低热导率碲化物热电材料的制备及性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是指可以将热能与电能进行直接转换的半导体功能材料。基于不同的能量转换过程,热电材料可以用于热电发电和热电制冷两大领域。一般而言,热电器件具有体积小、重量轻、无污染、无噪音、维护成本低、安全可靠等优点,目前已经在航空航天、军事、医学、工业废热发电以及精确控温等领域具有了广泛的应用。但是,热电材料较低的能量转换效率仍然是限制其应用的瓶颈,使其只能应用在小功率条件下。
     热电材料的能量转换效率可以使用热电优值衡量,热电优值的定义为ZT=α2σT/K,与电导率σ和Seebeck系数α的平方(PF=α2σ也被定义为功率因子)成正比,而与热导率κ反比。目前大部分热电材料的性能优化方法都是针对高功率因子体系,通过纳米化和固溶等手段降低体系的晶格热导率,以提高材料的热电优值。但是热导率的降低具有其自身的局限性,非晶结构时能够获得的热导率为材料的最小热导率。因此,本文从相反的方向考虑,选择几种典型的低热导率碲化物热电材料作为研究对象,通过固溶及原位析出第二相、界面净化及掺杂等方法,在保持或进一步强化材料低热导率的同时,强化其电输运性能,达到了优化热电性能的目的。获得的结论如下:
     1.使用晶化动力学理论,分析了不同成分的SiTe基非晶材料的晶化过程。在SiTe基非晶材料的晶化过程中,晶核是在退火期间形成的,而且其晶核形成机制为二维和三维混合生长模型。计算得到Si15Te85和Si20Te80的晶化激活能分别为198-204kJ/mol和236-244 kJ/mol.与Si15Te85相比,Si20Te80非晶具有更高的热稳定性和玻璃形成能力,但晶化能力较弱。
     2.另一方面,结合实际测量的低温热输运性能和低温声子输运理论,对Se掺杂的GeTe基非晶材料的低温热输运性能进行分析,对非晶体系中以爱因斯坦局域化振动模式为特征的低温声子输运性能进行了分析,并且由于声子平均自由程被限制在原子间距内,因此,非晶热导率仅为~0.1 Wm-1K-1左右,达到了这种成分可以获得的最小热导率。这些研究为后续对低热导率热电碲化物的热性能分析提供理论依据。
     3.使用固溶并结合原位析出纳米结构的方法,对三元低热导率碲化物AgSbTe2的电输运性能进行优化。通过调整AgSbTe2 ((Ag2Te)x(Sb2Te3)1-x)基固溶体中Ag2Te和Sb2Te3的比例,分别获得了具有Sb2Te3和Ag2Te原位析出相的复合材料。由于析出相在基体中分布特征的不同其对复合体系热电性能的影响完全不同,实验证明Ag2Te呈纳米点和纳米层状结构的析出能够有效地提高材料的热电性能。整个体系中最大热电优值1.53出现在673 K时,Ag2Te析出的复合材料Ag0.90Sb1.10Te210中,与单相材料相比热电性能提高了40%左右。结合一定的理论计算,证明了原位析出的微结构不仅通过能量过滤效应提高了Seebeck系数,并且对电导率的提高也有积极作用,从而获得了热电性能的较大提高。此外,掺杂等工艺对AgSbTe2基热电材料的电输运性能也有优化作用。
     4.熔炼法制备了(GeTe)85(AgSbTe2)15(简称TAGS-85)基热电材料,通过改变球磨过程中的保护气氛(空气、氩气和液氮),研究了球磨气氛对材料热电性能的影响。研究表明,体系的最大热电优值ZTmax为氩气中球磨后烧结材料的1.8,比空气中球磨后烧结材料的1.4有明显的提高,说明清洁的界面和细小晶粒可以有效地降低热导率,提高材料的Seebeck系数,从而优化材料的热电性能。
     5.首先通过熔炼热压的方法制备得到了单相的Ag8GeTe6,并且通过Ag位自掺杂成功地优化了材料的热电性能,这一系列的最大热电优值在成分为Ag7.99GeTe6时,在623K达到了0.85,比化学计量比材料的热电性能提高了30%。另一方面,通过与Ag8SiTe6基化合物固溶,进一步的降低材料的热导率,并获得电导率的提高。
Thermoelectric (TE) materials can be used for the direct conversion between electricity and thermal energy. There are mainly two effects during the energy conversion process, namely Seebeck effect and Peltier effect. Based on these, TE materials can be used as power generator, cooler and also precise temperature controller. Due to the advantages TE devices exhibiting, such as small and lightweight, maintenance-free, no moving parts, acoustically silent and electrically quiet etc., they have been widely utilized in many different fields, for example, the power generator in spaceflights, infrared-seeking missiles, laser diode coolers, low noise amplifiers and also wine cabinets. However, the low energy conversion efficiency is still the neck, which limited the application of TE devices. The optimization of TE materials with higher TE performance is very essential for the further development of TE industry.
     Based on the definition of thermoelectric figure of merit, ZT=α2CσT/κ. The TE performance is proportional to the electrical conductivity, a and Seebeck coefficient, a and inverse proportional to the thermal conductivity,κ. Most of the researches today focus on the reduction of thermal conductivity in the TE materials with high electrical transport properties. However, there is a minimum limitation for the thermal conductivity, which is called the amorphous limitation. So in this study, we focus our attention on the TE materials with intrinsically low thermal conductivity. In-situ precipitates, solid solution, boundary clearance and doping were performed on different low-κTE systems to enhance the electrical transport properties, while maintain or further decrease the thermal conductivity to final improvement of the TE properties. The conclusions are listed below:
     1. The crystalline kinetics theory has been used to analyze the crystallization process of SiTe-based amorphous. The activation energies of crystallizationΔEa have been calculated to be 198-204 kJ/mol and 236-244 kJ/mol for Si15Te85 and Si20Te80, respectively. By the analysis of related data, Si2oTego amorphous has been found with lower crystallization ability but higher thermal stability comparing with Si15Te85 And the crystallization processes for these two amorphous both indicated a mixed mechanism of two and three-dimensional growth.
