and cellulose whiskers [J]. Polym. Adv. Technol.,1995,6(5):351-355.
    [57]Peresin MS. Habibi Y, Zoppe JO, et al. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals:manufacture and characterization [J]. Biomacromolecules,2010,11(3):674-681.
    [58]Chen G, Liu H. Electrospun cellulose nanofiber reinforced soybean protein isolate composite film [J]. J. Appl. Polym. Sci.,2008,110(2):641-646.
    [59]Tian M, Gao Y, Liao Y, et al. Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals [J]. Polymer,2007,48(9):2720-2728.
    [60]Xu X, Thwe MM, Shearwood C, et al. Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films [J]. Appl. Phys. Lett.,2002,81(15):2833-2835.
    [61]Tang C, Liu H. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance [J]. Compos. Part. A:Appl. S.,2008, 39(10):1638-1643.
    [62]Qi H, Cai J, Zhang L, et al. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution [J]. Biomacromolecules,2009,10(6):1597-1602.
    [63]Mori N, Morimoto M, Nakamura K. Cellulose films as alignment layers for liquid crystals:application of flow-induced molecular orientation [J]. Adv. Mater., 1991,11(12):1049-1051.
    [64]Cranston ED, Gray DG. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose [J]. Biomacromolecules,2006,7(9):2522-2530.
    [65]Yamada M, Kato K. Shindo K, et al. UV-irradiation-induced DNA immobilization and functional utilization of DNA on nonwoven cellulose fabric [J]. Biomaterials,2001,22(23):3121-3126.
    [66]Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules [J]. Adv. Drug. Delivery. Rev.,2010,62(15):1497-1508.
    [67]Vepari C, Kaplan DL, Silk as abiomaterial [J]. Prog. Polym. Sci.,2007,32(8-9): 991-1007.
    [68]Kim UJ, Park J. Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin [J]. Biomaterials,2005,26(15):2775-2785.
    [69]Zhou C, Confalonieri F, Medina N, et al. Fine organization of B. mori fibroin heavy chain gene [J]. Nucleic. Acids. Res.,2000,28(12):2413-2419.
    [70]Zhou C, Confalonieri F, Jacquet M, et al. Silk fibroin:structural implications of a remarkable amino acid sequence [J]. Proteins,2001,44(2):119-122.
    [71]Gage LP, Manning RF. Internal structure of the silk fibroin gene of B. mori. I. The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences [J]. J. Biol. Chem.,1980,255(19): 9444-9450.
    [72]Yu S, Gerig JT, Asakura T. NMR study of interactions between silk model peptide and fluorinated alcohols for preparation of regenerated silk fiber [J]. Macromolecules,2010.43:8794-8795.
    [73]Yamaguchi K. Kikuchi Y. Takagi T, et al. Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis [J]. J. Mol. Biol., 1989,210(1):127-139.
    [74]Inoue S, Tanaka K, Arisaka F, et al. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio [J]. J. Biol. Chem.,2000,275(51):40517-40528.
    [75]Sinohara H. Glycopeptides isolated from sericin of the silkworm, Bombyx mori [J]. Comp. Biochem. Phys. B.,1979,63(1):87-91.
    [76]Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori [J]. Insect. Biochem. Mol. Biol.,1999,29(3):269-276.
    [77]Mori K, Tanaka K, Kikuchi Y, et al. Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori [J]. J. Mol. Biol.,1995,251(2):217-228.
    [78]Kim UJ, Park J, Li Ci, et al. Structure and Properties of Silk Hydrogels [J]. Biomacromolecules,2004.5(3):786-792.
    [79]Asakura T, Yao J, Yamane T, et al. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy [J]. J. Am. Chem. Soc.,2002,124(30):8794-8795.
    [80]Valluzi R, Gido PS, Muller W. Orientation of silk at the air-water interface [J]. Int. J. Biol. Macromol.,1999,24(2):237-242.
    [81]Jin H, Kaplan DL. Mechanism of silk processing in insects and spiders [J]. Nature,2003,424(6952):1057-1061.
