黔中岩溶地区高速公路石质边坡人工植被特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解边坡生态防护工程植被建植初期植被特征与土壤养分变化规律和石质边坡人工植被自然化过程规律,本论文依托实际工程,选择3个不同坡向、坡度的石质边坡作为样坡,在人工植被建植后2周年内,采用定位研究法和常规群落调查法,对群落特征(物种、盖度和高度等)和土壤养分因子(有机质和速效态养分元素)每月进行跟踪测试。选择黔中地区不同建植年限(2a、4a、7a和10a)、人工植被保留较好的石质边坡,运用典型样地法调查分析群落物种组成、群落数量特征、群落组成结构特征、土壤种子库物种组成与丰度,比较了人工植被地上群落与土壤种子库的相似性。主要研究结果如下:
     1.植物群落建植初期,随着人工植被的定植,公路边坡生境条件得到一定程度的改善,为当地物种的入侵提供了可能的条件,一些1年生的先锋植物在第2年开始入侵,物种数在第2周年末,由初植萌发的4、5种增加到20余种。植被建植初期的2个月内,不同坡向和坡度的边坡之间在群落物种组成和盖度等特征方面存在显著差异,随着边坡植被的大面积覆盖,坡向和坡度对群落特征的影响已不明显。
     2.人工边坡植被建植初期,群落物种主要是草本植物,植被物种、盖度和高度方面发生明显的季节性变化。边坡植被一年中有两个枯黄期,存活部分盖度在8、9月和冬季突然降低。边坡植被盖度在生长旺季(11月)保持了较高的水平(80%以上),且第2年高于第1年。建植后的第1年,喷播物种处于优势地位,群落高度在季节性变化的过程中总体较低,第2年同比第1年,群落高度明显增加。
     3.随时间推移,群落物种丰富度在增加,群落α多样性水平总体上在提高,群落的组成结构由人工初播的较简单水平向复杂水平转化。群落的物种β多样性水平的动态变化直观地表现了群落物种更替和自然化的过程。
     4.土壤碱解氮和有效磷含量在植被建植后两年内波动下降,均低于建植初水平;1、2号坡速效钾含量在波动变化后有所下降,3号坡在波动变化后略有上升;有机质的含量在第1年波动变化后大幅度增加,第2年前3个月明显下降,之后基本持平,第2年末比第1年末有所下降。植被建植的初期阶段(2年内),植被特征相关指数与土壤养分因子之间的相关性不显著,说明这一时期植物生长、边坡土壤结构、土壤理化性质及土壤微生物等发生更为复杂的交互影响关系。
     5.相同恢复年限边坡各样坡群落类型统一。植被盖度表现出随时间推移而降低的趋势,10a边坡群落植被盖度最小为50%,其余恢复年限边坡盖度基上维持在较高水平。边坡人工植被土壤覆盖度在前期为100%,7a坡开始有零星土壤剥落,但土壤覆盖度仍较高(≥85%),土壤平均厚度随恢复时间的延长呈逐渐下降的变化趋势。
     6.人工植被建植后,群落物种数随时间推移不断增加,当地乡土物种逐渐占据优势取代初播物种,在人工植被群落的优势种向入侵自然物种过渡阶段群落形成多优势种群,群落物种数量最多,之后当地禾本科植物逐渐占优势地位又形成单优群落,群落物种数有所下降,初播物种基本被乡土物种所取代,乡土木本植物进入群落,其根系向下延伸,对人工喷附土壤的依赖逐渐降低,有望形成的喀斯特岩溶植被。
     7.禾本科、豆科和菊科植物在人工植被自然化演替的初期,发挥着巨大的作用。禾本科植物以其出苗快、生长迅速等特点,能在短期内迅速覆盖祼坡,且具有强较的分蘖力和耐瘠性,在初播物种中作为主要的建群物种。当地菊科植物和禾本科植物的大量入侵改变了群落的组成结构,逐渐替代了初播物种,使石质边坡植物自然化程度有所增加。豆科植物虽然具有固氮作用,但在种类与数量上并未表现出特别的优势。经过10年的演替,木本植物开始占据较大的群落空间,植被群落表现出由草本阶段向草灌阶段过渡的特征。当地自然入侵物种在保证人工植被群落向自然化植被群落演替过程中起到了重要作用,保证了边坡植被恢复的连续性和持续性。
     8.黔中岩溶地区高速公路石质边坡人工植被—土壤系统的土壤种子库具有丰富的植物种子,。不同恢复年限的边坡中地上植被与土壤种子库的物种组成具有一定程度的相似性,然相似性均小于0.5。植物群落地上部分与地下部分在优势种、生活型组成与功能型组成上具有明显的相似性。
     9.黔中岩溶地区公路石质边坡人工植被建植后的10年自然化过程表现为:人工栽植草丛植物群落阶段(1-4a)、人工初播植物与乡土自然植物共存竞争草丛群落阶段(4-7a)和自然草灌群落阶段(7-10a)。
To understand the vegetation characteristics and variation of matrixnutrients in the initial vegetation planting of side slope ecologicalprotection and the naturalizing law of artificial vegetation of the rocky sideslope. Based on the actual project, this paper selected3rocky slopes withdifferent slope aspect and different gradient as sample slopes, and takingpositioning method and conventional community survey method, testedcommunity characteristics (Species, cover, height, etc.) and soil nutrientfactors monthly (available nutrient elements) within2years of the artificialvegetation planting. Besides, using typical plot method, the researchselected the good retention vegetation of rocky slopes with differentplanting years(2a、4a、7a and10a) in Guizhou province, investigated andanalyzed the species composition, population characteristics, communitycomposition structure features, composition and abundance of soil seedbank species, and compared the similarity between artificial vegetationcommunity on the ground and soil seed bank. The main research resultswere as follows:
     1. At the initial planting of plant community, the initial seeding specieswas growth rapidly due to the rich sunny and soil nutrient, and the speciescomposition, coverage and height were in the ascendancy, but speciesnumber were fewer. With the planting of artificial vegetation, the habitatconditions of highway slope had a certain extent improvements, whichprovided the possible conditions for native species to invade. Some1-yearpioneer plants began invasion in the2nd year, and the species number wasincreased from4~5initial germination species to more than20at the end ofthe2nd anniversary. In the first early2months of vegetation planting, therewas significant difference in the species composition and coverage betweenslopes with different slope aspect and slope gradient. With the area of the slope vegetation expanded, the effect of slope aspect and gradient tocommunity characteristics was not obvious.