     2. Low temperature transport properties measurements and related theories were combined together to analyze the phonon transport properties in Se doped GeTe-based amorphous. The low temperature specific heat measurements identified some localized low-frequency oscillation modes (Einstein modes) in conjunction with a Debye-like behavior. The thermal conductivity of all Ge20Te80-xSex exhibited typical amorphous heat conduction behavior, which has been discussed in connection with the small phonon mean free path. All these studies provided the theoretical basis for the afterwards study on the low-κTE materials.
     3. In-situ nanocomposites with different precipitations (Ag2Te or Sb2Te3) have been obtained in AgSbTe2 system by tuning the ratio of Ag2Te to Sb2Te3. It proved that these in-situ precipitates can contribute to the improvements of Seebeck coefficient and electrical conductivity at the same time based on the energy filtering effect. On the other hand, the precipitates of Ag2Te nanodots and nano-lamellae structures are much more effective for the optimization of thermoelectric properties comparing with Sb2Te3 precipitates. The maximum ZT value of 1.53 has been obtained in AgiTe precipitated samples at 673 K with the enhancement of~40% comparing with the single phased samples.
     4. The boundary clearance process has also proved to be very effective to (GeTe)85(AgSbTe2)15 (TAGS-85). By changing the ball-mill atmosphere from air to Argon, clean boundaries and smaller grains have been obtained. The ZT value has been improved from 1.4 to 1.8, which was sintered by SPS after the ball-mill process in air and Argon, respectively.
     5. Non-stoichiometric Ag8GeTe6 based alloys have been successfully synthesized. The Ag self-doping has proved to be very effective for the enhancement of the thermoelectric properties due to the improvement in Seebeck coefficient, while maintaining the intrinsically low thermal conductivity. The maximum ZT of 0.86 has been obtained in Ag7.99GeTe6 at 623 K which is more than 30% improvement comparing with the stoichiometric AggGeTe6.
引文
[1]L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science,2008.321(5895):1457-1461.
    [2]T. Cole, Thermoelectric Energy-Conversion with Solid Electrolytes. Science,1983.221(4614): 915-920.
    [3]F.J. DiSalvo, Thermoelectric Cooling and Power Generation. Science,1999.285(5428):703-706.
    [4]B.C. Sales, Smaller is cooler. Science,2002.295(5558):1248-1249.
    [5]T.M. Tritt, Thermoelectrics Run hot and cold. Science,1996.31(5266):1276-1277.
    [6]T.M. Tritt, Thermoelectric materials:Holey and unholey semiconductors. Science,999.283(5403): 804-805.
    [7]R.D. Abelson, Section Space Mission and Applications. CRC Handbook of Thermoelectrics, edited by D.M. Rowe,2005. Ch.56.
    [8]J. LaGrandeur, D. Crane, S. Hung, B. Mazar and A. Eder, High Efficiency Waste Energy Recoveiy System for Vehicle Applications. Proc.25th Conf. on Thermoelectrics,2006. Wien, Austria pp: 343-348.
    [9]F.J. Weinberg, D.M. Rowe and G. Min, Novel high performance small-scale thermoelectric power generation employing regenerative combustion system. J. Phys. D:Appl. Phys.,2002.35(13): L61-L63.
    [10]D.M. Rowe, General Principles and Basic Considerations. CRC Handbook of Thermoelectrics, edited by D.M. Rowe,2005. CRC Press, Boca Raton, USA.
    [11]J.S. Lee, S.H. Rhi, C.N. Kim and Y. Lee, Use of two-phase loop thermosyphons for thermoelectric refrigeration:experiment and analysis. App. Thermal Eng.,2003.23(9):1167-1176.
    [12]T. Metzger and R.P. Huebener, Modelling and cooling behaviour of Peltier Cascades Cryogenics, 1998.39(3):235-239.
    [13]H. Littman and B. Davidson, Theoretical bound on the thermoelectric figure of merit from irreversible thermodynamics J. Appl. Phys,1961.32(45):217-219.
    [14]F.D. Rosi, J.P. Dismukes and E.F. Hockings, Electr. Eng.,1960.79:450-459.
    [15]T.C. Harman, D.L. Spears and M.P. Walsh, PbTe/Te superlattice structures with enhanced thermoelectric figures of merit. J. Elec.Mater.,1999.28(1):L1-L4.
    [16]T.C. Harman, P.J. Taylor, M.P. Walsh and B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science,2002.297(5590):2229-2232.
    [17]R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, thin-film thermoelectric devices with high room temperature figures of merit. Nature,2001.413:597-602.
    [18]T. Caillat, J.P. Fleurial and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3. J. Phys. Chem. Solids,1997.58(7):1119-1125.
    [19]B.C. Sales, B.C. Chakoumakos and D. Mandrus, Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B,1999.61(21):2475-2481.
    [20]M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren and J.-P. Fleurial, New Directions for Low-Dimensional thermoelectric materials. Adv. Mater.,2007.19(8): 1043-1053.
    [21]D.M. Rowe, CRC handbook of Thermoelectrics,1995. CRC, Boca Raton, FL,1995.
    [22]B. Poudel, Q. Hao, Y. Ma, Y.C. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science,2008.320(5876): 634-638.
    [23]A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen and D. Vashaee, Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B,2009.80(15):155327.
    [24]G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Enhanced thermoelectric fugure of merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett.,2008.8(12):4670-4676.
    [25]J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science,2008.321(5888):554-557.
    [26]B.C. Sales, D. Mandrus and R.K. Williams, Filled Skutterudite Antimonides:A New Class of Thermoelectric Materials Science,1996.272(5266):1325-1328.
    [27]S.R. Brown, S.M. Kauzlarich, F. Gascoin and G.J. Snyder, YbMnSb:New high efficiency thermoelectric material for power generation. Chem. Mater.,2006.18(7):1873-1877.
    [28]G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat and B.B. Iverson, Disorder zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater.,2004.3(7):458-463.
    [29]C.B. Vining, Half-full glasses. Nature,2009.7:765-766.
    [30]L. Wu, J. Zheng, J. Zhou, Q. Li, J. Yang and Y. Zhu, Nanostructures and defects in thermoelectric LAST-18 single crystal. J. Appl. Phys.,2009.105(9):094317.
    [31]K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis and M.G. Kanatzidis, Cubic AgPbmSbTe2-m Bulk Thermoelectric materials with high figure of merit. Science, 2004.303(5659):818-821.
