反应挤出法碱分解钨矿基础理论及新工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨矿是我国重要的优势战略资源,经济、高效地从钨矿中提取钨一直是钨冶炼工业中的一个重要课题。
     本文围绕钨矿碱分解的理论和新工艺进行了研究,主要内容如下:
     (1)系统研究了氢氧化钠分解白钨矿的动力学过程。研究结果表明:在反应温度为60~100℃的条件下,白钨矿的碱分解过程属表面化学反应控制,增大碱浓度、升高反应温度和减小矿物粒度均有利反应的进行。基于溶液活度的条件下研究过程动力学,测得的反应表观活化能和反应级数分别为82.0kJ·mol-1和0.68,建立的动力学方程为:1-(1-x)1/3=54.08a0.68r0exp(8.314T/82000)t;而以浓度代替活度时,则得到反应表观活化能和反应级数分别为64.9kJ·mol-1和1.74,建立的动力学方程为:1-(1-x)3/1=20.12×10-3[NaOH]1.74r0-1exp(8.314T/64900)t。两种情况下测得的动力学参数有较大的偏差,说明在浸出剂浓度较高、活度条件变化较大时,不能简单以浓度代替活度进行动力学研究。
     在此基础上,还分别考察了机械活化对碱分解白钨精矿和黑钨精矿动力学的影响。实验结果表明:机械活化能明显降低钨矿碱浸过程的表观活化能,降低钨矿碱分解过程对温度的依赖程度,强化钨矿的浸出。白钨精矿浸出反应的表观活化能由未活化时的78.1kJ·mol-1下降至机械活化10min后的27.9kJ·mor-1;而黑钨精矿的浸出过程相应也未活化时76.2kJ·mor-1下降至机械活化20min后的34.3kJ·mor-1。
     (2)考虑到反应挤出技术能有效地解决高浓高粘物料体系的传质问题,同时也可为物料提供强烈的机械活化作用,因而可借用于高碱、高粘度钨矿浸出新工艺的开发。鉴于反应挤出技术从未应用于湿法冶金领域,因此,本文首次对实验所用反应挤出设备(双螺杆挤出机)的反应工程学进行了研究。
     研究结果表明,流体在反应器内的平均停留时间t随着螺杆转速的增大而缩短,随着温度的升高而增长;按槽列模型计算所得虚拟槽数均随着螺杆转速的增大和温度升高而减少;螺杆转速对平均停留时间t和虚拟槽数N的影响较温度更显著;流体的轴向混合强度均随着螺杆转速的增大和温度的升高而增大。
     综上,双螺杆挤出机类似管式反应器,可看成由多个串联的全混槽组合而成,其反应效率优于间歇式全混槽(如压煮反应器)。(3)在以上研究基础上,开发了反应挤出法碱分解钨矿的新工艺,考察了反应温度、浸出时间、螺杆转速和碱用量对白钨精矿和黑钨精矿的碱分解效果的影响。研究结果表明:反应挤出法碱分解钨矿新工艺可以高效、连续地分解白钨精矿和黑钨精矿。
     处理白钨精矿时,在矿水质量比高达2.67:1、分解时间为3.5h、螺杆转速为160rpm和碱用量为理论量的2.2倍的条件下,分解温度仅为120℃(比传统碱分解工艺反应温度低了30~60℃),白钨精矿分解率可达99.18%。处理黑钨精矿时,以相同的矿水比并控制分解时间为2.5h、螺杆转速为180rpm和碱用量为理论量1.5倍时,反应温度也只需120℃,黑钨精矿分解率便可达99.13%。
     在此基础上,考察了该工艺对其他钨矿的适应能力,结果表明,采用新工艺处理各钨矿时分解率均高于99%,新工艺对钨矿原料的适应性较强。
     与传统碱法工艺相比,新工艺在碱用量相当、水用量少、温度较低的条件下,实现了钨矿常压碱分解,降低了能耗,节约了生产成本。
Tungsten ores is one of the important strategic resources in China. Up to now, tungsten extraction from the tungsten ores economically and efficiently is widely researched in the tungsten smelting industry.