    [82]Motta A, Luca F, Migliaresi C. Regenerated silk fibroin films:thermal and dynamic mechanical analysis [J]. Macromol. Chem. Phys.2002,203(10-11): 1658-1665.
    [83]Huemmerich D, Slotta U, Scheibel T. Processing and modification of films made from recombinant spider silk proteins [J]. Appl. Phys. A.,2006,82(2): 219-222.
    [84]谢栒,周平,邓风等.pH值对丝素蛋白构象转变的影响[J].高等学校化学学报,2004,25:961-965.
    [85]姚菊明,魏克民,励丽等.桑蚕丝素蛋白初始结构对其矿化作用的影响[J].化学学报,2007,65:635-639.
    [86]胡伟军,华文云.紫外线及氧对蚕丝强度的影响[J].国外丝绸,1990,3:9-10.
    [87]刘华,封云芳.桑蚕丝的辐射分解研究[J].浙江工程学院学报,2001,18:191-196.
    [88]Becker MA, Tuross N. Initial degradative changes found in Bombyx mori silk fibroin [M]. ACS Symposium Series,1994,544:252-269.
    [89]Yuan Q, Yao J, Huang L, et al. Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin [J]. Polymer,2010,51(26): 6278-6283.
    [90]Schwenker RF, Dusenbury JH. Differential thermal analysis of protein fibers [J]. Text. Res. J.,1960,30(10):800-802.
    [91]Schwenker RF, Beck LR. The differential thermal analysis of textile and other high polymeric materials [J]. Text. Res. J.,1960,30:624-627.
    [92]刘冠峰,王晓玲,胡萃.天蚕丝的热分析与分子结构[J].浙江丝绸工学院学 报,1993,10:1-5.
    [93]Perez-Gigueiro J, Viney C, Llorca J, et al. Mechanical properties of single-brin silkworm silk [J]. J. Appl. Polym. Sci.,2000,75(10):1270-1277.
    [94]刘永成,邵正中,孙玉宇等.蚕丝蛋白的结构和性能[J].高分子通报,1998,9:17-23,50.
    [95]Shao Z, Vollrath F. Materials:surprising strength of silkworm silk [J]. Nature, 2002,418:741.
    [96]杨湧,陈新,周平等.不同温度下桑蚕丝的力学性能[J].高等化学学报,2001,22:1592-1596.
    [97]Qiu W, Teng W, Cappello J, et al. Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability [J]. Biomacromolecules,2009,10(3):602-608.
    [98]Viney C. Natural silks:archetypal supramolecular assembly of polymer fibres [J]. Supramol. Sci.,1997,4(1-2):75-81.
    [99]Braun FN, Viney C. Modelling self assembly of natural silk solutions [J]. Int. J. Biol. Macromol,2003,32(3-5):59-65.
    [100]Magoshi J, Magoshi Y, Nakamura S. Crystallization, liquid crystal and fiber formation of silk fibroin [J]. J. Appl. Polym. Sci.:Appl. Polym. Syrup.,1985,41: 187-204.
    [101]Magoshi J, Magoshi Y, Nakamura S. Mechanism of fiber formation of silkworm [M]. ACS,1994:293-301.
    [102]Iizuke E. Silk thread:mechanism of spinning and its mechanical properties [J]. J. Appl. Polym. Sci.:Appl. Polym. Syrup.,1985,41:173-185.
    [103]Li G, Zhou P, Shao Z, et al. The natural silk spinning process:A nucleation-dependent aggregation mechanism? [J]. Eur. J. Biochem.,2001, 268(24):6600-6606.
    [104]于同隐,李光宪.丝蛋白纤维化机理的模型—应力作用下丝蛋白构象的转变[J].高分子学报,1993,4:415-422.
    [105]Kerkam K, Vinery C, Kaplan DL, et al. Liquid crystallinity of natural silk secretions [J]. Nature,1991,349:596-598.
    [106]Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders [J]. Nature,2003,424:1057-1061.
    [107]Magoshi J, Magoshi Y, Becker MA et al. Biospinning (silk fiber formation, multiple spinning mechanisms) [M]. In Polymeric Materials Encyclopedia, Salamone JC, Ed, CRC Press:New York,1996,1:667-679.