    [32]I.U. Arachchige, J. Wu, V.P. Dravid and M.G. Kanatzidis, Nanocrystals of the Quaternary Thermoelectric Materials AgPbmSbTem-2 Phase segregated or Solid solutions. Adv. Mater.,2008. 20(19):3638-3642.
    [33]M.-K. Han, K. Hoang, H.J. Kong, R. Pcionek, C. Uher, K.M. Paraskevopoulos, S.D. Mahanti and M.G. Kanatzidis, Substitution of Bi for Sb and its Role in the terhmoelectric properties and nanostructuring in AgPbMTe (M=Bi, Sb). Chem. Mater.,2008.20(10):3512-3520.
    [34]A. Gueguen, P.F.P. Poudeu, C.-P. Li, S. Moses, C. Uher, J. He, V. Dravid, K.M. Paraskevopoulos and M.G. Kanatzidis, Thermoelectric Properties and Nanostructuring in the p-type Materials NaPbSnMTe (M=Sb, Bi). Chem. Mater.,2009.21(8):1683-1694.
    [35]X.Z. Ke, C.F. Chen, J.H. Yang, L.J. Wu, J. Zhou, Q. Li, Y.M. Zhu and P.R.C. Kent, Microstructure and a Nucleation Mechanism for Nanoprecipitates in PbTe-AgSbTe2. Phys. Rev. Lett.,2009. 103(14):145502.
    [36]M.H. Ettenberg, J.R. Maddux, P.J. Taylor, W.A. Jesser and F.D. Rosi, Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3)(Sb2Se3). J. Crys. Grow., 1997.179(3-4):495-502.
    [37]X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu and X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett.,2005.86(6):062111.
    [38]X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu and H.L. Ni, Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys. J. Alloy. Compd.,2005.387(1-2):282-286.
    [39]M. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands and A.M. Stacy, Insights into the electrodepositionof Bi2Te3. J. Electrochem. Soc.,2002.149(11):C546-C554.
    [40]M. Martin-Gonzalez, G.J. Snyder, A.L. Prieto, R. Gronsky, T. Sands and A.M. Stacy, Direct electrodeposition of highly dense 50 nm Bi2Te3-ySey nanowire arrays. Nano Lett.,2003.3(7): 973-977.
    [41]A.L. Prieto, M.S. Sander, M. Martin-Gonzalez, R. Gronsky, T. Sands and A.M. Stacy, Electrodeposition of ordered Bi2Te3 nanowire arrays. J. Am. Chem. Soc.,2001.123(29): 7160-7161.
    [42]A. Dauscher, A. Thomy and H. Scherrer, Pulsed laser deposition of Bi2Te3 thin films. Thin Sol. Films,1996.280(1-2):61-66.
    [43]R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik and N. ElMasry, MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. J. Crys. Grow., 1997.170(1-4):817-821.
    [44]L.D. Hicks and M.S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B,1993.47(19):12727-12731.
    [45]M.N. Touzelbaev, P. Zhou, R. Venkatasubramanian and K.E. Goodson, Thermal characterization of Bi2Te3/Sb2Te3 super lattices. J. Appl. Phys,2001.90(2):763-767.
    [46]Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang and J.P. Tu, Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett.,2008.92: 143106.
    [47]N. Gothard, X. Ji, J. He and T.M. Tritt, Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites. J. Appl. Phys,2008.103(5):054314.
    [48]Y.C. Lan, B. Poudel, Y. Ma, D.Z. Wang, M.S. Dresselhaus, G. Chen and Z.F. Ren, Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride. Nano Lett.,2009.9(4): 1419-1422.
    [49]X.H. Ji, J. He, Z. Su, N. Gothard and T.M. Tritt, Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach. J. Appl. Phys,2008.104(3):034907.
    [50]J.J. Shen, T.J. Zhu, S.N. Zhang, C. Yu and X.B. Zhao, Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides:a simple hot forging route and improved thermoelectric properties. Energy & Environmental Science,2010(submitted).
    [51]R. Vaidyanathan, S.M. Cox, U. Happek, D. Banga, M.K. Mathe and J.L. Stickney, Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD). Langmuir,2006.22(25):10590-10595.
    [52]T. Koga, O. Rabin and M.S. Dresselhaus, Thermoelectric figure of merit of Bi/Pb1-xEuxTe superlattices. Phys. Rev. B,2000.62(24):16703-16706.
    [53]T.C. Harman, D.L. Spears and M.J. Manfra, High thermoelectric figures of merit in PbTe quantum wells. J. Elec.Mater.,1996.25(7):1121-1127.
    [54]H. Beyer, J. Nurnus, H. Bottner, A. Lambrecht, T. Roch and G. Bauer, PbTe based superlattice structures with high thermoelectric efficiency. Appl. Phys. Lett.,2002.80(7):1216-1218.
    [55]J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts and R. Venkatasubramanian, Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett.,2005.87(2):023105.
    [56]Y.I. Ravich, CRC Handbook of Thermoelectrics, edited by D.M. Rowe,1995. CRC Press, Boca Raton, FL,1995:pp:65.
    [57]Y. Nishio and T. Hirano, Improvement of the Efficiency of Thermoelectric Energy Conversion by Utilizing Potential Barriers. Jpn. J.Appl. Phys.,1996.36:170-174.
    [58]L.Z. Zhang, J.C. Yu, M.S. Mo, L. Wu, K.W. Kwong and Q. Li, A general in situ hydrothermal rolling-up formation of one-dimensional, single-ciystalline lead telluride nanostructures. Small, 2005.1(3):349-354.
    [59]J.R. Sootsman, R.J. Pcionek, H.J. Kong, C. Uher and M.G. Kanatzidis, Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chem. Mater.,2006. 18(21):4993-4995.
    [60]K. Kishimoto and T. Kooyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties. J. Appl. Phys,2002.92(5):2544-2549.
    [61]X. Chen, T.J. Zhu and X.B. Zhao, Synthesis and growth mechanism of rough PbTe polycrystalline thermoelectric nanorods. J. Crys. Grow.,2009.311(11):3179-3183.
    [62]M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang and P.D. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater.,2007.19(19): 3047-3051.
    [63]W.Z. Wang, B. Poudel, D.Z. Wang and Z.F. Ren, Synthesis of PbTe nanoboxes using a solvothermal technique. Adv. Mater.,2005.17(17):2110-2114.