     The basic theory and novel process were investigated in this paper and the main research contents were as follows:
     (1) The kinetics of sodium hydroxide leaching of scheelite was investigated systematically. The research results indicated that the leaching rate was controlled by the surface chemical reaction from60to100℃. Increasing of alkali concentration, temperature and the decreasing the particle size of the mineral can improve the reaction rate remarkably. Based on the solution activity, the apparent activation energy and the reaction order of the process were respectively determined as82.0kJ·mol-1and0.68. And the kinetics equation was established as1-(1-x)1/3=54.08a0.68r0-1exp(8.314T/82000)t. However, when the activity was replaced by concentration, the apparent activation energy and the reaction order of the process were determined as64.9kJ·mol-1and1.74, respectively. And the corresponding kinetics equation of the process was established as1-(1-x)3/1=20.12×10-3[NaOH]1.74r0-1exp(8.314T/64900)t. The determined kinetics parameters had obvious deviations with that determined based on the solution activity. This indicated that the activity of solution cannot be replaced directly with concentration to research the kinetics when the solution concentration was high, because its activity was affected by the concentration of solution and temperature.
     Based on the above study, the effects of mechanical activation on the apparent activation energy of sodium hydroxide leaching of scheelite concentrates and wolframite concentrates were investigated. The results indicated that mechanical activation effect can remarkably decrease the apparent activation energy of sodium hydroxide leaching of tungsten ores, which means that the tungsten ore can be digested with sodium hydroxide under a lower temperature. The leaching process was strengthened by mechanical activation. For scheelite concentrates, the apparent activation of the process was decreased from78.1kJ·mol-1to27.9kJ·mol-1by the mechanical activation after10min and for wolframite concentrates, the apparent activation of the process was also decreased from76.2kJ·mol-1to34.3kJ·mol-1by the mechanical activation after20min.
     (2) Reactive extrusion technology was widely used to treat the materials with high viscosity. By the technology, mass transfer of material with high viscosity can be solved and mechanical activation effect can be provided for the material. So, it is considerable to apply this technology to develop a novel process of sodium hydroxide digestion of highly viscous scheelite slurry. In view of reactive extrusion technology used in hydrometallurgy field for the first time, reaction engineering about the equipment used for developing novel process (twin screw extruder) was investigated in the paper.
     The research results indicated that the average residence time of flow in the reactor decreased with the rotating speed of screws increased, and increased with the temperature increased; the quantity of virtual slot calculated by tank column model decreased as the rotating speed of screws and temperature increased; the effect of the rotating speed of screws on the average residence time and the quantity of virtual slot was more significant than the temperature; the axial mixing intensity of fluid increased with the rotating speed of screws and temperature increased.
     Therefore, twin screw extruder is similar with a tubular reactor which is equivalent of numbers of full-mixed tank reactors in series. The equipment is more efficient than single full-mixed tank reactor (such as autoclave reactor).
     (3) Based on the above study, a novel technology of sodium hydroxide digestion of tungsten ores by reactive extrusion was developed. The effect of leaching temperature, screw rotating speed, reaction time and NaOH dosage on the decomposition of scheelite concentrates and wolframite concentrates were investigated. The experiments results showed that scheelite concentrate and wolframite can be digested efficiently and continuously by the novel process of reactive extrusion method.
     For scheelite concentrate, on the digestion conditions of the mass ratio of ores/water2.67:1, the dosage of NaOH2.2times to stoichiometry, the screw rotating speed160rpm and the reaction time3.5h and the temperature just120℃(which was30~60℃lower than that of the traditional processes), the WO3extraction can reach99.18%; While for wolframite concentrate, under the conditions of the mass ratio of ores/water2.67:1, the reaction time3.5h, the screw rotating speed160rpm and the dosage of NaOH2.2times to stoichiometry and the temperature just120℃, the WO3extraction can reached99.13%. Both scheelite concentrate and wolframite concentrate can be decomposed completely by the novel process.
     Besides, the adaptation of novel process to other tungsten ore had been investigated. The results showed that the novel process can deal with other tungsten ore well with all the WO3extraction more than99%, which meant that the novel process was adaptable rifely to tungsten ores.
     Compared with the traditional NaOH leaching process, tungsten ors can be decomposed completely by this novel process which is conducted on the conditions of atmospheric pressure, less water dosage, lower temperature and considerable dosage of NaOH.