    [108]Asakura T, Kaplan DL. Silk production and processing [M]. In Encyclopedia of Agricultural Science, Arntzen CJ, Ritter EM, Eds, Academic Press:New York, 1994,4:1-11.
    [109]Akai H, Kiuchi M, Tamura T. Ultrastructures of silk glands and cocoon filaments of wild silkmoths [M]. Antheraea yamamai and Antheraea pernyi. Wild silkmoths'88, Akai H, Wu ZS, Eds,1988,9-23.
    [110]Sehnal F, Akai H. Insect silk glands:their types, development and function, and effects of environmental factors and morphogenetic hormones on them [J]. Int. J. Insect Morphology & Embryology,1990,19(2):79-132.
    [111]Knight DP, Vollrath F. Changes in dement composition along the spinning duct in a Nephila spider [J]. Naturwissenschaften,2001,88(4):179-182.
    [112]周丽,黄郁芳,邵正中等.桑蚕丝腺体和丝纤维中金属离子的含量[J].化学学报,2005,15:1379-1382.
    [113]杨湧,陈新,周平等.不同温度下桑蚕丝的力学性能[J].高等学校化学学报, 2001,22:1592-1596.
    [114]Becker MA et al. In Silk polymer:Materials Science and Biotechnology [M]. Kaplan DL, Adams WW, Farmer B, Viney C, Eds. American Chemistry Society Press, New York,1994, Chap.17,185.
    [115]Cunniff PM, Fossey SA, Auerbach MA, et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes [J]. Polym. Advan. Technol.,1995,5(8):401-410.
    [116]Shao Z, Vollrath F. Materials:surprising strength of silkworm silk [J]. Nature 2002,418:741.
    [117]Yazawa S. J. Chem. Soc. Jpn.,1960,63:1428-1434.
    [118]Ishizaka H, Watanabe Y, Ishida K, et al. Regenerated silk prepeared from ortho phosphoric acid solution of fibroin [J]. J. Seric. Sci. Jpn.,1989,58(2):87-95.
    [119]Ki CS, Lee KH, Baek DH, et al. Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system [J]. J. Appl. Polym. Sci., 2007,105(3):1605-1610.
    [120]Matsumoto K, Uejima H, Iwasaki T, et al. Studies on regenerated protein fibers.Ⅲ. production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method [J]. J. Appl. Polym. Sci.,1996,60(4):503-511.
    [121]Mathur AB, Tonelli A, Rathke T, et al. The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate-methanol solution and the regeneration of films [J]. Biopolymers,1997,42(1):61-74.
    [122]Ha Sung-Won, Park Young H, Hudson Samual M. Dissolution of Bombyx mori Silk Fibroin in the Calcium Nitrate Tetrahydrate-Methanol System and Aspects of Wet Spinning of Fibroin Solution [J]. Biomacromolecules, 2003,4(3):488-496.
    [123]Ha SW, Tonelli AE, Hudson SM. Structural Studies of Bombyx mor i Silk Fibroin during Regeneration from Solutions and Wet Fiber Spinning [J]. Biomacromolecules,2005,6(3):1722-1731.
    [124]R.L. Lock, US Patent 5,171,505,1992.
    [125]Yao J, Masuda H, Zhao C, et al. Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate [J]. Macromolecules,2002,35(1):6-9.
    [126]Zhao C, Yao J, Masuda H, et al. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system [J]. Biopolymers,2003,69(2):253-259.
    [127]Um IC, Kweon HY, Park YH, et al. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid [J]. Int. J. Biol. Macromol., 2001,29(2):91-97.
    [128]Um IC, Ki CS, Kweon HY. et al. Wet spinning of silk polymer::Ⅱ. Effect of drawing on the structural characteristics and properties of filament [J]. Inter. J. Biol. Macromol.,2004,34(1-2):89-105.
    [129]Um IC, Kweon HY, Lee KG, et al. Wet spinning of silk polymer: Ⅰ. Effect of coagulation conditions on the morphological feature of filament [J]. Inter. J. Biol. Macromol.,2004,34(1-2):107-119.