    [64]P.F.P. Poudeu, J. D'Angelo, H.J. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher and M.G. Kanatzidis, Nanostructures versus solid solutions:Low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. J. Am. Chem. Soc., 2006.128(44):14347-14355.
    [65]L.E. Shelimova, O.G. Karpinskii, T.E. Svechnikova, E.S. Avilov, M.A. Kretova and V.S. Zemskov, Synthesis and structure of layered compounds in the PbTe-Bi2Te3 and PbTe-Sb2Te3 systems. Inor. Mater.,2004.40(12):1264-1270.
    [66]J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos and M.G. Kanatzidis, Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:Enhanced performance in Pb1-xSnxTe-PbS. J. Am. Chem. Soc.,2007.129(31):9780-9788.
    [67]M. Orihashi, Y.Noda, L.D. Chen and T. hirai, Effect of Sn content on the electrical properties and thermal conductivity ofPb1-xSnxTe. Mater. Trans. JIM,2000.41(9):1196-1201.
    [68]P.W. Zhu, Y. Imai, Y. Isoda, Y Shinohara, X.P. Jia and G.T. Zou, Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3. J. Phys.:Cond. Matt.,2005.17(46):7319-7326.
    [69]T. Ikeda, L.A. Collins, V.A. Ravi, F.S. Gascoin, S.M. Haile and G.J. Snyder, Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater., 2007.19(4):763-767.
    [70]T. Ikeda, V.A. Ravi and G.J. Snyder, Formation of Sb2Te3 Widmanstatten precipitates in thermoelectric PbTe. Acta Materialia,2009.57(3):666-672.
    [71]Z. Dashevsky, S. Shusterman, M.P. Dariel and I. Drabkin, Thermoelectric efficiency in graded indium-doped PbTe crystals. J. Appl. Phys,2002.92(3):1425-1430.
    [72]S. Ahman, K. Hoang and S.D. Mahanti, Ab initio study of deep defect states in narrow band-gap semiconductors:Group Ⅲ impurities in PbTe. Phys. Rev. Lett.,2006.96(5):056403.
    [73]O. Yamashita and N. Sadatomi. Thermoelectric properties of Sil-xGex(x<=0.10) with alloy and dopant segregations. J. Appl. Phys,2000.88(1):245-251.
    [74]A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A.I. Goddard and J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature.2007.451:168-171.
    [75]A.I. Hochbaum, R. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. MAJUMDAR and P.D. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature,2008. 451:163-167.
    [76]D. Li, Y. Wu. P. Kim and L. Shi, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett..2003.83(14):2934-2936.
    [77]T.M. Trinh. V., A.J. Williamson. V. Lordi and G. Galli, Atomistic Design of Thermoelectric Properties of Silicon Nanowires. Nano Lett.,2008.8(4):1111-1114.
    [78]H. Uchino, Y. Okamoto, T. Kawahara and J. Morimoto, The study of the origin of the anomalously large thermoelectric power of Si/Ge superlattice thin film. Jpn. J. Appl. Phys.,2000.39(4A): 1675-1677.
    [79]S. Chakraborty, C.A. Kleint, A. Heinrich, C.M. Schneider, J. Schumann, M. Falke and S. Teichert, Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111). Appl. Phys. Lett.,2003. 83(20):4184-4186.
    [80]C. Dames and G. Chen, Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys.,2004.95(12):682-693.
    [81]J.L. Cohn and G.A. Slack, Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett.,1999.82(4):779-782.
    [82]T. He, J.Z. Chen, H.D. Rosenfeld and M.A. Subramanian, Thermoelectric Properties of Indium-Filled Skutterudites. Chem. Mater.,2006.18(3):759-762.
    [83]X.F. Tang, Q.J. Zhang, L.D. Chen, T. Goto and T. Hirai, Synthesis and thermoelectric properties of p-type-and n-type-filled skutterudite RyMxCo4-xSb12 (R:Ce,Ba,Y; M:Fe,Ni). J. Appl. Phys.,2005. 97(9):093712.
    [84]D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu and C. Uher, Cerium filling and doping of cobalt triantimonide. Phys. Rev. B,1997.56(12):7376-7383.
    [85]G.A. Lamberton Jr., S. Bhattacharya, R.T. Littleton, Ⅳ, M.A. Kaeser, R.H. Tedstorm, T.M. Tritt, J. Yang and G.S. Nolas, High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett., 2002.80(4):598-600.
    [86]G.S. Nolas, G.A. Slack, D.T. Morelli, T.M. Tritt and A.C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys.,1995.79(8):4002-4008.
    [87]D. Berardan, E. Alleno, C. Godart, O. Rouleau and J.R. Carvajal, Preparation and chemical properties of the skutterudites (Ce-Yb)yFe4-x(Co/Ni)xSb12. Mat. Res. Bull.,2004.40 (3):537-551.
    [88]J.Y. Peng, P.N. Alboni, J. He, B. Zhang, Z. Su, T. Holgate, N. Gothard and T.M. Tritt, Thermoelectric properties of (In,Yb) double-filled CoSb3 skutterudite. J. Appl. Phys.,2008.104(5): 053710.
    [89]X. Shi, J.R. Salvador, J. Yang and H. Wang, Thermoelectric Properties of n-Type Multiple-Filled Skutterudites. J. Elec. Mater.,2009.38(7):930-933.
    [90]X. Shi, L.D. Chen, S.Q. Bai and X.F. Tang, Effect of C60 particle dispersion on thermal conductivity of CoSb3. Key Eng. Mater.,2003.249:75-78.
    [91]S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehata and M. Ito, Effect of NiSb on the thermoelectric properties of skutterudite CoSb3. J. Appl. Phys.,2003.93(5):2758-2764.
    [92]J.L. Mi, X.B. Zhao, T.J. Zhu and J.P. Tu, Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites. Appl. Phys. Lett.,2007.91(17):172116.
    [93]J.L. Mi, X.B. Zhao, T.J. Zhu and J.P. Tu, Thermoelectric properties of Yb0.1Co4Sb12 based nanocomposites with CoSb3 nanoinclusion. J. Phys. D:Appl. Phys.,2008.41:205403.
    [94]X.Y. Huang, L.D. Chen and X. Shi, Thermoelectric performances of ZrNiSn/C60 composites. Key Eng. Mater.,2005.280-283:385-388.