     2. In the initial artificial planting of slope vegetation, communityspecies were mainly herbs, and showed seasonal changed in terms ofspecies, coverage and height with the time passing. Slope vegetation hadtwo periods of brown during one year, and the coverage of surviving partsuddenly reduced in August, September and winter. Overall, the coverageof slope vegetation in growing season (November) maintained a relativelyhigh level (above80%), and the second year was larger than the first year.The first year after the establishment, spray species was in the ascendancy,however, community height was overall lower in the process of seasonalchanges. Compared with the1st year, community height of the second yearincreased obviously. Within2years of artificial vegetation planting,community maintained a strong growth and the effect of recovery wasgood.
     3. With the time passing, richness of species increased, communityalpha diversity improved generally, and community composition andstructure were transformed from the simple to complex in the earlyartificial seeding. The dynamic changes of community species betadiversity visually displayed the process of community species turnover andnaturalizing.
     4. Soil available phosphorus and alkaline nitrogen mass fractiondeclined in two years after the planting of vegetation, and were lower thanthe early establishment. Available potassium mass fractions of No.1andNo.2slopes were declined after wave changes, yet the No.3slope increasedslightly. Mass fraction of organic matter increased significantly in the firstyear, and declined obviously in the first three months of the second yearand then basically stabilized. The correlation between related indices ofplant characteristics and soil nutrient was not significant after the initial vegetation planting (within2years). It indicated that the plant growth,slope soil structure, soil physical and chemical properties and soil microbeeffected more complex interactions during this period.
     5. The community types of all slope plots with the same recoveryperiod were consolidated. Vegetation coverage expressed the decreasetrends with the time passing. The vegetation coverage of the10years slopewas least, only50%, and that of the remaining recovery periods basicallyremained at a higher level. The soil coverage of slope artificial vegetationwas100%at the early stage. It was fragmentary soil peeling off from7years, but soil coverage was still high (≥85%). The average thickness ofsoil was gradually declined with the extended recovery time.
     6. After the establishment of artificial vegetation, the number ofspecies was increased over time. And then native species were becomingdominance gradually and then replaced the early planting species, andformed mass-dominant species in the transition stage which was from thedominant species of artificial vegetation community to the invasion ofnatural species, number of species was the largest. Then native gramineousplants had a dominant position gradually and formed single-dominancecommunity, number of species declined, and the early planting specieswere replaced by native species, native woody plants went into thecommunity, and declined the dependence of artificial spray soil for its rootswere outspreading downward, and could formed karst rocky vegetation.
     7. Gramineae, legume and compositae plants played a significant rolein early natural succession of artificial vegetation. Gramineous plants couldcover stark slope in the near future rapidly for its seeding emergence andrapid growth, and formed the main constructive species in early sowingspecies due to its better tillering ability and barren tolerance. Massiveintrusion of native compositae and Gramineae plants changed thecommunity composition and structure, replaced the early planting species gradually, and increased the naturalizing degree of rocky side slope plant.However, legumes plants did not show special advantages on type andquantity though it had nitrogen fixation. After10years of succession,woody plants began to occupy a larger community space. Vegetationcommunities expressed transition characteristics from the herbaceous to thegrass-shrub stage. The native invasive species played an important roleduring the process of artificial vegetation community changed to thenatural succession of vegetation communities, and ensured continuity andsustainability of slope vegetation recovery.