引文
[1]李洪桂.稀有金属冶金学[M].北京:冶金工业出版社,1990:6,39-41.
    [2]有色金属提取冶金手册编委会.有色金属提取冶金手册-稀有高熔点金属(上)[M].北京:冶金工业出版社,1999:3-4,25-26,29-30,55,72,77.
    [3]中国钨工业年鉴编委会编写.中国钨工业年鉴[M].北京:中国钨业协会,2005-2008.
    [4]杨召会.钨:供应将主导市场[J].中国金属通报,2009,2:20-22.
    [5]杨召会.2007年钨市场分析及后市预测[J].稀有金属快报,2008,27(3):17-22.
    [6]刘英俊,马东升.钨的地球化学[M].北京:科学出版社,1987:2.
    [7]Charles G Groat. Mineral commodity summaries[M]. Washington:United States Government Printing Office,2002-2009.
    [8]彭觥,汪贻水.中国实用矿山地质学(下册)[M].北京:冶金工业出版社,2010:156-159.
    [9]李洪桂.钨冶金学[M].长沙:中南大学出版社,2011:6,25,47-49,53,80.
    [10]郑昌琼,李自强,张正元.盐酸分解白钨精矿动力学初步研究[J].稀有金属,1980(6):11-17.
    [11]Li KC, Wang CY. Tungsten[M]. New York:Reinhold Publishing,1947.
    [12]Fieberg MM, Coetzee CFB. The recovery of tungsten from South African low-grade scheelite concentrates[J]. Council for Mineral Technology,1986: 1-22.
    [13]Vezina JA, Gaw WA, Lalibert, JJ. Continuous recovery of tungstic trioxide. European Patent:836441 [P],1970.
    [14]Yih SWH., Wang CI. Tungsten:Sources, Metallurgy, Properties and Applications[M]. New York:Plenum Press,1979.
    [15]Meerson GA, Khavskii NN, Hydrometallurgic heterogeneous reactions happened during the grinding[J]. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl, 1961,5:36-42.
    [16]Mikhailov VA, Pomoshmikov EE, Vosse'l SV et al. Investigation of physical and chemical properties of mechanically activated tungsten concentrates[J]. Izv.Sib.Otd. Akad. Nauk SSSR, Ser.Khim. Nauk,1985,4:29-34.
    [17]刘玉,刘琦,卢铁军等.几种不同白钨精矿盐酸络合浸取的动力学研究[J]. 稀有金属与硬质合金,1989(6):10-16.
    [18]李希明,陈家镛,Kammel R.细磨活化对白钨矿浸取行为的影响[J].金属学报,1991,27(6):B371-B375.
    [19]荀国华,九大钺,苏元复.盐酸-络合浸取白钨矿的动力学研究[J].有色金属(冶炼部分),1984(6):45-48.
    [20]Martins JI, Moreira A, Costa SC. Leaching of synthetic scheelite by hydrochloric acid without the formation of tungstic acid[J]. Hydrometallurgy,2003,70: 131-141.
    [21]Cem Kahruman, Ibrahim Yusufoglu. Leaching kinetics of synthetic CaWO4 in HC1 solusions containing H3PO4 as chelating agent[J]. Hydrometallurgy,2006, 81:182-189.
    [22]许菱,许孙曲.白钨精矿的酸浸及杂多钨酸盐的生产[J].中国钨业,2000(4):41-42.
    [23]Paramguru RK, Jena KN, Sahoo PK. Tungsten recovery from scheelite by soda ash roasting-leaching[J]. Transactions of the Institution of Mining and Metallurgy,1990,99:67-70.
    [24]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2007:76,89-90,94.
    [25]宁华.苏打压煮钨矿工艺及其发展[J].稀有金属与硬质合金,1996(12):44-48.
    [26]#12
    [27]#12
    [28]#12
    [29]Eung Ha Cho. Kinetics of sodium carbonate leaching of scheelite[J]. JOM, 1988(7):32-35.
    [30]Martins JP. Kinetics of soda ash leaching of low-grade scheelite concentrates[J]. Hydrometallurgy,1996,42:221-236.
    [31]#12
    [32]刘茂盛,李洪桂,孙培梅等.机械活化苏打溶液分解白钨中矿试验研究[J].中南矿冶学院学报,1994,253(3):321-325.
