水稻小穗发育相关基因MFS1的图位克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界上重要的粮食作物,也是单子叶植物的模式植物。水稻是研究花发育的理想材料,与双子叶模式植物相比,水稻花序具有禾本科植物独有的结构单元一小穗,而且具有丰富的遗传与基因组资源。深入研究水稻生殖发育过程,不仅有助于深入理解水稻小穗或小花的形成机制,而且对丰富植物发育生物学知识和提高水稻产量都具有重要意义。
     在本研究中,克隆了一个水稻小穗发育相关基因MULTI-FLIRET SPIKELET1(MFS1),我们对其进行了表型和细胞学观察,表达模式分析以及功能验证。主要结果如下:
     1.mfs1突变体表型观察
     从EMS诱变库中发现mfS1-1和mfs1-2两个等位小穗突变体,相比而言mfs1-1突变表型更严重和丰富,以下主要描述mfs1-1突变体。开花期的mfs1-1小穗护颖退化类似于副护颖,小穗轴伸长,形成额外的外稃,内稃主体部分退化,内三轮的花器官没有发现同源转化现象但花器官数目不确定。扫描电镜显示,早期护颖原基发育迟缓和退化,部分小花形成扩大的花分生组织和两个退化的内稃原基,雄蕊发育不同步。
     2.MFS1遗传分析与分子定位
     利用三个杂交组合进行遗传分析和分子定位,杂交F,代植株表型与野生型相似,F2代植株发生分离,正常株和突变株分离比均符合3:1,表明MFS1基因受单隐性基因控制。运用SSR标记和InDel标记进行基因定位,MFS1基因被最终定位在第5染色体InDel17和InDel24之间。
     3.MFS1基因的克隆与蛋白质分析
     DNA和cDNA测序分析发现一个编码APETALA2/EREBP结构域蛋白的基因Os05g41760分别在mfS1-1和mfs1-2突变体中存在一个C-T的替换,引起了氨基酸的改变,导致蛋白质的功能变异,初步确定其为候选基因。MFS1属于AP2/ERF家族中一个功能未知的分支,蛋白质定位在细胞核内。
     4.MFS1基因的表达模式分析
     利用半定量RT-PCR,qPCR和原位杂交技术进行了表达模式分析。半定量RT-PCR和qPCR结果显示MFS1基因在根,茎,叶和花中都表达,尤其在花序早期表达强烈。原位杂交显示MFS1在分生组织和护颖原基中表达强烈,随着花器官的发育,表达量逐渐减弱。
     5.MFS1基因的功能验证
     构建MFS1基因的基因组互补载体,转化mfs1-1突变体的愈伤组织,获得转基因植株,通过GUS染色检测转基因植株。结果表明,mfs1-1突变体表型完全恢复,确定了Os05g41760基因是MFS1基因。
     构建MFS1基因的RNAi转基因表达载体,转化籼稻品种缙恢10号和粳稻品种中花11的愈伤组织,获得转基因植株,GUS染色、PCR检测转基因植株。RNAi转基因植株小穗表现为护颖退化,小穗轴伸长,额外的外稃状器官和内稃退化,与mfs1突变体的表型高度相似,进一步证明了OS05g41760基因是MFS1基因和MFS1基因的功能。
     6.MFS1调控其它花发育相关基因的表达
     qPCR分析和原位杂交分析结果表明,在mfs1-1突变体中,A功能基因OSMADs15表达量增加,AP2/ERF结构域基因SNB、OsIDS1和FZP表达量减少及护颖特征基因G1表达量减少。
Rice (Oryza sativa L.) is not only an important food crops in the world and a model plant in monocots but also an ideal object for studying flower development. Compaired with the model plants in dicots, rice bears a unique inflorescence consisting of spikelets to grass species, and has abundant genetic and genomic resources. So, reseach on rice reproductive development process would facilitate understanding of the molecular mechanism involved in spikelet development in rice and enrich knowledge of plant developmental biology for us. Meantime, it is very important to improve rice yields.