     8. The soil seed banks in artificial vegetation-soil system of thehighway rocky slope in karst area of central Guizhou Province had richplant seeds. It was a certain degree similarity in species compositionbetween soil seed bank and aboveground vegetation with the differentrecovery years of slopes, but the similarity index was less than0.5. Andthere was obvious similarity in dominant species, living composition andfunctional composition between aboveground and underground parts ofplant community, which indicated that it had synchronicity in the growthon the ground and underground parts during the herbaceous stage of rockyslope artificial vegetation restoration in karst area.
     9. The naturalizing processes within10years after the establishmentof the artificial vegetation on highway rocky slope in karst area of centralGuizhou province was: artificial planting grass community stage (1-4a),coexistence and competition of early artificial planting plants and nativeplant grass community stage (4-7a), natural grass-shrub community stage(7-10a).
引文
[1]. Auclair A N,GOFF F G.Diversity relations of upland forest s in the Western great lakesarea[J].American Naturalist,1971,105:499-528.
    [2]. Agustin R,Adrian E.Small scale spatial soil plant relationship in semiarid gypsumenvironments[J].Plant and Soil,2000,20(2):139-150.
    [3]. Barbara L B,Mark R W,Allison A.Patterns in nutrient availability and plant diversity oftemperate North American wetlands[J].Ecology,1999(7):2151-2169.
    [4]. Bazza F A. Plant species diversity in old2field successional ecosystems in southernIllinois[J].Ecology,1975,56:485–488.
    [5]Benedicte V, Francois P, Sandrine P Y, et al.Integrated assessment of heavy metal (Pb, Zn, Cd)highway pollution:bioaccumulation in soil,Graminaceae and land snails [J].Chemosphere,2004,55:1349-1359.
    [6]. Bochet E,RubioJ L,Poesen J.Relative efficiency of three representative material species inreducing water erosion at the microscale in a semiarid climate (Valencia, Spain)[J].Geomorphology,1998,23:139–150.
    [7]. Bormann F H.Air pollution and forest system perspective[J].Bioscience,1985,35(7):434-441.
    [8].Milton S J et.al.A conceptual model of arid range land degradation[J]. Bioscience,1993,44(2):70-76.
    [9].Bradshaw A D.Restoration:an acid test for ecology [A].Jodon W R,Gilpin N,Aber J,et al.Restoration Ecology:A Synthetic Approach to Ecological Research [C].Cambridge:Cambridge University Press,1987.
    [10].Bradshaw A D.Restoration ecology and sustainable development [A].Urbanska K,Webb NR.Restoration Ecology[C].Cambridge: Cambridge Univ.Press,1997.
    [11]. Bradshaw A D.Restoration ecology as science[J].Restoration Ecology,1993,1(2):71-73.
    [12]. Bradstock R A, Bedward M,Keny B J,et al.Spatially explicit simulation of the effect ofprescribed burning on fire regimes and plant ext in ct ion in shrub-lands typical of South–easternAustralia [J].Biological Conservation,1998,86:83-95
    [13]. Bronick C J,Lal R.Soil structure and management a review[J].Geoderma,2005,124:3-22.
    [14].Buckley G P.Biological habit at reconstruction [M].London:Belhaven Press,1989.
    [15]. Cerda A. The influence of geomorphological position and vegetation cover on the erosional andhydrological processes on a Mediterranean hill slope[J].Hydrological Processes,1998,12:661-671.
    [16]. Cairns J J.(ed.) Rehabilitating damaged ecosystems (2nd ed.).CRC Press,Inc.,1995,287-333.
    [17]. Cairns J J.Restoration Ecology [J].Encycl Environ Biol,1995,(3):223-235.
    [18]. Casermeiro M A, Molina J A, de la Cruz Caravaca M T, et al.Influence of scrubs on runoff andsediment loss in soils of Mediterranean climate[J].Catena,2004,57:91-107.
    [19]. Cullen W R,Wheater C P,Dunleavy P J.Establishment of species rich vegetation onreclaimed limestone quarry faces in Derbyshire,UK[J].Biol.Conser.1998,84:25-33.
    [20].Diamond J.How and why eroded ecosystems should be restored[J].Nature,1985,313:629-630.
    [21].Diaz, S., Cabido, M. Plant functional types and ecosystem function in relation to globalchange[J].Journal of Vegetation Science,1997,8(4):463-474.
    [22]. Enquist B J,Brown J H,West G B.Allometric scaling of plant energetics and populationdensity[J].Nature,1998,395:163-165.
    [23]. Esther B, Patricio G F.Factors Controlling Vegetation Establishment and Water Erosionon Motor way Slopes in Valencia[J].Restoration Ecology,2004,12(2):166-174.
    [24]. Forman R T T, Sperling D, Bissonette J A, et al.Roadecology: science and solutions.Washington D C: Inland Press,2002,32397.
    [25]. Forman R T T,Deblinger R D. The ecological road effect zone for transportation planting and aMassachusetts Highway Example[M]. In:Proceedings of Internation Conference on WildlifeEcology and Transportation,1998:78-96.
    [26].Franco M, Kelly CK. The interspecific mass-density relationship and plantgeometry[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95:7830-7835.