    [33]Queneau PB, Huggins DK, Bechstead LW. Autoclave soda digestion of refractory sheelite concentrates. US Patent:4320095[P],1982-03-16.
    [34]Queneau PB, Huggins DK, Bechstead LW. Combined autoclave soda digestion of wolframite and scheelite. US Patent:4320096[P],1982-03-16.
    [35]Queneau PB. Soda Ash Digestion of Scheelite Concentrate[J]. Metall Soc of AIME.1981:237.
    [36]赵中伟,杨金洪.关于钨矿苏打压煮工艺几个理论问题的讨论[J].稀有金属与硬质合金,2002,30(2):1-3.
    [37]泽里克曼.钨[M].中南矿业学院科技情报科,1981:26,30-31.
    [38]Martins JP, Martins F. Soda ash leaching of scheelite concentrates:the effect of high concentration of sodium carbonate[J]. Hydrometallurgy,1997,46: 191-203.
    [39]吴厚荣.复杂钨中矿的分解[J].有色冶炼,1985,14(8):33.
    [40]Zhao ZW, Li HG. Thermodynamics for leaching of sheelite-pseudo-ternary-system phase diagram and its application[J]. Metall. Mater. Trans. B,2008,39B:519-23.
    [41]万林生,徐国钻,严永海等.中国钨冶炼工艺发展历程及技术进步[J].中国钨业,2009,24(5):63-66.
    [42]Osseo-Asare K. Solution chemistry of tungsten leaching systems[J]. Metall.Trans.B,1982,13:555-564.
    [43]李洪桂.钨矿物原料碱分解基础理论及新工艺[M].长沙:中南大学出版社,1997:1-10,54-71,91-98,241.
    [44]史海燕,赵中伟.苛性钠分解黑钨矿的热力学分析[J].中国钨业.2006,21(5):24-27.
    [45]柯家骏,蒙星辉,龚建平.含钙的钨矿物料的处理方法.中国:86100031[P],1986-09-10.
    [46]李洪桂,刘茂盛,思泽金等.白钨精矿与黑白钨混合矿碱分解方法及设备.中国:85100350[P],1986-08-27.
    [47]李运姣,孙培梅,刘茂盛.白钨精矿的机械活化碱分解[J].中国有色金属学报,1 995,5(3):27-29.
    [48]Li YJ, Li HG, Liu MS et al. Mechanical activation of alkaline leaching of scheelite concentrate[J]. Rare metals,1998,17(4):307-311.
    [49]李运姣,孙培梅,李洪桂等.一种新的强化浸出法[J].稀有金属与硬质合金,1993(6):429-432.
    [50]李洪桂,孙培梅,李运姣.碱法热球磨分解高钙黑钨精矿[J].稀有金属,1993,17(2):85-88.
    [51]Li HG, Liu MS, Sun PM et al. Causitc decomposition of scheelite and scheelite-wulframite concentrates through mechanical activation[J]. J. CENT. SOUTH UNIV. TECHNOL.,1995,2(2):16-20.
    [52]孙培梅,李洪桂,李运姣等.机械活化苛性钠分解柿竹园白钨矿的研究[J].中南工业大学学报,1999,30(3):248-251.
    [53]Sun PM, Chen ZX, Li HG et al. Preparation of high-purity sodium tungsten from low-grade tungsten-concentrate with a high content of calcium and other impurities[J]. Rare metals,1996,15(2):116-122.
    [54]孙培梅,李洪桂,刘茂盛等.碱法热球磨分解白钨细泥的研究[J].稀有金属与硬质合金,1989(6):6-9.
    [55]李洪桂.浅谈15年来我国钨精矿分解技术的进步和今后努力方向[J].中国钨业,1996(12):46-49.
    [56]李洪桂,刘茂盛,李运姣等.白钨矿及黑白钨混合矿的NaOH分解法.中国:00113250.4[P],2001-08-08.
    [57]李洪桂,孙培梅,李运姣等.面向生产主战场为我国钨湿法冶金技术赶超世界先进水平而努力[J].中国钨业,2001,16(5-6):49-51.
    [58]普崇恩,谢盛德,姚珍刚等.一种白钨矿、黑钨矿碱分解的联合分解工艺.中国:02114037.5[P],2003-04-16.