     In the study, we cloned a MULTI-FLORET SPIKELET1(MFS1) gene associated with spikelet development in rice. We did investgation of mfsl mutants, and analysed the expression patterns and functions of MFS1gene. The results as follows:
     1. Phenotypic observation of mfsl mutants
     Two mutants of rice, mfsl-1and mfsl-2, were identified from ethylmethane sulfonate (EMS)-treated Jinhui10(Oryza sativa L). Because mfsl-1showed more severe defects than mfsl-2, the main focus of our study was mfsl-1.The mfsl-1spikelet displayed degenerated the sterile lemma, the elongated rachilla, the extra lemma-like organ and the degraded palea. Additionally, mfsl-1flowers produced varied numbers of inner floral organs. Scanning Elctron Microscropy (SEM) showed that the sterile lemma and palea was degraded in mfsl-1, floral meristem was enlarged and the stamen development was not synchronous in a few cases.
     2. Genetic analysis and molecule mapping of MFSl
     We employed3crosses to conduct the genetic analysis. The F1population showed wild-type phenotype and the segregation rates of wild-type and mfsl plants fit the ratio of3:1, suggesting that the MFS1gene was controlled by a single recessive gene. Next, we used the SSR markers and InDel markers to map the MFS1gene, the MFS1gene was finally mapped between Indell7and Indel24on chromosome5.
     3. Cloning and protein analysis of the MFS1gene
     Sequencing of DNA and cDNA analysis found a single nucleotide substitution from C to T within a predicted AP2/ERF transcription factor (Os05g041760) in different positions of the two mfsl alleles, causing a Ala66to Val66substitution in mfs1-1and a Thr51to Ile51substitution in mfs1-2. So, we infer that the Os05g041760is the candidate gene. MFS1was shown to belong to a clade of unknown function in the AP2/ERF family, and localized in the nucleus.
     4. Expression patterns analysis of the MFS1gene
     Semi-quantitative RT-PCR and quantitative RT-PCR (qPCR) analysis exhibited that MFS1was universally expressed in various tissues including roots, stems, leaves and panicles, especially high in young panicle. In situ hybridization analysis showed MFS1was strong expressed in the meristems and sterile lemma primordium. The MFS1expression was reduced gradually as the floral organ started to develop.
     5. Function analysis of the MFS1gene
     The MFS1complementation vector constructed and transformed into mfsl-1. we accuquired the transgenic positive plants and detected them GUS expression identification. In the transgenic plants, the mutant phenotypes were completely rescued in transgenic plants, suggesting that the Os05g41760is the MFS1gene.
     The MFS1interference vectors were constructed and transformed into Jinhui10(Oryza sativa L. ssp. indica) and Zhonghuall (Oryza sativa L. ssp. japonica). We accuquired the transgenic positive plants and detected them by PCR and GUS expression identification. In the transgenic plants, pleiotropic spikelet defects were similar to those of mfs1-1. The result further confirmed that the Os05g41760is the MFS1gene and the functions of the MFS1gene.
     6. MFS1regulates the expression of related floral development genes
     The expression patterns showed the expression of A function gene OsMADS15was increased, the expressions of the AP2/ERF domian genes (FZP, SNB and OsIDSl) and the sterile lemma identity gene G1were decreased.
引文
1. Agrawal KG, Abe K, Yamazaki M, Miyao A, Hirochika A (2005). Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of OsMADS1 gene. Plant Mol Biol 59: 125-135.
    2. Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell,7(10):1569-1582.
    3. Aoki S, Uehara K, Imafuku M, Hasebe M and Ito M (2004). Phylogeny and divergence of basal angiosperms inferred from APETALA3 and PISTILLATA-like MADS-box genes. J Plant Res 117:229-244.
    4. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis, circadian clock. Science 293:880-883.
    5. Arber A (1934). The Gramineae:a study of cereal, bamboo, and grasses (Cambridge Univ Press, Cambridge, UK).
    6. Angenent GC, Franken J, Busscher M, Colombo L and Vantunen AJ (1993). Petal and Stamen Formation in Petunia Is Regulated by the Homeotic Gene-Fbpl. Plant Journal 4: 101-112.