    [130]Liivak O, Blye A, Shah N, et al. A microfabricated wet-spinning apparatus to spin fibers of silk proteins [J]. Macromolecules,1998,31(9):2947-2951.
    [131]Marsano E. Corsini P, Arosio C, et al. Wet spinning of Bomby mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibers [J]. Int. J. Biol. Macromol.,2005,37(4):179-188.
    [132]Phillips DM, Drummy LF, Naik RR, et al. Regenerated silk fiber wet spinning from an ionic liquid solution [J]. J. Mater. Chem.,2005,15:4206-4208.
    [1]丛锐利,董卫国.桑枝皮纤维的化学提取方法及性能测试[J].山东纺织科技, 2007,4:23-25.
    [2]明津法,蒋耀兴,金鹏辉.不同脱胶方法对桑枝皮纤维结构与性能的影响[J].纺织科技进展,2009,5:40-43.
    [3]顾名金,汪家骏.麻纤维开发利用[M].北京:纺织工业出版社,1993.
    [4]王华清,陈文.大麻高温蒸煮脱胶工艺研究[J].现代纺织技术,2006,6:1-3.
    [5]Bledzki AK, Reihmane S, Gassan J. Properties and modification methods for vegetable fibers from natural fiber composites [J]. J. Appl. Polym. Scl.,1996,59: 1329-1336.
    [6]Bledzki AK, Gassan J. Composites reinforced with cellulose based fibers [J]. Prog. Polym. Scl.,1999,24:221-274.
    [7]Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications [J]. Trends. Biotechnol.,2005,23:22-27.
    [8]Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls [J]. Bioresour. Technol.,2008,99:1664-1671.
    [9]Reddy N, Yang Y. Structure and properties of high quality natural cellulose fibers from cornstalks [J]. Polymer,2005,46:5494-5500.
    [10]Majumdar P, Chanda S. (2001) Chemical profile of some lignocellulosic crop residues [J]. Indian J. Agric. Biochem.,2001,14(1&2):29-33.
    [11]Cheung H, Ho M, Lau K, et al. Natural fibre-reinforced composites for bioengineering and environmental engineering applications [J]. Compos. Part. B-Eng.,2009,40(7):655-663.
    [12]Sherely AP, Doreen P, Stefan S, et al. Solvatochromic and Electrokinetic Studies of Banana Fibrils Prepared from Steam-Exploded Banana Fiber [J]. Biomacromolecules,2008,9 (7):1802-1810.
    [13]Banerjee PK, Chattopadhyay R, Guha A. Investigation into homogeneity of coir fibres [J]. Indian J. Fibre. Text.,2002,27(2):111-116.
    [14]陈旭龙,郑庆康,华坚等.物理-化学法处理桑枝皮脱胶废水的研究[J].环境污染治理技术与设备,2006,12(7):129-131.
    [15]冯西宁,杨东洁,魏玉君等.桑枝皮纤维脱胶废水处理的研究[J].针织工业,2007.12:58-60.
    [16]Kalapathy U, Proctor A. Effect of acid extraction and alcohol precipitation condition on the yield and purity of soy hull pectin [J]. Food Chem.,2001,73: 393-396.
    [17]Monsoor MA. Effect of drying methods on the functional properties of soy hul pectin [J]. Carbohyd. Polym.,2005.61:362-367.
    [18]Yapo MB, Robert C, Etienne I, et al. Effect of extraction condition on the yield, purity and surface properties of sugar beet pulp pectin extracts [J]. Food Chem., 2007,100:1356-1364.
    [19]Yapo BM, Lerouge P, Thibault JF, et al. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan Ⅰ and rhamnogalacturonan Ⅱ [J]. Carbohyd. Polym.,2007,69: 426-435.
    [20]Yapo BM. Lemon juice improves the extractability and quality characteristics of pectin from yellow passion fruit by-product as compared with commercial citric acid extractant [J]. Bioresour. Technol.,2009,100:3147-3151.
    [21]Yapo BM, Koffi KL. Yellow Passion Fruit Rinds-A Potential Source of Low-Methoxyl Pectin [J]. J. Agric. Food Chem.,2006,54:2738-2744.