    [59]宋善章.一种分解白钨矿的方法.中国:200410023187.3[P],2005-01-26.
    [60]宋善章.一种分解白钨矿的方法.中国:03118385.9[P],2003-11-05.
    [61]杨幼明,万林生,张子岩.碱性条件下磷酸盐分解白钨实验研究[J].中国钨业,2006,21(5):32-36.
    [62]黄坤林.调整碱压煮工艺参数提高复杂钨矿分解率[J].硬质合金,2004,21(1):36-38.
    [63]夏庆林.白钨矿低压碱分解工业试验与应用[J].中国钨业,2000,15(4):37-40.
    [64]潘恩树.白钨常压碱分解技术.中国:00102583.X[P],2000-09-27.
    [65]潘恩树,夏庆林.常压碱煮流程高钙钨矿的分解法.中国:02100507.9[P],2002-11-20.
    [66]丁治英,赵中伟.氟盐溶液浸出白钨矿的热力学分析[J].稀有金属与硬质合金,2004,32(1):8-10.
    [67]王识博,赵中伟,李洪桂.磷酸盐浸出白钨矿的热力学分析[J].稀有金属与 硬质合金,2005,33(1):1-4.
    [68]方奇.苛性钠压煮法分解白钨矿[J].中国钨业,2001,16(5-6):80-81.
    [69]张喜庆.微波加热碱分解低品位黑白钨混合矿的试验研究[D].赣州:江西理工大学,2009.
    [70]李洪桂,赵中伟.我国钨冶金技术的进步——纪念中国钨业100年[J].中国钨业,2007,22(6):7-10.
    [71]赵中伟,李洪桂,孙培梅等.氢氧化钠常压分解白钨矿及黑白钨混合矿的方法.中国:02114186.X[P],2004-01-07.
    [72]陈家镛.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998:232.
    [73]刘立军,柯家俊.白钨矿电场碱分解的研究[J].稀有金属,1991,15(2):81-87.
    [74]Sevryukev N, Kuzmin B, Chelishchev Y. General metallurgy[M]. Moscow: Peace publishers:303.
    [75]马里诺,赞索斯.反应挤出-原理与实践[M].北京:化学工业出版社,1999.
    [76]Cassagnau P, Bounor-Legare V, Fenouillot F. Reactive processing of thermoplastic polymers:A review of the fundamental aspectcs[J]. International Polymer Processing,2007,22(3):218-258.
    [77]殷敬华,郑安呐,盛京等.高分子材料的反应加工[M].北京:科学出版社,2008.
    [78]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:化学工业出版社,2001.
    [79]周甫萍,唐文忠.双螺杆反应挤出[J].塑料加工,1999,27(1):48-51.
    [80]Tzoganakis C. Reaetive extrusion of polymers:A review[J]. Advances in Polymer Technology,1989,9(4):321-330.
    [81]Sakai T. Report on the state of the art:reactive processing using twin-serew extruders[J]. Advances in Polymer Technology,1992,11(2):99-108.
    [82]劳温代尔C.塑料挤出[M].北京:中国轻工业出版社,1996:7.
    [83]詹森LPBM.双螺杆挤出[M].北京:轻工业出版社,1987:6.
    [84]耿孝正.双螺杆挤出机及其应用[M].北京:中国轻工业出版社,2003:115-118.
    [85]吴大鸣.塑料混炼设备的研发及应用进展[C]PPTS2005年塑料加工技术高峰论坛论文集,北京,2005:210-213.
    [86]吴京,殷敬华.热塑性聚合物的反应挤出与双螺杆挤出机[J].塑料,2003,32(1):31-38.
    [87]付东升,张康助,孙福林等.反应性挤出原理及其研究进展[J].现代塑料加 工应用,2003,15(5):52-55.
    [88]张广成.聚合物反应挤出的研究进展[J].现代塑料加工应用,2001,13(5):50-54.
    [89]陈鼎,严红革,黄培云.机械力化学技术研究进展[J].稀有金属,2003,27(2):293-298.
    [90]徐红梅,陈清,蔡建国等.机械力化学的原理及应用[J].长沙航空职业技术学院学报,2003,3(2):47-50.