    [27]. Godron M.Some Aspects of Heterogeneity in Grasslands of Cantal [J].Statist Ecol,1972(3):397-415.
    [28]. Huddle J A, Pallardy S G.Effect off ire on survival and growth of Acer rubrum and Quercusseedlings[J].Forest Ecology and Management,1999,118:49-56.
    [29]. Ives A R,Carpenter S R.Stability and diversity of ecosystems[J].Science,2007(317):58-62.
    [30]. Johnson M S,Brads haw A D.Ecological principles for restoration of disturbed and degradedlands[J].Applied Biology,1979,4:141—147.
    [31]. Jordan W,Gilpin M,Abers J.Restoration Ecological Research[M].New York:CambridgeUniv.Press,1987.
    [32].Lonsdale W M.The self-thinning rule: Dead or alive?[J].Ecology,1990,71:1373-1388.
    [33].Louks O L.Evolution of diversity,efficiency and community stability[J].American Zoologist,1970,10:17-25.
    [34].M Jeannine Tinsley,Mark T Simmons,Steve Windhager.The establishment success of nativeversus non-native herbaceous seed mixes on a revegetated roadside in Central Texas [J].EcologicalEngineering,2006,(26):231-240.
    [35]. Mac Arthur R. Fluctuations of animal populations and a measure of communitystability[J].Ecology,1955,36:533-536.
    [36].Magurran A E.Ecological Diversity and Its Measurement[M].Princeton:Princeton UniversityPress,1988:108-121.
    [37] Milchunas D G,Lauenroth W K. Qantitative effects of grazing on vegetation and soils over aglobal range of environments[J].Ecol.Monogr.1993,63:327-366.
    [38].Morgan R R C, Richson R J. Slope stabilization and erosion control: A BioengineeringApproach[M]. London:E. and EN. Spon.,1995.
    [39].Norrdin A R. Bioengineering to ecoengineering, Part one:the many name[J].InternationalGroup of Bioengineers News Letter,1993(3):15-18.
    [40].Odum E P.Organic production and turnover in old-field succession[J].Ecology,1960,41:34-49.
    [41].Peet R K.The measurement of species diversity[J].Annual Review of Ecology andsystematics,1975,(5):285-307.
    [42].Pielou E C.Ecological Diversity[M].New York:John Wiley&SonsInc,1975.178-208.
    [43].Pimm S L. The complexity and stability of ecosystem[J].Nature,1984(307):321-326.
    [44].Rentch J S, Fortney R H, Stephenson S L, et al. Vegetation-site relationships of roadside plantcommunities in West Virginia, USA[J]. Journal of Applied Ecology,2005,42:129-138.
    [45].Ruiz-Jaen M C, Aide T M.Vegetation structure,species diversity, and ecosystem processes asmeasures of restoration success [J].Forest Ecology and Management,2005,218:159-173.
    [46].Russell Alan Persyn.Impacts of compost blankets on erosion control,revegetation,and waterquality at highway construction sites in Iowa [M].Iowa State University,2003.
    [47].Smith T M,Shugart H H,Woodward F I.(eds).Plant Functional Types:Their Relevance toEcosystem Properties and Global Change[M].Cambridge:Cambridge University Press.1997.
    [48].Ursino N, Contarini S. Stability of banded vegetation patterns under seasonal rainfall andlimited soil moisture storage capacity[J].Advances in Water Resources,2006,10(29):1556-1564.
    [49].Thompson K. T he functional ecology of seed banks[A]. In:Fenner M ed. Seeds:The Ecology of Regenerat ion i n Plant communities[M].Wallinford:CAB Int ernational.1992,231-258
    [50].Wali M K.Ecosystem rehabilitation [M].Hague:the Netherlands,1992.
    [51].WANG Guo-Hong.Plant Traits and Soil Chemical Variables During a Secondary VegetationSuccession in Abandoned Fields on the Loess Plateau[J].Acta Botanica Sinica,2002,44(8):990-998.
    [52].Weller D E.The interspecific size-density relationship among crowded plant stands and itsimplications for the power rule of self-thinning[J].American Naturalist,1989.13:20-41.
    [53]. Westman W E.. Diversity relations and succession in Californian coastal sagescrub[J].Ecology,1981,62:17-184.
    [54].Young T P.Restoration ecology and conservation biology[J].Biological Conservation,2000,92:73-83.
    [55].鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [56].包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36–42.
    [57].陈红,魏风虎.公路生态系统评价指标体系构建方法研究[J].中国公路学报,2004(10):89-92.
    [58].陈振盛.泥岩边坡植生技术研究[J].水土保持研究,1995,2(3):68-75.
    [59].陈宗伟,程云,杨占武,等.青海省高速公路沿线植物群落稳定性影响因子分析[J].水土保持应用技术,2008(3):16-19.
    [60].邓辅唐,吕小玲,喻正富,等.高速公路边坡植物群落的水土保持效应[J].中国水土保持,2007(5):43-46.