    7. Angenent GC and Colombo L (1996). Molecular control of ovule development. Trends in Plant Science 1:228-232.
    8. Bradley D, Ratcliffe O, Vincent C, CarPenter R, Coen E (1997). Inflorescence commitment and architecture in Arabidopsis. Science 275:80-83.
    9. Bowman JL, Smyth DR, Meyerowitz EM (1991). Genetic interactionsamong floral homeotic genes of Arabidopsis. Development 112:1-20
    10. Birve A, Sengupta AK, Beuchle Larsson D, Kennison JJA, Rasmuson-Lestander A, Miiller J (2001). Su(z)12 a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128:3371-3379.
    11. Bowman JL, Alvarez J, Weigel D, Meyerowitz E M and Smyth DR(1993). Control of Flower Development in Arabidopsis-Thaliana by Apetalal and Interacting Genes. Development 119:721-743.
    12. Brand U, Fletcher JC, Hobe M, Meyerowitz EM and Simon R(2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617-619.
    13. Leibfried A, To J, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172-1175.
    14. Bowman JL and Smyth DR (1999). CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387-2396.
    15. Bowman JL, Drews GN and Meyerowitz EM (1991). Expression of the Arabidopsis Floral Homeotic Gene Agamous Is Restricted to Specific Cell-Types Late in Flower Development. Plant Cell 3:749-758.
    16. Bennetzen JL, Ma J (2003). The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128-133.
    17. Cusick F (1966). On phylogenetic and ontogenetic fusions. In Trends in Plant Morphogenesis, E.G. Cutter, ed (London:Longmans, Green & Co.), pp.170-183.
    18. Clifford HT (1987). Spikelet and floral morphology. In:Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME, eds. Grass Systematics and Evolution. Washington DC: Smithsonian Institution Press, pp 21-30.
    19. Colombo L. et al (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859-1868.
    20. Chuck G, Meeley RB, Hake S (1998). The control of maizes sikelet meristem fate by the APETELA-like gene indeterminate spikeletl. Gene Dev 12:1145-1154.
    21. Chuck G, Meeley R, Hake S (2008). Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes idsl and sidl. Development 135:3013-3019.
    22. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002). The Control of Spikelet Meristem Identity by the branched silklessl Gene in Maize Science 298: 1238-1241.
    23. Coen ES, Meyerowitz EM (1991). The war of the whorls:genetic interactions controlling flower development. Nature 353:31-37.
    24. Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1868.
    25. Coen ES and Meyerowitz EM (1991). The war of the whorls:genetic interactions controlling flower development. Nature 353:31-37.
    26. Chandel NS, Budinger GR and Schumacker PT (1996). Molecular oxygen modulates cytochrome oxidase function. J Biol Chem 271:18672-18677.
    27. Cacharroon J, Saedler H, TheiBen G (1999). Expression of MADS box genes ZmM8 and ZmMI4 during inflorescence development of Zea may, discriminates between the upper and the lower floret of eaehspikelet. Dev Genes Evol 209:411-420.
    28. Cacharroon J, Saedler H and Theissen G (1999). Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Dev Genes Evo 209:411-420.
    29. Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH (2006). Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta,223(5):882-90.
    30. Chuck G, Meeley R, Hake S (2008). Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sidl. Development 135:3013-3019.
    31. Drews GN, Bowman JL, Meyerowitz EM (1991). Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991-1002.
    32. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004). Ehdl, a B-type response regulator in rice confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hdl. Genes Dev 18: 926-936.
    33. Duan YL, Diao ZJ, Liu HQ, Cai MS, Wang F, Lan T, Wu WR(2010). Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L). Plant Mol Biol 74:605-615.
    34. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289:617-619.
    35. Ditta G, Pinyopich A, Robles P, Pelaz S and Yanofsky MF (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14: 1935-1940.
    36. Drews GN, Bowman JL and Meyerowitz EM (1991). Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991-1002.
    37. Ferrandiz C, Gu Q, Martienssen R and Yanofsky MF(2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725-734.
    38. Fornara F, Pafenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L Kater MM (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol,135:2207-2219.