    [22]Yapo BM. Biochemical Characteristics and Gelling Capacity of Pectin from Yellow Passion Fruit Rind as Affected by Acid Extractant Nature [J]. J. Agric. Food Chem.,2009,57 (4):1572-1578.
    [1]丛锐利,董卫国.桑枝皮纤维的化学提取方法及性能测试[J].山东纺织科技,2007,4:23-25.
    [2]明津法,蒋耀兴,金鹏辉.不同脱胶方法对桑枝皮纤维结构与性能的影响[J].纺织科技进展,2009,5:40-43.
    [3]郑建仙,耿立萍.膳食纤维分析方法的简化[N].营养学报,1997,2:207-211.
    [4]宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    [5]张小玲.果胶的咔唑硫酸分光光度测定法研究[J].甘肃农业大学学报.
    [6]徐汶,王光辉,王存文等.咔唑比色法测定豆腐柴叶果胶含量的研究[J].食品安全与检测,2006,22:133-135.
    [7]周尽花,周春山,谢练武等.柚果皮中果胶提取的工艺研究[J].天然产物研究与开发,2006,18:483-486.
    [8]Yapo BM, Robert C, Etienne I, et al. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts [J]. Food Chem., 2007,100:1356-1364.
    [9]Emaga TH, Ronkart SN, Robert C, et al. Characterisation of pectins ectracted from banana peels (Musa AAA) under different conditions using an experimental design [J]. Food Chem.,2008,108:463-471.
    [10]Hoefler AC. Pectin:chemistry, functionality and applications [M]. Hercules Inc. Wilmington, DE.,1999.
    [11]Taylor KACC. A colorimertic method for the quantitation of galacturonic acid [J]. Appl. Biochem. Biotech.,1993,43:51-54.
    [12]FCC V. Food Chemical Codex. National Academy of Science, Washington, DC, 2004,854-855.
    [13]Yapo BM. Biochemical Characteristics and Gelling Capacity of Pectin from Yellow Passion Fruit Rind as Affected by Acid Extractant Nature [J]. J. Agric. Food Chem.,2009,57 (4):1572-1578.
    [14]FCC V. Food Chemical Codex. National Academy of Science, Washington, DC,2004,322-323.
    [15]Singthong J, Cui SW, Ningsanond S, et al. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin [J]. Carbohyd. Polym.,2004,58:391-400.
    [16]Yapo BM, Koffi KL. Yellow Passion Fruit Rinds-A Potential Source of Low-Methoxyl Pectin [J]. J. Agric. Food Chem.,2006,54:2738-2744.
    [17]Li RJ, Fei JM, Cai YR, et al. Cellulose whiskers extracted from mulberry:a novel biomass production [J]. Carbohyd. Polym.,2009,76:94-99.
    [18]陈旭龙,郑庆康,华坚等.物理-化学法处理桑枝皮脱胶废水的研究[J].环境污染治理技术与设备,2006,12(7):129-131.
    [19]冯西宁,杨东洁,魏玉君等.桑枝皮纤维脱胶废水处理的研究[J].针织工业,2007,12:58-60.
    [20]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量测定分析程序[J].微生物学报,1987,2:82-84.
    [21]李华,孔新刚,王俊.秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J].新疆农业大学学报,2007,30(3):65-68.
    [22]储君.琯溪蜜柚皮中果胶的提取工艺研究[D].江南大学,2008.
    [23]Iglesias MT, Lozano JE. Extraction and characterization of sunflower pectin [J]. J. Food Eng.,2004,62:215-223.
    [24]Monsoor MA, Proctor A. Preparation and functional properties of soy hull pectin [J]. J.Am. Oil Chem. Soc.,2001,78:709-713.
    [25]FCC V. Food Chemical Codex. National Academy of Science, Washington, DC,2004,322.
    [26]Monsoor MA, Kalapathy U, Proctor A. Determination of polygalacturonic acid content in pectin extracts by diffuse reflectance Fourier transform infrared spectroscopy [J]. Food Chem.,2001,74:233-238.