    [61].邓辅唐,晏雨鸿,孙佩石,等.高速公路边坡三种植被恢复模式的生态效果评估[J].中国水土保持,2007(7):40-42.
    [62].丁运华.关于生态恢复几个问题的讨论[J].中国沙漠,2000,20(3):341-344.
    [63].董世魁,崔保山,丁宗凯,等.大保高速公路老营段路域植被生态恢复[J].生态学报,2008,28(4):1483-1490.
    [64].董世魁,崔保山,刘世梁,等.云南省公路路域绿化护坡植物的生态区划与选择[J].环境科学学报,2006,26(6):1038-1046.
    [65].杜娟.客土喷播施工法在日本的应用与发展[J].公路,2000(7):72-73.
    [66].樊鸿章,刘宏,董建辉.勉县至宁强县高速公路生态恢复评价研究[J].水土保持通报,2007,27(4):144-147.
    [67].范竹珊,初晓波,史金山.东北地区公路边坡生态防护植物的选择[J].防护林科技,2005(9):57-58.
    [68].方海兰,陈玲,黄懿珍,等.上海新建绿地的土壤质量现状和对策[J].林业科学,2007,43(增刊1):89-93.
    [69].冯保成.模糊数学实用集粹[M].北京:中国建筑工业出版社,1991.
    [70].甘淑,陈娟.云南高原山地公路沿线植被群落调查分析——以昆-石高速公路为例[J].水土保持通报,2006,26(1):38-41.
    [71].戈峰.现代生态学[M].北京:科学出版社,2002.251-254.
    [72].官冬杰,苏维词.城市生态系统健康评价方法及其应用研究[J].环境科学学报,2006,26(10):1716-1722.
    [73].贵州省植被区划编写组.贵州省植被区划[M].贵阳:贵州省人民技出版社,1987.
    [74].郭曼,郑粉莉,和文祥,等.黄土丘陵区不同退耕年限植被多样性变化及其与土壤养分和酶活性的关系[J].土壤学报,2010,47(5):979-986.
    [75].郭文,王天伟,高照良.黄土区高速公路边坡植被恢复模式与群落结构分析[J].水土保持研究,2010,17(4):176-179.
    [76].韩煜,赵廷宁,陈琳,等.坡面植被恢复试验示范区植物群落特征初步研究[J].水土保持研究,2010,17(4):190-194.
    [77].郝岩松,王国兵,万福绪.我国高速公路生态边坡的建设及生态评价[J].水土保持研究,2007,14(4):257-262.
    [78].郝云庆,王金锡,朱万泽,等.松潘生态修复模式区生物多样性与稳定性研究[J].西南大学学报(自然科学版),2009,31(7):131-137.
    [79].贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17(1):91-99.
    [80].胡淼,李绍才,孙海龙,等.都汶高速公路岩石边坡植被恢复物种选择及评价[J].北方园艺,2011(5):132-136.
    [81].黄宝强,罗毅波,安德军,等.四川黄龙沟草本层植物种类组成与数量特征[J].植物研究,2010,30(5):543-548.
    [82].黄和平,杨吉力,毕军,等.皇甫川流域植被恢复对改善土壤肥力的作用研究[J].水土保持通报,2005,25(3):37-40.
    [83].黄尊景,陈孟达.台湾特殊地质区水土保持工法之应用[J].水土保持研究,1995,2(3):76-82.
    [84].江源,陶岩,顾卫,等.高速公路边坡植被恢复效果研究[J].公路交通科技,2011,31(1):203—206.
    [85].解新民,卢小良.道路边坡绿化防护工程中的生态学原理[J].生态科学,2004,23(1):85-88.
    [86].焦菊英,张振国,贾燕锋,等.陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类[J].生态学报,2008,28(7):2981-2997.
    [87].金建红,叶圣绿,金家国,等.温州道路边坡自然恢复植物资源调查[J].江西农业学报,2009,21(5):50-53
    [88].康乐.受害生态系统的恢复与重建[A].见:马世骏主编.现代生态学透视[M].北京科学出版社,1990,300-308.
    [89].李迪强,蒋志刚,王祖望.青海湖区生物多样性的物种特征及GAP分析[J].自然资源学报,1999,14(1):47-53.
    [90].李贵才,韩兴国,黄建辉.哀牢山木国柯林及其退化植被下土壤无机氮库的干季动态研究[J].植物生态学报,2001,25(2):210-217.
    [91].李海芬,卢欣石,江玉林.高速公路边坡生态恢复技术进展[J].四川草原,2006(2):34-38
    [92].李建东.东北草原草本植物基本生活型的探讨[J].吉林师大学报自然科学版,1979(2):143-155.
    [93].李建东,杨允菲.松嫩平原羊草草甸植物的生态及分布区型结构分析[J].草业学报,2002,11(4):10-20.
    [94].李莉,王元素,洪绂曾,等.喀斯特地区长期草地利用制度对群落稳定性的影响[J].生态环境学报,2011,20(8-9):1204-1208
    [95].李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化[J].土壤通报,2000,31(5):193-195.