    39. Favaro R, Immink RGH, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L (2002). Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet Genomics,268(2): 152-159.
    40. Flanagan CA, Hu Y and Ma H(1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J 10:343-353.
    41. Francis ME (1920). Book of Grasses (Garden City, New York:Doubleday, Page& Co.).
    42. Verbeke, JA (1992). Fusion events during floral morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol.43:583-598.
    43. Favaro R, Pinyopich A, Battaglia Ra, Kooiker M, Borghi L, Ditta G, Yanofsky M, Kater MM, Colombo L (2003). MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell,15:2603-2611.
    44. Gao XC, Liang WQ, Yin CS, Ji SM, Wang HM, Su X, Guo C, Kong HZ, Xue HW, Zhang DB (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728-740.
    45. Gendall AR, Levy YY, Wilson A, Dean C (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525-535. Sung S, Amasino RM(2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159-164.
    46. Greco R, Stagi L, Colombo L, Angenent GC, Sari-Gorla M, Pe ME (1997). MADS box genes expressed in developing inflorescences of rice and sorghum. Mol Gen Genet, 253:615-23.
    47. Gu Q, Ferrandiz C, Yanofsky MF and Martienssen R(1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509-1517.
    48. Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309: 1694-1696.
    49. Hayama R, Izawa T, Shimamoto K (2002). Isolation of rice genes Possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494-504.
    50. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K(2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719-722.
    51. Hayama R, Izawa T, Shimamoto K (2002). Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol 43:494-504.
    52. Hong L, Qian Q, Zhu K, Tang D, Huang Z, Gao L, Li M, Gu M, Cheng Z (2010). ELE restrains empty glumes from developing into lemmas. J Genet Genomics 37:101-115.
    53. Horigome A, Nagasawa N, Ikeda K, Ito M, Itoh JI, Nagato Y(2009). Rice OPEN BEAK is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene. Plant J 58:724-736.
    54. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722.
    55. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302-306.
    56. Ikeda K, Sunohara H, Nagato Y (2004). Developmental course of inflorescence and spikelet in rice. Breed Sci 54:147-156.
    57. Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000). Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22: 391-399.
    58. Irish VF and Sussex IM (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741-753.
    59. Ikeda K, Ito M, Nagasawa N, Kyozuka J and Nagato Y (2007). Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51:1030-1040.
    60. Izawa T, Takahashi Y, Yano M (2003). Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113-120.
    61. Johanson West J, Lister C, Miehaels S, Amasino R, Dean C (2000). Molecular analysis of FRIGID A a major determinent of natural variation in Arabidopsis flowering time. Scienee 290:344-347.
    62. Jin Y, Luo Q, Tong HN, Wang AJ, Cheng ZJ, Tang JF, Li DY, Zhao XF, Li XB,Wan JM, Jiao YL, Chu CC, Zhu LH (2011). An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol doi: 10.1016/j.ydbio.2011.1008.1023.
    63. Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, LeeYH, ChoYG, An G (2000). leaf hull sterile 1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871-884.
    64. Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, LeeYH, ChoYG, An G (2000). leaf hull sterile 1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871-884.
    65. Kyozuka J, Kobayashi T, Morita M and Shimamoto K (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710-718.
    66. Kellogg EA (2009). The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. Rice 2:1-14.
    67. Kempin SA, Savidge B and Yanofsky MF (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522-525.
    68. Kempin SA, Mandel MA and Yanofsky MF (1993). Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol 103:1041-1046.
    69. Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51:47-57.
    70. Kiba, Yamada, Sato, S, Kato T, Tabata S, Yamashino T, Mizuno T (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol, 44(8):868-874.
    71. Koornneef M, Hanhart CJ, Van der Veen JH (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57-66.
    72. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841-3850.
    73. Kang HG, Jeon JS, Lee S and An G (1998). Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021-1029.
    74. Krizek BA and Fletcher JC (2005). Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688-698.
    75. Kipreos ET, Gohel SP and Hedgecock EM (2000). The C. elegans F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development 127: 5071-5082.