    [91]刘书银,陈中华.反应挤出技术在高聚物制备中的应用[J].高分子材料科学与工程,1999,15(5):13-17.
    [92]张曾明.反应挤出-聚合物改性的重要技术手段[J].塑料,1995,24(6):29-34.
    [93]李运姣,李洪桂,刘茂盛.白钨矿碱分解过程的热力学和动力学研究[J].中南矿冶学院学报,1990,21(1):39-45.
    [94]Pecina T, Franco T, Castillo P et al. Leaching of a zinc concentrate in H2SO4 solutions containing H2O2 and complexion agents[J]. Minerals Engineering, 2008,21:23-30.
    [95]Souza AD, Pina PS, Lima EVO et al.Kinetics of sulphuric acid leaching of a zinc silicate calcine[J]. Hydrometallurgy,2007,89:337-345.
    [96]Lasheen TA, Hazek MNE1, Helal AS. Kinetics of reductive leaching of manganese oxide ore with molasses in nitric acid solution[J]. Hydrometallurgy, 2009,98:314-317.
    [97]Mahajan V, Misra M, Zhong K et al. Enhanced leaching of copper from chalcopyrite in hydrogen peroxide-glycol system[J]. Minerals Engineering,2007, 20:670-674.
    [98]GB/T 14352.1-1993.钨矿石、钼矿石化学分析方法硫氰酸盐光度法测定钨量[S].北京:中国标准出版社,1994-02-01.
    [99]江西有色冶金研究所著.钨矿石中钨及其伴生元素的分析(第一版)[M].北京:冶金工业出版社,1975:21-31.
    [100]Habashi F. Principles of extractive metallurgy[M]. General Principles, vol.1. New York:Gordon and Breach,1980:111-252.
    [101]李洪桂.冶金原理[M].北京:科学出版社,2005:295-296.
    [102]Sergey VP, Kenneth SP. Thermodynamics of aqueous NaOH over the complete composition range and to 523 K and 400 MPa[J]. Journal of Physics and Chemistry B,1997,101(18):3589-3595.
    [103]EUNG HA CHO. A kinetics study of leaching of coal pyrite with nitric acid[J]. Metallurgy Transactions B,1983,4B:317-324.
    [104]Hu HP, Chen QY, Yin ZL et al. Study on the kinetics of thermal decomposition of mechanically activated pyrites[J]. Thermochimica acta,2002,389:79-83.
    [105]Zhao ZW, Long S, Chen AL et al. Mechanochemical leaching of refractory zinc silicate(hemimorphite) in alkaline solution[J]. Hydrometallurgy,2009,99(3-4): 255-258.
    [106]Zhao ZW, Zhang YX, Chen XY et al. Effect of mechanical activation on the leaching kinetics of pyrrhotite[J]. Hydrometallurgy,2009,99(1-2):105-108.
    [107]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:32-312.
    [108]Zhao ZW, Zhang G, Huo GS et al. Kinetics of atmospheric leaching molybdenum from metalliferous black shales by air oxidation by alkali solution[J]. Hydrometallurgy,2009,97:233-236.
    [109]Miroslav DS, Branislav M, Dragana Z. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid[J]. Hydrometallurgy,2009,95:273-279.
    [110]Yan J, Li XH, Pan LP et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite[J]. Hydrometallurgy,2010, 102:95-100.
    [111]张刚.多金属黑色页岩中钼镍高效浸出新工艺的研究[D].长沙:中南大学,2009.
    [112]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997:75,127,136-138,143-168.
    [113]马秀清.啮合同向双螺杆挤出过程停留时间分布实验研究[J].中国塑料,2003,17(9):85-88.
    [114]史子瑾.聚合物反应工程基础[M].北京:化学工业出版社,1997:49.
    [115]曲英,刘今.冶金反应工程学导论[M].北京:冶金工业出版社,1987:50-52.
    [116]用反应挤出法进行ABS接枝马来酸酐的研究[J].青岛大学学报,2001,16(2):68-71.
    [117]杨振国,李滨.用反应挤出法制备尼龙6塑料[J].功能高分子学报,1996,9(4):582-588.
    [118]李洪桂.关于钨矿物原料氢氧化钠分解的几个理论问题的浅见[J].江西有色金属,1995,9(1):40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700