    [96].李林,姜德义,李田生.重庆九南生态公路路域绿化植物的生态区划与选择[J].重庆交通大学学报(自然科学版),2007,26(sup):114-117.
    [97].李绍才,孙海龙,杨志荣,等.岩石边坡基质-植被系统的养分循环[J].北京林业大学学报,2006,28(2):85-90.
    [98].李绍良,陈有君,关世英,等.土壤退化与草地退化关系的研究[J].干旱区资源与环境,2002,16(1):92-95.
    [99].李旭光,毛文碧,徐福有.日本的公路边坡绿化与防护:1994年赴日本考察报告[J].公路交通科学,1995,12(2):59-64.
    [100].廖飞勇,谢瑛,覃事妮,等.常吉高速公路边坡绿化的植物选择[J].北方园艺,2010(2):142-144.
    [101].廖乾旭,李阿根,徐礼根,等.高速公路边坡生态恢复的问题与对策[J].中国水土保持科学,2006,4(Supp.):100-102.
    [102].林开敏,郭玉硕.生态位理论及其应用研究进展[J].福建林学院学报,2001,21(3):283-287.
    [103].刘爱霞,高照良,李永红,等.关中平原高速公路边坡不同植被恢复年限土壤团聚体分形特征研究[J].水土保持学报,2011,25(1):219-224.
    [104].刘春霞,韩烈保.高速公路边坡植被恢复研究进展[J].生态学报,2007,27(5):2090-2098
    [105].刘德荣,马永林,韩烈保,等.坡面液压喷播快速强制绿化的效益分析[J].北京林业大学学报,2000,22(2):50-53.
    [106].刘桂元.浏阳磷矿土质、软岩边坡植被护坡的研究[J].化工矿山技术,1998,27(2):55-58.
    [107].刘中奇,朱清科,秦伟,等.半干旱黄土区自然恢复与人工造林恢复植被群落对比研究[J].生态环境学报,2010,19(4):857-863.
    [108].刘兴元,龙瑞军,尚占环.草地生态系统服务功能及其价值评估方法研究[J].草业学报,2011,20(1):167-174.
    [109].龙忠富,唐成斌,刘秀峰,等.侵蚀劣地草种筛选研究[J].公路,2006(11):187-190.
    [110].龙翠玲,朱守谦,喻理飞.贵州茂兰喀斯特森林土壤种子库研究[A].见朱守谦:喀斯特森林生态研究(Ⅲ)[M].贵阳:贵州科技出版社,2003:265-274
    [111].卢涛,马克明,倪红伟,等.三江平原不同强度干扰下湿地植物群落的物种组成和多样性变化[J].生态学报,2008,28(5):1893-1900.
    [112].骆东奇,白洁,谢德体.论土壤肥力评价指标方法[J].土壤与环境,2002,11(2):202-205.
    [113].骆世明.普通生态学[M].北京:中国农业出版社,2005,18-21.
    [114].罗松,郑天媛.采石场遗留石质开采面阶梯整形覆土绿化方法研究[J].中国水土保持,2001,(2):36-38.
    [115].马克平.生物群落多样性测度方法I-a多样性测度方法(上)[J].生物多样性,1994,2(3):162-168.
    [116].马克平,刘玉明.生物群落多样性测度方法I-a多样性测度方法(下)[J].生物多样性,1994,2(4):231-239.
    [117].马升平.生态修复质量的评价方法及前景[J].湖北生态工程职业技术学院学报,2011,9(3):4-7.
    [118].马世骏.现代生态学透视[M].北京科学出版社,1990,300-308.
    [119].牛海波,许文年,夏振尧,等.植被混凝土肥力水平变化研究[J].中国水土保持,2010(2):36—39.
    [120].潘多锋,马玉寿,张德罡,等.高原鼠兔对退化草地人工植被稳定性的影响[J].草原与草坪,2006(4):49-51.
    [121].彭少麟.恢复生态学与退化生态系统的恢复[J].中国科学院院刊,2000,(3):188-192.
    [122].彭少麟.恢复生态学与植被重建.生态科学,1996,15(2):26-31
    [123].乔领新,刘荣堂,宋桂龙,等.高速公路岩质边坡植被恢复初期喷播基材养分动态[J].草业科学,2011,28(12):2123-2127.
    [124].任海,李萍,彭少麟,等.海岛与海岸带生态系统恢复与生态系统管理[M].北京:科学出版社,2004:76-78.
    [125].任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001,19.
    [126].萨娜斯琴,易津,包秀霞.不同放牧方式对中蒙荒漠草原植被和土壤特性的影响[J].中国农学通报,2010,26(14):277-281.
    [127].山寺喜成,安保昭,吉田宽著,罗晶等译.恢复自然环境绿化工程概论一坡面绿化基础与模式设计[M].北京:中国科学技术出版社,1997.
    [128].尚占环,姚爱兴,龙瑞军,等.宁夏香山荒漠草原区植物群落类型多样性及数量分析[J].甘肃农业大学学报,2004,39(6):644-650.