    76. Koornneef M (1997). Plant development:timing when to flower. Curr Biol 7: 651-652.
    77. Kim S, Soltis DE, Soltis PS, Zanis MJ and Suh Y (2004). Phylogenetic relationships among early-diverging eudicots based on four genes:were the eudicots ancestrally woody? Mol Phylogenet Evol 31:16-30.
    78. Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell,105:793-803.
    79. Lenhard M, Bohnert A, Jurgens G and Laux T (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805-814.
    80. Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, Gynheung An (2003). Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta,217:904-911.
    81. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS and Yanofsky MF (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007-1018.
    82. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X(2008). DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66:491-502.
    83. Lu SJ, Wei H, Wang Y, Wang HM, Yang RF, Zhang XB, Tu JM (2012). Overexpression of a Transcription Factor OsMADS15 Modifies Plant Architecture and Flowering Time in Rice. Plant Mol Biol Rep 30:1461-1469.
    84. Litt A and Irish VF (2003). Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implications for the evolution of floral development. Genetics 165:821-833.
    85. Levin JZ and Meyerowitz EM (1995). UFO:an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7:529-548.
    86. Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:43-46.
    87. Lee DY, Lee J, Moon S, Park SY, An G (2006). The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49:64-78.
    88. Luo Q, Zhou KD, Zhao XF, Zeng QC, Xia HG, Zhai WX, Xu JC, Wu XJ, Yang HS, Zhu LH (2005). Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221:222-230.
    89. Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D (2010). The AGL6-like gene OsMADS6 regulatesfloral organ and meristem identities in rice. Cell Research 20:299-313.
    90. Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, and Xue YB(2009). A putative lipase gene EXTRA GLUME 1 regulates both empty-glume fate and spikelet development in rice. Plant Journal 57:593-605.
    91. Lee DY, An G (2012). Two AP2 family genes, SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 69: 445-461.
    92. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
    93. Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA (2006). Developmental gene evolution and the origin of grass inflorescence diversity In: Leebens-Mack J, Soltis DE, Soltis PS, eds. Developmental Genetics of the Flower. New York:Academic Press, pp 383-421.
    94. Maleomber ST, Kellogg EA (2004). Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16:1692-1706.
    95. Mizukami Y, Ma H (1992). Ectopic Expression Of The Floral Homeotic Gene Agamous In Transgenic Arabidopsis Plants Alters Floral Organ Identity. Cell 71: 119-131.
    96. Malcomber ST and Kellogg EA (2004). Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16:1692-706.
    97. Mizukami Y and Ma H (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119-131.
    98. Mylne JS, Barrett L, Tessadori F, Mesnage S, Jacobsen SE, Fransz P, Dean C (2006). LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1 is required for epigenetic silencing of FLC. Proc Natl Acad Sci USA 103:5012-5017.
    99. Michaels SD, Amasino RM (2001). Loss of FLOWERING LOCUS activity eliminates the late-flowering phenotype of FRIGIDA andautonomous pathway mutations but not responsiveness to vernalization. Plant Cell13:935-941.
    100. Mandel MA, Gustafson-Brown C, Savidge B and Yanofsky MF (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
    101. Mandel MA and Yanofsky MF (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763-1771.
    102. Malcomber ST and Kellogg EA (2005). SEPALLATA gene diversification:brave new whorls. Trends Plant Sci 10:427-435.
    103. Mena M, Mandel MA, Lerner DR, Yanofsky MF and Schmidt RJ (1995). A characterization of the MADS-box gene family in maize. Plant J 8:845-854.
    104. Mizukami Y and Ma H (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119-131.
    105. Wilkinson MD and Haughn GW (1995). UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis. Plant Cell 7:1485-1499.
    106. McSteen P, Laudencia-Chingcuanco D and Colasanti J (2000). A floret by any other name:control of meristem identity in maize. Trends Plant Sci 5:61-66.
    107. Ng M and Yanofsky MF (2000). Three ways to learn the ABCs. Curr Opin Plant Biol 3(1):47-52.
    108. Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004). Type Ⅰ MADS-box genes have experienced faster birth-and-death evolution than type Ⅱ MADS-box genes in angiosperms. Proc Natl Acad Sci U S A,101:1910-1915.