    [95]X.Y. Huang, Z. Xu, L.D. Chen and X.F. Tang, Effect ofgamma-Al2O3 content on the thermoelectric performance of ZrNiSn/gamma-Al2O3 composites. Key Eng. Mater.,2003.249:79-83.
    [96]C. Yu, Y. Zhang, T.J. Zhu, G.Y. Jiang, J. Xu, B. Zhao and X.B. Zhao, Preparation and Thermoelectric Properties of Zr1-xTixNiSn0.975Sb0.025 Half-Heusler Alloys. J. Mater. Sci. Technol, 2009.25(6):738-741.
    [97]C. Yu, T.J. Zhu, R. Shi, Y. Zhang, X.B. Zhao and J. He, High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Materialia,2009.57(9):2757.
    [98]Y. Xia, S. Bhattacharya and V. Ponnambalam, Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. J. Appl. Phys.,2000.88(3):1952-1955.
    [99]J.W. Sharp, S.J. Poon and H.J. Goldsmid, Boundary scattering and the thermoelectric figure of merit. Phys. stat. sol. (a),2001.187(2):507-516.
    [100]J. Yang, G.P. Meisner and L.D. Chen, Strain field fluctuation effects on lattice thermal conductivity ofZrNiSn-based thermoelectric compounds. Appl. Phys. Lett.,2004.85(7):1140-1142.
    [101]S. Sakurada and N. Shuton, Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett.,2005.86(8):082105.
    [102]Q. Shen, L.D. Chen, T. Goto and T. Hirai, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett.,2001. 79(10):1465-1467.
    [103]T. Wu, W. Jiang, X.Y Li, Y.F. Zhou and L.D. Chen, Thermoelectric properties of p-type Fe-doped TiCoSb half-Heusler compounds. J.Appl. Phys.,2007.102(10):103705.
    [104]M. Zhou, L.D. Chen, C. Feng, D.L. Wang and J.-F. Li, Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1-xTaxCoSb. J. Appl. Phys.,2007 101(11): 113714.
    [105]C. Uher, J. Yang, S. Hu, D.T. Morelli and G.P. Meisner, Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B,1998.59(13):8615-8621.
    [106]E.S. Toberer, S.R. Brown, T. Ikeda, S.M. Kauzlarich and G.J. Snyder, High thermoelectric efficiency in lanthanum doped Yb,4MnSbn. Appl. Phys. Lett.,2008.93(6):062110.
    [107]S.R. Brown, S.M. Kauzlarich, F. Gascoin and G.J. Snyder, Yb14MnSb11:New High Efficiency Thermoelectric Material for Power Generation. Chem. Mater.,2006.18(7):1873-1877.
    [108]C.L. Condron, S.M. Kauzlarich, F. Gascoin and G.J. Snyder, Thermoelectric properties and microstructure of Mg3Sb2 J. Solid State Chem.,2006.179(8):2252-2257.
    [109]S.J. Kim, S.Q. Hu, C. Uher and M.G. Kanatzidis, Ba4In8Sb16:Thermoelectric Properties of a New Layered Zintl Phase with Infinite Zigzag Sb Chains and Pentagonal Tubes. Chem. Mater., 1999.11(11):3154-3159.
    [110]S.M. Park, E.S. Choi, W. Kang and S.J. Kim, Eu5In2Sb6, Eu5In2-2xZnxSb6:rare earth zintl phases with narrow band gaps. J. Mater. Chem.,2002.12(6):1839-1843.
    [111]C. Yu, T.J. Zhu, S.N. Zhang, X.B. Zhao, J. He, Z. Su and T.M. Tritt, Improved thermoelectric performance in the Zintl phase compounds YbZn2-xMnxSb2 via isoelectronic substitution in the anionic framework. J.Appl. Phys.,2008.104(1):013705.
    [112]G.S. Nolas, J.L. Cohn, G.A. Slack and S.B. Schujman, Semiconduction Ge clathrates:Promising candidates for thermoelectric applications. Appl. Phys. Lett.,1998.73(2):178-180.
    [113]J. Dong, O.F. Sankey and C.W. Myles, Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors. Phys. Rev. Lett.,2000.86(11):2361-2364.
    [114]M. Christensen, and B.B. Iversen, Host structure engineering in thermoelectric clathrates. Chem. Mater.,2007.19(20):4896-4905.
    [115]A. Bentien, E. Nishibori, S. Paschen and B.B. Iversen, Crystal structures, atomic vibration, and disorder of the type-I thermoelectric clathrates Ba8Ga16Si30, Ba8Ga16Ge30), Ba8In16Ge30, and Sr8Ga16Ge30. Phys. Rev. B,2005.71(14):144107.
    [116]A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G.D. Stucky and B.B. Iversen, Thermal conductivity of thermoelectric clathrates. Phys. Rev. B,2004.69(4):045107.
    [117]L. Wang, L.D. Chen, X.H. Chen and W.B. Zhang, Synthesis and thermoelectric properties of n-type SrHGa16-xGe30-y clathrates with different Ga/Ge ratios. J. Phys. D:Appl. Phys.,2009.42(4): 045113.
    [118]I. Tarasaki, Y. Sasago and K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B,1997.56(20):R12685-R12687.
    [119]K. Fujita, T. Mochida and K. Nakamura, High-temperature thermoelectric properties ofNaxCoO2-δ single crystals. Jpn. J. Appl. Phys.,2001.40:4644-4647.
    [120]M. Shikano and R. Funahashi, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett.,2003.82(12):1851-1853.
    [121]A. Satake, H. Tanaka, T. Ohkawa, T. Fujii and I. Terasaki, Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method. J. Appl. Phys,2004.96(1): 931-933.
    [122]H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanish, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3. Nat. Mater.,2007.6(2):129-134.
    [123]S. Ohta, T. Nomura, H. Ohta and K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La-or Nb-doped SrTiO3 single crystals. J. Appl. Phys,2005. 97(3):034106.
    [124]H. Wang, J.F. Li, C.W. Nan, M. Zhou, W.S. Liu, B.P. Zhang and T. Kita, High-performance Ag0.8Pb18-xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl. Phys. Lett.,2006.88(9):092104.