    [129].盛炜彤,杨承栋.关于杉木林下植被改良土壤性质效用的研究[J].生态学报,1997,17(4):377-385.
    [130].史玲,王昌贤.保龙高速公路植被护坡技术应用效果评价[J].重庆交通大学学报(自然科学版),2010,29(3):430—432
    [131].史学正,于东升.我国亚热带土壤侵蚀的生物工程治理[J].水土保持研究,1999,6(2):137-141.
    [132].舒安平,成瑶,李芮,等.高速公路石质边坡不同受光面土壤与植被恢复的差异性[J].公路交通科技,2010,27(6):143-147.
    [133].舒翔,杜娟,曹映泓,等.生态工程在高速公路岩石边坡防护工程中的应用[J].公路,2001(7):86-89.
    [134].宋成刚,张法伟,刘吉宏,等.青海湖东北岸草甸化草原植物群落特征及多样性分析[J].草业科学,2011,28(7):1352-1356.
    [135].宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.47-51.
    [136].宋永昌,陈小永.中国东部常绿阔叶林生态系统退化机制与生态恢复[M].北京:科学出版社,2007.
    [137].苏波,韩兴国.东灵山油松纯林和油松-辽东栎针阔混交林土壤氮素矿化与硝化作用研究[J].植物生态学报,2001,25(2):195-203.
    [138].隋媛媛,杜峰,张兴昌.黄土丘陵区撂荒群落土壤速效养分空间变异性研究[J].草业学报,2011,20(2):76-84.
    [139].孙建华王彦荣曾彦军.封育和放牧条件下退化荒漠草地土壤种子库特征[J].西北植物学报,2005,25(10):2035-2042.
    [140].谭雪红,魏东,李林英,等.山区公路边坡自然恢复与人工恢复的比较研究[J].公路,2010,5:169-172.
    [141].谭永钦,张国安,郭尔祥.草坪杂草生态位研究[J].生态学报,2004,24(6):1300-1305.
    [142].田国行,杨春,杨晓明,等.路基边坡草灌植被消减降雨侵蚀作用机理探讨[J].中南林业科技大学学报,2010,30(7):32—37.
    [143].田国行,田耀武,路玲.生态防护工程对高速公路边坡土壤保持效率的影响[J].河南农业大学学报,2005,39(3):259-264.
    [144].唐诚,刘彤,刘学录,等.古尔班通古特沙漠西南缘梭梭群落多样性和稳定性研究[J].干旱区资源与环境,2010,24(8):148-153.
    [145].王伯荪.植物群落学[M].北京:高等教育出版社,1987.
    [146].王倜,陈学平,王新军,等.公路边坡重建植被功能评价[J].公路交通科技,2011,28(10):146-152.
    [147].王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性,2002,10(1):126-134.
    [148].王海亮,张春禹,何凡.半干旱地区高速公路边坡生态恢复技术研究[J].内蒙古公路与运输,2006(1):128-130
    [149].王慧芳,罗承德.高等级公路边坡绿化材料选择初探[J].四川草原,2004(3):53-55.
    [150].王黎黎,张克斌,程中秋,等.围栏封育对半干旱区植物群落稳定性的影响[J].甘肃农业大学学报,2011,46(5):86-90.
    [151].王思成,兰剑,王宁.高速公路边坡生物防护技术研究进展[J].宁夏农学院学报,2003,24(2):76-81
    [152].王万鹏,李正平,钟芳.兰州市郊人工林群落结构及稳定性初探[J].中国沙漠,2006,26(4):569-573.
    [153].王元素,蒋文兰,洪绂曾,等.白三叶与不同禾草混播群落17年稳定性比较研究[J].草业学报,2006,15(3):55-62.
    [154].温仲明,焦锋,卜耀军,等.植被恢复重建对环境影响的研究进展[J].西北林学院学报,2005,20(1):10-15
    [155].吴钦孝,赵鸿雁.植被保持水土的基本规律和总结[J].水土保持学报,2001,15(4):13-16.
    [156].夏北成, James M T.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300.
    [157].谢宝平,牛德奎.华南严重侵蚀地植被恢复对土壤条件影响的研究[J].江西农业大学学报,2000,22(1):135-139.
    [158].谢云,钭逢光.一年生先锋植物在高速公路岩石边坡喷播绿化中的应用试验[J].公路,2006(6):186-189.
    [159].熊文愈,骆林川.植物群落演替研究概述[J].生态学进展,1989,6(4):229-235.
    [160].许木启,黄正瑶.受损水域生态系统恢复与重建研究[J].生态学报,1998,18(5):547-558.
    [161].胥晓刚,杨冬生,胡庭兴,等.不同植物种类在公路边坡植被恢复中的适应性研究[J].公路,2004(6):157-160.
    [162].许文年,夏振尧,戴方喜,等.恢复生态学理论在岩质边坡绿化工程中的应用[J].中国水土保持,2005(4):31-33.