    109. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705-718.
    110. Nagasawa, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development,130:705-718.
    111. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009). MOSAIC FLORAL ORGANS1, an AGL6-Like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008-3025.
    112. Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009). MOSAIC FLORAL ORGANS1, an AGL6-Like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008-3025.
    113. Pelaz S, Ditta GS, Baumann E, Wisman E and Yanofsky MF (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203.
    114. Parenicova L, de Folter Stefan, Kieffer M, Horner D, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world. Plant Cell,15:1538-1551.
    115. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature,424:85-88.
    116. Prasad K and Vijayraghavan U (2003). Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics 165:2301-2305.
    117. Prasad K, Parameswaran S and Vijayraghavan U (2005). OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915-928.
    118. Parcy F, Nilsson O, Busch MA, Lee I and Weigel D (1998). A genetic framework for floral patterning. Nature 395:561-566.
    119. Prasad K, Sriram P, Kumar CS, Kushalappa K and Vijayraghavan U (2001). Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281-290.
    120. Putterill J, Laurie R, Macknight R (2004). It's time to flower:the genetic control of flowering time. BioEssays 26:363-373.
    121. Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe ME, Colombo L, Kater MM (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sexual Plant Reproduction,15:113-122.
    122. Prasad K, Parameswaran S, Vijayraghavan U (2005). OsMADSl, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early acting regulator of inner floral organs. Plant J 43:915-928.
    123. Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S, Castiglioni P, Fink R, Ricardo Capone, Miiller KJ, Bossinger G, Rohde W, Salamini F (2000). Genetics of mutations affecting the development of a barley floral bract. Genetics,154:1335-46.
    124. Ren DY, Li YF, Wang Z, Xu FF, Guo S, Zhao FM, Sang XC, Ling YH, He GH (2012) Identification and Gene Mapping of a multi-floret spikelet 1 (mfsl) Mutant Associated with Spikelet Development in Rice. JIA 11:1574-1579.
    125. Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M (2006). Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell,18(8):1819-1832
    126. Rao NN, Prasad K, Kumar PR and Vijayraghavan U (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A105:3646-3651.
    127. Rounsley SD, Ditta GS and Yanofsky MF (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259-1269.
    128. Ratcliffe OJ, Bradley DJ and Coen ES (1999). Separation of shoot and floral identity in Arabidopsis. Development 126:1109-1120.
    129. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998). The late elongated hypocotyls mutation of Arabidopsis, disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219-1229.
    130. Schultz EA and Haughn GW (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. Plant Cell 3:771-781. Sablowski R (2007). Flowering and determinacy in Arabidopsis. J Exp Bot 58:899-907.
    131. Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY (2006). Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol,47: 1591-1602.
    132. Sang XC, Li YF, Luo ZK, Ren DY, Fang LK, Wang N, Zhao FM, Ling YH, Yang ZL,Liu YS, and He GH (2012). CHIMERIC FLORAL ORGANS 1, Encoding a Monocot-specific MADS-box Protein, Regulates Floral Organ Identity in Rice. Plant Physiol 160:788-807.
    133. Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011). Gene Structures, Classification and Expression Models of the AP2/EREBP Transcription Factor Family in Rice. Plant Cell Physiol 52:344-360.
    134. Somers DE, SehultzTF, Milnamow M, Kay SA (2000). ZEITLUPE eneodes a novel clock-assiciated PAS pretein from Arabidopsis. Cell 101:319-329.
    135. Strayer C, Oyama T, Sehultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Scienee 289:768-771.
    136. Schmitz RJ, Hong L, Michaels S, Amasino RM (2005). FRIGIDA-ESSENTIAL1 interaets genetically with FRIGID and FRIGID A-LIKE1 to promote the winter-annual habit of Arabidopsis thaliana. Development.132:5471-5478.
    137. Schoof H, Lenhard M, Haeeker A, Mayer KFX, Jurgens Glaux T (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHELgenes. Cell 100:635-644.