    [125]H.S. Dow, M.W. Oh, S.D. Park, B.S. Kim, B.K. Min, H.W. Lee and D.M. Wee, Thermoelectric properties of AgPbmSbTem-2 (12    [126]N. Chen, F. Gascoin, G.J. Snyder, E. Muller, G. Karpinski and C. Stiewe, Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)]1-x. Appl. Phys. Lett.,2005.87(17):171903.
    [127]E. Quarez, K.-F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis and M.G. Kanatzidis, Nanostructuring, Compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2-m. The myth of solid solutions. J. Am. Chem. Soc.,2005.127(25):9177-9190.
    [128]S.V. Barabash, V. Ozolins and C. Wolverton, First-principles theory of the coherency strain, defect energetics, and solves boundaries in the PbTe-AgSbTe2 system. Phys. Rev. B,2008.78(21): 214109.
    [129]D.I. Bilc, S.D. Mahanti and M.G. Kanatzidis, Electronic transport properties of PbTe and AgPbmSbTe2-m, systems. Phys. Rev. B,2006.74(12):125202.
    [130]H. Hazama, U. Mizutani and R. Asahi, First-principles calculations ofAg-Sb nanodot formation in thermoelectric AgPbmSbTe2-m (m=6,14,30). Phys. Rev. B,2006.73(11):115108.
    [131]S.V. Barabash, V. Ozolins and C.Wolverton, First-Principles theory of competing order types phase separation, and phonon spectra in Thermoelectric AgPbmSbTem-2 alloys. Phys. Rev. Lett., 2008.101(15):155704.
    [132]H. Lin, E.S. Bozin, S.J.L. Billinge, E. Quarez and M.G. Kanatzidis, Nanoscale clusters in the high performance thermoelectric AgPbmSbTem-2-Phys. Rev. B,2005.72(17):174113.
    [133]. P.F.P. Poudeu, J.J. D'Angelo, A.D. Downey, J.L. Short, T.P. Hogan and M.G. Kanatzidis, High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type Na1-xPbmSbyTem-2. Angew. Chem. Int. Ed.,2006.45(23):3835-3839.
    [134]K. Ahn, C.P. Li, C. Uher and M.G. Kanatzidis, Thermoelectric Properties of the Compounds AgPbmLaTem-2. Chem. Mater.,2009.22(3):876-882.
    [135]J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D'Angelo, A. Downey, T. Hogan and M.G. Kanatzidis, Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2-m. Adv. Mater.,2006.18(9):1170-1173.
    [136]J. Androulakis, R. Pcionek, E. Quarez, J.H. Do, H. Kong, O. Palchik, C. Uher, J.J. D'Angelo, J. Short, T. Hogan, and M.G. Kanatzidis, Cosexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material AgSnSbTe. Chem. Mater.,2006.18(20):4719-4721.
    [137]B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa and E.M. Levin, Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15 (GeTe)85 thermoelectric material. J. Appl. Phys,2007.101(5):053715.
    [138]E.A. Skrabek, and D.S. Trimmer, CRC Handbook of Thermoelectrics, edited by D.M. Rowe,1995. CRC Press, Boca Raton, FL,1995:pp:267.
    [139]S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang and X.B. Zhao, nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials. Nanotechnology,2008.19(24):245707.
    [140]J.R. Salvador, J. Yang, X. Shi, H. Wang and A.A. Wereszczak, Transport and mechanical property evaluation of (AgSbTe)1-xGeTe)x (x=0.80,0.82,0.85,0.87,0.90). J. Sol. Sta. Chem.,2009.182: 2088-2095.
    [141]B.A. Cook, X.Z. Wei, J.L. Harringa and M.J. Kramer, In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85 J. Mater. Sci.,2007.42(18):7643-7646.
    [142]A. Singh, S. Bhattacharya, C. Thinaharan, D.K. Aswal, S.K. Gupta, J.V. Yakhmi and K. Bhanumurthy, Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85).J. Phys. D:Appl. Phys.,2009.42(1): 015502.
    [143]G.A. Slack, CRC Handbook of Thermoelectrics, edited by D.M. Rowe,1995. CRC Press, Boca Raton, FL,1995:407.
    [144]D.G. Cahill, S.K. Watson and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B,1992.46(10):6131-6140.
    [145]J.M. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee and A. Shakouri, Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett.,2005.87(11):112102.
    [146]D. Vashaee and A. Shakouri, Improved Thermoelectric Power Factor in Metal-Based Superlattices. Phys. Rev. B,2004.92(10):106103.
    [147]J.R. Sootsman, H. Kong, C. Uher, J.J. D'Angelo, C.I. Wu, T.P. Hogan, T. Caillat and M.G. Kanatzidis, Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring Angew. Chem. Int. Ed.,2008.47(45):8618-8622.
    [148]S. Iwanaga, M. Marciniak, R.B. Darling and F.S. Ohuchi, Thermopower and electrical conductivity of sodium-doped V2O5 thin films. J. Appl. Phys,2007.101(12):123709.
    [149]H. Matsumoto, K. Kurosaki, H. Muta and S. Yamanaka, Thermoelectric Properties of the Thallium-Tellurium Binaiy Compounds. Mater. Trans.,2009.50(7):1582-1585.
    [150]K. Kurosaki, K. Goto, H. Muta and S. Yamanaka, Enhancement of thermoelectric figure of merit of AgTITe by tuning the carrier concentration. J. Appl. Phys,2007.102(2):023707.
    [151]A. Kosuga, K. Kurosaki, H. Muta and S. Yamanaka, Thermoelectric properties of Tl-X-Te (X=Ge, Sn, andPb) compounds with low lattice thermal conductivity. J. Appl. Phys.2006.99(6):063705.
    [152]J.W. Sharp, B.C. Sales, D.G. Mandrus and B.C. Chakoumakos, Thermoelectric properties of ThSnTe5 and Tl2GeTe5. Appl. Phys. Lett.,1999.74(25):3794-3796.
    [153]K. Kurosaki, A. Kosuga, A. Charoenphakdee, H. Matsumoto, H. Muta and S. Yamanaka, Thermoelectric properties ofTl8GeTe5 with low thermal conductivity. Mater. Trans.,2008.49(8): 1728-1730.
    [154]B. Wolfing. C. Kloc, J. Teubner and E. Bucher, High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. Phys. Rev. Lett.,2001.86(19):4350-4353.