    [163].许文年,王铁桥,叶建军.岩石边坡护坡绿化技术应用研究[J].水利水电技术,2002,33(3):35-36.
    [164].闫东锋,王向阳,杨喜田.主成分分析法和稳定度指数法评价森林群落稳定性比较[J].河南农业大学学报,2011,45(2):166-171.
    [165].余海龙,顾卫,江源,等.半干旱区高速公路边坡不同年代人工植被群落特征及其土壤特征研究[J].中国生态农业学报,2007,15(6):22-26.
    [166].杨惠敏,王冬梅.草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J].草业学报,2011,20(2):244-252.
    [167].杨艳生.第四纪红粘土侵蚀区生物多样性恢复重建研究(I)恢复重建原则和模式[J].水土保持研究,1998,5(2):90-94.
    [168].杨玉金,田耀武,郑根宝,等.濮鹤高速公路边坡植被生态防护效果分析[J].西北林学院学报2006,21(1):28-32.
    [169].杨自全,邓辅唐,苏芸芸,等.高速公路边坡生态恢复对土壤微生物的影响[J].中国水土保持,2007(7):31-34.
    [170].叶建军,许文年,王铁桥,等.南方岩质坡地生态恢复探讨[J].水土保持研究,2003,10(4):238-241.
    [171].余海龙,顾卫,殷秀琴,等.高速公路路域边坡人工植被下土壤质量的变化[J].水土保持通报,2008,28(6):32-36.
    [172].余海龙,顾卫.高速公路边坡生态护坡效果定量评价研究[J].水土保持通报,2011,31(1):203-206.
    [173].余作岳,彭少麟.热带亚热带退化生态系统植被恢复[A].见:生态学研究[M].广州:广东科技出版社,1996
    [174].喻理飞,朱守谦,魏鲁明,等.退化喀斯特群落自然恢复过程研究——自然恢复演替系列[J].山地农业生物学报,1998,17(2):71-77.
    [175].喻理飞,朱守谦,叶镜中,等.退化喀斯特森林自然恢复过程中群落动态研究[J].林业科学,2002,28(1):1-7.
    [176].章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-113.
    [177].章家恩,徐琪.生态退化研究的基本内容与框架[J].水土保持通报,17(3):46-53.
    [178].张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001(6):326-330.
    [179].张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报,2004,28(1):86-92.
    [180].张晶晶,王蕾,许多梅.荒漠草原自然恢复中植物群落组成及物种多样性草业科学[J].草业科学,2011,28(6):1091-1094.
    [181].张俊华,常庆瑞,贾科利,等.黄土高原植被恢复对土壤肥力质量的影响研究.水土保持学报,2003,17(4):38-41.
    [182].张俊云,周德培,李绍才.高速公路岩石边坡绿化方法探讨[J].岩石力学与工程学报,2002(9):1400-1403.
    [183].张俊云,周德培,李绍才.厚层基材喷射护坡试验研究[J].水土保持通报,2001,21(4):45-46.
    [184].张俊云,周德培,李绍才.岩石边坡生态护坡研究简介[J].水土保持通报,2000,20(4):36-38.
    [185].张庆明,何夏晴.美国Soil guard绿化技术[J].绿化技术,2003(1):1-2.
    [186].张相锋,马闯,董世魁,等.不同草灌配比对泌桐高速公路护坡植物群落特征的影响[J].草业学报,2009,18(4):27-34.
    [187]张湧,刘璟,张淑娥,等.宁夏古王高速公路边坡生物防护效益研究[J].宁夏农学院学报,2004,25(3):13-16.
    [188].张展,高照良,宋晓强,等.黄延高速公路边坡植被恢复与土壤特性调查研究[J].水土保持通报,2009,29(4):191-195.
    [189].张志权,束文圣,廖文波,等.豆科植物与矿业废弃地植被恢复[J].生态学杂志,2002,21(2):47-52.
    [190].赵德志,张兰军,魏涛.贵州喀斯特地区公路边坡生态恢复的环境影响因子研究[J].公路交通技术,2005,10(5):133-136.
    [191].赵警卫,芦建国,王荣华,等.七种生态护坡在高速公路边坡的应用效果[J].公路,2006(1):201-204.
    [192].赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报,2003,14(11):2031-2036.
    [193].郑元润.森林群落稳定性研究方法初探[J].林业科学,2000,36(5):28-32.
    [194].周华坤,赵新全,赵亮,等.高山草甸垂穗披碱草人工草地群落特征及稳定性研究[J].中国草地学报,2007,29(2):13-25.
    [195].周萍,刘国彬,侯喜禄.黄土丘陵区铁杆蒿群落植被特性及土壤养分特征研究[J].草业学报,2008,17(2):9-18.
    [196].周颖,曹映泓.高速公路路基边坡环境综合治理[J].岩土力学,2001,22(4):455-458.
    [197].朱守谦,陈正仁,魏鲁明.退化喀斯特森林自然恢复的过程和格局[]86-89.
    [198].祝廷成,钟章成,李建东.植物生态学[M].重庆:重庆高等教育出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700