    138. Schmidt RJ and Ambrose BA (1998). The blooming of grass flower development. Curr. Opin. Plant Biol 1:60-67.
    139. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY (2004).The gene FLORL ORGAN NUMBER regulates floral meristem size in rice and encodes a leueine-rich receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131: 5649-5657.
    140. Theissen G (2001). Development of floral organ indentity:stories from the MADS house.Curr.Opin. Plant Biol 4:75-85.
    141. Takahashi Y, Shomura A, Sasaki T, Yano M (2001). Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the asubunit of protein kinase CK2. Proc NatlAcad Sci USA 98:7922-7927.
    142. Takeoka Y, Shimizu M, Wada T (1993) Panicles. In Science of the Rice Plant, volume I (Matsuo, T. and Hoshikawa, K., eds). Tokyo:Nobunkyo, pp.295-326.
    143. Terrell EE, Peterson PM, Wergin WP (2001). Epidermal features and spikelet micromorphology in Oryza and related genera (Poaceae:Oryzeae). Smithsonian Contr Bot 91:1-50.
    144. Vandenbussche M, Zethof J, Royaert S, Weterings K and Gerats T (2004). The duplicated B-class heterodimer model:Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16:741-754.
    145. Vaughan DA (1994). The wild relatives of rice:a genetic resources hand book (IRRI, Los Banos, Philippines).
    146. Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB (2009). RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149:235-244.
    147. Weigel D, Alvarez J, Smyth DR, Yanofsky MF and Meyerowitz EM (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843-859.
    148.Weigel D and Nilsson O (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495-500.
    149. Wang ZY, Tobin EM (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupt circadian rhythms and suppresses its own expression. Cell 93:1207-1217.
    150. Wilkinson MD and Haughn GW (1995). UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis. Plant Cell 7:1485-1499.
    151. Weigel D and Meyerowitz EM (1994). The ABCs of floral homeotic genes. Cell 78: 203-209.
    152. Wang KJ, Tang D, Hong LL, Xu WY, Huang J, Li M, Gu MH, Xue YB, Cheng ZK (2010). DEP and AFO Regulate Reproductive Habit in Rice. PLoS Genetics 6: e1000818.
    153. Xiao H, Tang JF, Li YF, Wang WM, Li XB, Jin L, Xie R, Luo HF, Zhao XF, Meng Z, He GH, Zhu LH (2009). STAMENLESS1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J 59:789-801.
    154. Yadav SR, Prasad K, Vijayraghavan U (2007). Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283-294.
    155. Yanofsky MF, Ma H, Bowman JL, Drews GN (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature,346: 35-39.
    156. Yamaguchi T, Lee DYe, Miyao A, Hirochika H, An G, Hirano HY (2006). Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell,18:15-28.
    157. Yadav SR, Prasad K and Vijayraghavan U (2007). Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283-94.
    158. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y (2000). Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473-2484.
    159. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004). The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell,16:500-509.
    160. Yoshida H, Nagato Y (2011). Flower development in rice. J Exp Bot 62:4719-4730.
    161. Yao SG, Ohmori S, Kimizu M, Yoshida H (2008). Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49:853-857.
    162. Zhou Y, Lu DF, Li CY, Luo JH, Zhu BF, Zhu JG, Shangguan YY, Wang ZX, Sang T, Zhou B, and Han B (2012). Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor SHATTERING ABORTION1. plant cell 24: 1034-1048.
    163. Zanis MJ (2007). Grass spikelet genetics and duplicate gene comparisons. Int J Plant Sci 168:93-110.
    164. Zamora A, Barboza C, Lobo J, Espinoza AM (2003). Diversity of native rice (Oryza poaceae) species of Costa Rica. Genet Res Crop Evol 50:855-870.
    165. Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamPhilis CW, MaH (2005). The evolution of the SEPALLATA subfamily of MADS-box genes:A pre-angiosperm origin with multiple duplications throughout an angiosperm history. Genetics 169: 2209-2223
    166.雍伟东,种康,许智宏,谭克辉,朱至清(2000)高等植物开花时间决定的基 因调控研究.科学通报,5:455-466
    167.罗增科.水稻花发育相关基因EL1的图为克隆与功能分析.西南大学博士研究生论文.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700