    [155]S. Yamanaka, A. Kosuga and K. Kurosaki, Thermoelectric Properties of Tl9BiTe6. J. Alloy. Compd., 2003.352(1-2):275-278.
    [156]K. Kurosaki, A. Kosuga and S. Yamanaka, Thermoelectric properties of TlBiTe2. J. Alloy. Compd., 2003.351(1-2):279-282.
    [157]R. Wolfe, J.H. Wernick and S.E. Haszko, Anomalous Hall Effect in AgSbTe2. J. Appl. Phys.,1960. 31(11):1959-1964.
    [158]T. Irie, T. Takahama and T. Oho, The Thermoelectric Properties of AgSbTe2-AgBiTe2, AgSbTer-PbTe and-SnTe Systems. Jpn. J. Appl. Phys.,1963.2:72-82.
    [159]E.F. Hockings, The Thermal Conductivity of Silver Antimony Telluride. J. Phys. Chem. Solids, 1959.10(4):341-342.
    [160]R.W. Armstrong, J.W.Faust Jr. and W.A. Tiller, A Structural Study of the compound AgSbTe2. J. Appl. Phys.,1960.31(11):1954-1964.
    [161]R.-M. Marin, G. Brun and J.-C. Tedenac, Phase equilibria in the Sb2Te3-Ag2Te system J. Mater. Sci., 1985.20:730-735.
    [162]H. Wang, J.-F. Li, M. Zou and T. Sui, Synthesis and transport property ofAgSbTe2 as a promising thermoelectric compound. Appl. Phys. Lett.,2008.93(20):202106.
    [163]K. Hoang, S.D. Mahanti, J.R. Salvador and M.G. Kanatzidis, Atomic ordering and Gap formation in Ag-Sb-based ternary chalcogenides. Phys. Rev. Lett.,2007.99(15):156403.
    [164]D.T. Morelli, V. Jovovic and J.P. Heremans, Intrinsically Minimal Thermal Conductivity in Cubic Ⅰ-Ⅴ-Ⅵ2 Semiconductors. Phys. Rev. Lett.,2008.101(3):035901.
    [165]S. Geller, The crystal structure of γ-Ag8GeTe6 a potential mixed electronic ionic conductor. Zeitschrift Fur Metallkunde,1979.149:31-47.
    [166]M. Fujikane, K. Kurosaki, H. Muta and S. Yamanaka, Thermoelectric properties of Ag8GeTe6. J. Alloy. Compd.,2005.396(1-2):280-282.
    [167]F. Boucher, M. Evain and R. Brec, Single-crystal structure determination of y-Ag8SiTe6 and powder X-ray study of Low temperature a and β phases. J. Solid State Chem.,1992.100(2): 341-355.
    [168]A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno and S. Yamanaka, Ag8SiTe6:A new thermoelectric material with low thermal conductivity. Jpn. J. Appl. Phys.,2009.48(1):011603.
    [169]D.Y. Chung, K.S. Choi, L. Iordanidis. J.L. Schindler, P.W. Brazis, K. C.R, B. Chen, S. Hu, C. Uher and M.G. Kanatzidis, High Thermopower and low thermal conductivity in semiconducting ternary K-Bi-Se compounds. Synthesis and properties of β-K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb analogues. Chem. Mater.,1997.9(12):3060-3071.
    [170]L. Iordanidis, P.W. Brazis, K. T, J. Ireland, M. Lane, C.R. Kannewurf, W. Chen, F.S. Dyck, C. Uher, N.A. Ghelani, T. Hogan, and M.G. Kanatzidis, A2Bi8Se13 (A=Rb, Cs), CsBi3.67Se6, and BaBi2Se4: New ternary semiconducting bismuth selenides. Chem. Mater.,2001.13(2):622-633.
    [171]T.J. McCarthy, S.P. Ngeyi, J.H. Liao, D.C. DeGroot, T. Hogan, C.R. Kannewurf and M.G. Kanatzidis, Molten salt synthesis and properties of three new solid state ternary bismuth chalcogenides,β-CsBiS2, γ-CsBiS2 and K2Bi8Se13. Chem. Mater,1993.5(3):331-340.
    [172]B. Chen, C. Uher, L. Iordanidis and M.G. Kanatzidis, Transport properties of Bi2S3 and the ternary Bismuth sulfides KBi6.33S10 and K2Bi8S13. Chem. Mater.,1997.9(7):1655-1658.
    [173]J. Feinleib, J. deNeufville, S.C. Moss and S.R. Ovshinsky, Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors. Appl. Phys. Lett.,1971.18(6):254-257.
    [174]S.R. Ovshinsky, Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett.,1968.21(20):1450-1453.
    [175]T.J. Zhu, F. Yan, X.B. Zhao, S.N. Zhang, Y. Chen and S.H. Yang, Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/nanocrystal hybrid structure. J. Phys. D: Appl. Phys.,2007.40(19):6094-6097.
    [176]C.K. Kim, H.S. Lee, S.Y. Shin, J.C. Lee, D.H. Kim and S. Lee, Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering. Mater. Sci & Engin. A,2005.406(1-2):293-299.
    [177]A. Onoue, W. Zhang, T. Zhang and K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Materialia,2001.49(14):2645-2652.
    [178]Y.H. Liu, G. Wang, M.X.Pan, P. Yu, D.Q. Zhao and W.H. Wang. Deformation Behavior and Mechanism of Ni-Co-Nb-Ta Bulk Metallic Glasses with High Strength and Plasticity. J. Mater. Res, 2007.22(4):869-875.
    [179]M.M. Wakkad, Crystallization kinetics ofPb20Ge17Se63 and Pb20Ge22Se58 chalcogenide glasses J. Thermal Ana.& Cal.,2001.63(2):533-547.
    [180]G.I. Kalandadze, A.B. Peikrishvili and S.O. Shalamberidze, Sintering of boron and boron carbide. J. Sol. Sta. Chem.,2000.154(1):194-198.
    [181]N. Afify, Crystallization kinetics of overlapping phases in Se0.6Ge0.2Sb0.2 chalcogenide glass. J. Non-Crys. Solids,1990.126(1-2):130-140.
    [182]D. Claudio, J. Gonzalez-Hernandez, O. Licea, B. Laine, E. Prokhorov and G. Trapaga, An analytical model to represent crystallization kinetics in materials with metastable phase formation. J. Non-Crys. Solids,2006.352(1):51-55.