    [27]Monsoor MA, Kalapathy U, Proctor A. Improved Method for Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy [J]. J. Agric. Food Chem.,2001,49 (6):2756-2760.
    [28]Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy [J]. Food Chem., 2000,68:327-332.
    [29]Hornsby PR, Hinrichsen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. Part I: Fiber characterization [J]. J. Mater. Sci.,1997,32:443-449.
    [30]Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls [J]. Bioresource Technol.,2008, 99:1664-1671.
    [31][21]Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose [J]. Biomacromolecules,2008,9:57-65.
    [32]Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J]. Colloid. Surface. A, 1998,142:75-82.
    [33]Sain M, Panthapulakkal S. Bioprocess preparation of wheat straw fibers and their characterization [J]. Ind. Crops Prod.,2006,23:1-8.
    [34]Sun XF, Xu F, Sun RC, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw [J]. Carbohydr. Res.,2005,340:97-106.
    [35]Mora'n JI, Alvarez VA, Cyras VP,et al. Extraction of cellulose and preparation of nanocellulose from sisal fibers [J]. Cellulose,2008,15:149-159.
    [36]Qi HS, Chang CY, Zhang L. Properties and application of biodegradable transparent and photoluminescent cellulose films prepared via a green process [J]. Green Chem.,2009,11:177-184.
    [37]Mazeau K, River A. Wetting the (110) and (100) surface of 1# cellulose studied by molecular dynmics [J]. Biomacromolecules,2008,9(4):1352-1354.
    [38]李秋瑾,殷友利,苏荣欣等.离子液体[BMIM]C1预处理对微晶纤维素酶解的影响[J].化学学报,2009,1:88-92.
    [39]Yang HP, Yan R, Chen HP, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86:1781-1788.
    [40]李金玲.硫酸铜助催化制备纳米纤维素晶须及其增强水性聚氨酯[D].华南理工大学学位论文,2010.
    [41]李小芳,丁恩勇,黎国康.一种棒状纳米微晶纤维素的物性研究[J].纤维素科学与技术.2001,9(2):29-36.
    [42]Maren R, William TW. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose [J]. Biomacromolecules, 2004,5:1671-1677.
    [43]Julien S, Chornet E, Overend RP. Influence of acid pre-treatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose [J]. J. Anal. Appl. Pyrolysis,1993,27:25-43.
    [44]Kim DY, Nishiyama Y, Wada M, et al. High-yield carbonization of cellulose by sulphuric acid impregnation [J]. Cellulose,2001,8:29-33.
    [1]Zhu ZH, Imada T, Asakura T. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin [J]. Mater. Chem. Phys.,2009,117:430-433.
    [2]Suzuki Y, Gerig JT, Asakura T. NMR study of interaction between silk model peptide and fluorinated alcohols for preparation of regenerated silk fiber [J]. Macromolecules,2010,43:2364-2370.
    [3]Magoshi J, Magoshi Y, Nakamura S. Crystallization, liquid crystal and fiber formation of silk fibroin [J]. J. Appl. Polym. Sci.:Appl. Polym. Symp.,1985,41: 187-204.
    [4]Yao JM, Masuda H, Zhao CH, et al. Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in Hexafluoroacetone hydrate [J]. Macromolecules,2002,35(1):6-9.
    [5]Zhao CH, Yao JM, Masuda H, et al. Structutal characterization and artificial fiber formation of Bombyx mori silk fibroin in Hexafluoro-iso-propanol solvent system [J]. Biopolymers,2003,69:253-259.
    [6]Ha SW, Tonelli AE, Hudson SM. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning [J]. Biomacromolecules, 2005,6(3):1722-1731.
    [7]Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electro spinning process [J]. Biomacromolecules,2006, 7(1):208-214.
    [8]Marsano E, Corsini P, Arosio C, et al. Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibers [J]. Int. J. Biol. Macromol.,205,37:179-188.
    [9]Phillips DM, Drummy LF, Naik RR, et al. Regenerated silk fiber wet spinning from an ionic liquid solution [J]. J. Mate. Chem.,2005,15:4206-4208.
    [10]Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori [J]. Insect. Biochem. Molec.,1999,29:269-276.
    [11]Yamada H, Nakao H, Takasu Y, et al. Preparation of undegradaes native molecular fibroin solution from silkworm cocoons [J]. Mat. Sci. Eng. C,2001,14: 41-46.
    [12]Zhou CZ, Confalonieri F, Medina N, et al. Fine organization of B. mori fibroin heavy chain gene [J]. Nucleic Acids Res.,2000,28(12):2413-2419.
    [13]Vepari C, Kaplan DL. Silk as a biomaterial [J]. Prog. Polym. Sci.,2007,32: 991-1007.
    [14]Um IC, Ki CS, Kweon HY, et al. Wet spinning of silk polymer Ⅱ. Effect of drawing on the structural characteristics and properties of filament [J]. Int. J. Biol. Macromol.,2004,34:107-119.
    [15]Um IC, Kweon HY, Park YH, et al. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acod [J]. Int. J. Biol. Macromol., 2001,29:91-97.
    [1]Yao JM, Masuda H, Zhao CH, et al. Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in Hexafluoroacetone hydrate [J]. Macromolecules,2002,35(1):6-9.
    [2]Zhao CH, Yao JM, Masuda H, et al. Structutal characterization and artificial fiber formation of Bombyx mori silk fibroin in Hexafluoro-iso-propanol solvent system [J]. Biopolymers,2003,69:253-259.
    [3]Ki CS, Lee KH, Baek DH, et al. Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system [J]. J. Appl. Polym. Sci., 2007,1065:1605-1610.
    [4]Um IC, Kweon HY, Lee KG, et al. Wet spinning of silk polymer Ⅰ. Effect of coagulation conditions on the morphological feature of filament [J]. Int. J. Biol. Macromol.,2004,34:89-105.
    [5]Phillips DM, Drummy LF, Naik RR, et al. Regenerated silk fiber wet spinning from an ionic liquid solution [J]. J. Mater. Chem.,2005,15:4206-4208.
    [6]Marsano E, Corsini P, Arosio C, et al. Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibers [J]. Int. J. Biol. Macromol.,2005,37:179-188.
    [7]Sohn S, Gido SP. Wet-spinning of osmotically stressed silk fibroin [J]. Macromolecules,2009,10:2086-2091.
    [8]Zuo BQ, Liu LG, Wu ZY. Effect on properties of regenerated silk fibroin fiber coagulated with aqueous methanol/ethanol [J]. J. Appl. Polym. Sci.,2007,106: 53-59.
    [9]Zhu ZH, Imada T, Asakura T. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin [J]. Mater. Chem. Phys.,2009,117:430-433.
    [10]Zhao HP, Feng XQ, Shi HJ. Variability in mechanical properties of Bombyx mori silk [J]. Mat. Sci. Eng. C,2007,27:675-683.
    [11]Matsumoto K, Uejima H, Iwasaki T, et al. Studies on regenerated protein fibers.Ⅲ. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method [J]. J. Appl. Polym. Sci.,1996,60:503-511.
    [12]Yu S, Gerig JT, Asakura T. NMR study of interactions between silk model peptide and fluorinated alcohols for preparation of regenerated silk fiber [J]. Macromolecules.2010,43:2364-2370.
    [13]Chen X, Shao ZZ, Knight DP, et al. Conformation transition kinetics of Bombyx mori silk protein [J]. Proteins:Structure, Function, and Bioinformatics,2007,68: 223-231.
    [14]Yan JP, Zhou GP, Knight DP. et al. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution:discussion of spinning parameters [J]. Biomacrolecules,2010,11:1-5.
    [15]Marsano E, Corsini P, Canetti M, et al. Regenerated cellulose-silk fibroin blends fibers [J]. Int. J Biol. Macromol.,2008,43:106-114.
    [16]Ha SW, Tonelli AE, Hudson SM. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning [J]. Biomacromolecules, 2005,6:1722-1731.
    [17]Modelling self assembly of natural silk solutions [J]. Int. J Biol. Macromol., 2003,32:59-65.