    [183]H.E. Kissinger, Reaction Kinetics in Differentail Thermal Analysis. Anal. Chem,1957.29(11): 1702-1706.
    [184]H.K. Kissinger, Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis J. Res.Nat.Bur.Stand,1956.57(4):217-221.
    [185]T. Ozawa, Nonisothermal Kinetics of Diffusion and its Application to Thermal-Analysis J.Thermal.Anal,1973.5(5-6):563-576.
    [186]T. Ozawa, Nonisothermal Kinetics of Diffusion and its Application to Thermal-Analysis J.Thermal.Anal,1973.5(5-6):563-576.
    [187]E. Morales-Sanchez and E.P. B. Laine, G. Trapaga, J. Gonzalez-Hernandez, Crystallization kinetics of Ge-Sb-Te alloys with metastable phase formation. Mater.Sci.Engi. A,2004.375-377:763-766.
    [188]M.I. Abd-Elrahman and N.A. A. A. Abu-Sehly, and G. Shuriet, Crystallization kinetics of Ge17.5Te82.5 chalcogenide glass. phys. stat. sol. (a),2003.198(1):49-55.
    [189]S. Mahadevan and A.G.a.A.K. Singh, Calorimetric measurements on As-Sb-Se glasses. J. Non-Crys. Solids,1986.88(1):11-34.
    [190]A.V. Koloboc, F.P., Tominaga J, Ankudinov A L, Yannopoulos S N and Andrikopolous K S, Crystallization-induced short-range order changes in amorphous GeTe. J. Phys.:Condens. Matter.,2004.16(44):S5103.
    [191]P. Nath and K.L. Chopra, Thermal conductivity of amorphous and crystalline Ge and GeTe films. Phys. Rev. B,1974.10(8):3412-3418.
    [192]V. Murashov and M.A. White, Thermal Conductivity:Theory, Properties, and Applications. ed. Terry M. Tritt, Kluwer Academic/Plenum Publishers,2004.
    [193]H.R. Schober and B.B. Laird, Localized low-frequency vibrational modes in glasses. Phys. Rev. B 1991.44(13):6746-6754.
    [194]The Debye model of lattice vibration is in general too simple, but it should be adequately accurate at temperatures typically<(θD/20), where only long wavelength acoustic phonon modes are excited and contribute a T(?) term in the specific heat.
    [195]J.F. Berret, and M. Meissner, How Universal are the Low Temperature Acoustic Properties of Glasses? Zeitschrift fur physik B Condensed Matter,1988.70(1):65-72.
    [196]I. Kaban, T. Halm, W. Hoyer, P. Jovari and J. Neuefeind, Short range order in amorphous gemanium-tellurium alloys. J. Non-Crys. Solids,2003.326&327:120-124.
    [197]J.P. Heremans, C.M. Thrush and D.T. Morelli, Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys,2005.98(6):063703.
    [198]S. Geller and J.H. Wernick, Ternary Semiconducting Compounds with Sodium Chloride Like structure. Acta Cryst.,1958.12:46-54.
    [199]R.G. Majer, Phase diagram study of Ternary semiconductor AgSbTe2. Zeitschrift Fur Metallkunde, 1963.54:311.
    [200]H. Matsushita, E. Hagiwara and A. Katsui, Phase diagram and thermoelectric properties of Ag3-xSb1-xTe4 systerm. J. Mater. Sci.,2004.39:6299-6301.
    [201]G. Petzow and G. Effenberg, Ternary Alloys. VCH:Weinheim,1988.2:pp:554.
    [202]G.S. Nolas, J. Sharp and H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments Thermoelectrics, ed R. Hull, R.M. Osgood. Springer, USA,2001.2:pp:45.
    [203]V. Jovovic and J.P. Heremans, measurements of the energy band gap and valence band structure of AgSbTe2. Phys. Rev. B,2008.77(24):245204.
    [204]D.J. Singh, P. Blaha, K. Schwartz and J.O. Sofo, Electronic structure of the pyrochlore metals Cd2Os2O7and Cd2Re2O7. Phys. Rev. B,2002.65(15):155109.
    [205]J.D. Sugar and D.L. Medlin, Precipitation of Ag2Te in the thermoelectric material AgSbTe2. J. Alloy. Compd.,2009.478(1-2):75-82.
    [206]F. Li, C. Hu, Y. Xiong, B. Wan, W. Yan and M. Zhang, Phase-Transition-Dependent Conductivity and Thermoelectric Property of Silver Telluride Nanowires. J. Phys. Chem. C,2008.112(41): 16130-16133.
    [207]R.S. Allgaier and W.W. Scanlon, mobility of electrons and holes in PbS, PbSe, and PbTe between Room temperature and 4.2 K. Phys. Rev.,1958. 111:1029.
    [208]J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri and A.C. Gossard, Demanstration of electron filtering to increase the Seebeck coefficient in InGaAs/InGaAlAs superlattices. Phys. Rev. B,2006.74(20):205335.
    [209]Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids,1963.11:127-140.
    [210]B.A. Cook, M.J. Kramer, J.L. Harringa, M.-K. Han, D.-Y. Chung and M.G. Kanatzidis, Analysis of Nanostructuring in High Figure-of-Merit Ag1-xPbmSbTe2-m Thermoelectric Materials. Adv. Func. Mater.,2009.19(8):1254-1259.
    [211]J. Bardeen and W. Shockley, Deformation Potentials and Mobilities in Non-Polar Ciystals. Phys. Rev.,1950.80:72-80.
    [212]F. Boucher, M. Evain and R. Brec, Distribution and Ionic Diffustion path of silver in y-Ag8GeTe6: A temperature dependent anharmonic single crystal structure study. J. Solid State Chem.,1993. 107(2):332-346.
    [213]A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno and S. Yamanaka, Reinvestigation of the thermoelectric properties ofAg8GeTe6. Phys. stat. sol. (rrl),2008.2(2):65-67.
    [214]S.N. Zhang, J. He, T.J. Zhu, X.B. Zhao and T.M. Tritt, Thermal conductivity and specific heat of bulk amorphous chalcogenides Ge20Te80-xSex (x=0,1,2,8). J. Non-Crys. Solids,2009.355(2): 79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700