    [18]Liivak O, Blye A, Shah N, et al. Amicrofabricated wet-spinning apparatus to spin fibers of silk protein. Structure-property correlations [J]. Macromolecules, 1998,31:2947-2951.
    [19]Um IC, Ki CS, Kweon HY, et al. Wet spinning of silk polymer Ⅱ. Effect of drawing on the structural characteristics and properties of filament [J]. Int. J Biol. Macromol.,2004,34:107-119.
    [20]刘琳,费建明,占鹏飞等.用桑枝皮提取果胶及制备的纳米纤维素晶须在丝素复合膜中的应用[J].蚕业科学,2010,36(1):20-24.
    [21]Lotz B, Cesari FC. The chemical structure and the crystalline structures of Bombyx mori silk fibroin [J]. Biochimie,1979,30(2):205-214.
    [22]Vepari C, Kaplan DL. Silk as a biomaterial [J]. Prog. Polym. Sci.,2007,32: 991-1007.
    [23]Yang YY, Ding F, Wu J, et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration [J]. Biomaterials,2007,28: 5526-5535.
    [24]Asakura T, Yamane T, Nakazawa Y et al. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle X-ray scattering and 13C cross-polarization/magic angle spinning NMR [J]. Biopolymers,2001,58: 521-525.
    [25]Zhou JP, Zhang LN, Cai J, et al. Cellulose microporous membranes prepared from NaOH/urea aqueous solution [J]. J. Membrane. Sci.,2002,210:77-90.
    [26]Chen XM, Burger C, Wan F. et al. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solution [J]. Biomacromolecules,2007,8(6):1918-1926.
    [27]Wilkes. The measurement of molecular orientation in polymeric solids [J]. Adv. Polym. Sci.,1971,8:91-136.
    [28]Peresin MS, Habibi Y, Zoppe JO, et al. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals:manufacture and characterization [J]. Biomacromolecules,2010,11:674-681.
    [29]Yuan QQ, Yao JR, Huang L, et al. Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin [J]. Polymer,2010,51: 6278-6283.
    [30]Tsukada M, Freddi G, Gotoh Y, et al. Physical and chemical properties of tussah silk fibroin films [J]. J. Polym. Sci. Pol. Phys.,1994,32:1407-1412.
    [31]Tsukada M, Freddi G, Crighton JS. Structure and compatibility of poly (vinyl alcohol)-silk fibroin blend films [J]. J. Polym. Sci. Pol. Phys.,1994,32:243-248.
    [32]Tsukada M, Freddi G, Kasai N. Physical properties and phase separation structure of Antheraea pernyi/Bombyx mori silk fibroin blend films [J]. J. Polym. Sci. Pol. Phys.,1994,32:1175-1182.
    [33]Tsukada M, Freddi G, Nagura M, et al. Structural change of silk fibers induced by heat treatment [J].J.Appl. Polym. Sci.,1992,46(11):1945-1953.
    [34]Grunert M, Winter W. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals [J]. J. Polym. Environ.,2002,10(1-2):27-30.
    [35]Fong H. Electrospun nylon 6 nanofiber reinforced BIS-GNA/TEGDMA dental restorative composite resins [J]. Polymer,2004,45:2427-2432.
    [36]Tian M, Gao Y, Liu Y, et al. Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals [J]. Polymer,2007,48:2720-2728.
    [37]Ko F, Gogotsi Y. Ali A, et al. Electro spinning of continuous carbon nanotube-filled nanofiber yarns [J]. Advanced Materials,2003,15:1161-1165.
    [38]Dror Y, Salalha W, Khalfin RL, et al. Carbon nanotubles embedded in oriented polymer nanofibers by electrospinning [J]. Langmuir,2003,19:7012-7020.
    [39]姚穆.纺织材料学[M].中国纺织出版社,1980.
    [40]Chen G, Liu H. Electrospun cellulose nanofiber reinforced soybean protein isolate composite film [J]. J. Appl. Polym. Sci.,2008,110(2):641-646.
    [41]Tang C, Liu H. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance [J]. Compos. Part A,2008,39(10): 1638-1643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700