Bi_2Te_3基温差电材料薄膜和一维纳米线的电化学制备、表征及形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维温差电材料在温差制冷和温差发电方面展现的广阔应用前景引起了科学界的普遍关注。本论文以电化学技术制备Bi_2Te_3基温差电材料为目的,通过循环伏安、交流阻抗、阴极极化等电化学测试技术对有Bi~(3+)、HTeO_2~+和SbO~+的单组分溶液体系、二元溶液体系及三元溶液体系的电化学性能进行了系统研究,提出了具体的反应机理。在理论研究基础上,结合ESEM、FETEM、HREM、SEAD、XPS、XRD、EDS、EDX等现代物理测试技术对电沉积Bi_2Te_3和Bi_(2-x)Sb_xTe_3温差电薄膜及纳米线阵列的形貌、结构、组成及性能等进行了表征,并对影响温差电性能的因素进行了深入的探讨。
     由于离子间相互作用的结果,Bi3+、HTeO2+和SbO+在Bi-Te体系、Sb-Te体系和Bi-Sb-Te三元体系中的电化学行为完全不同于各个单组分体系。研究表明HTeO2+在混合溶液的整个电沉积过程中具有非常重要的作用,它能够吸附在铂电极表面而首先被还原,再与其它离子反应生成相应的化合物。
     采用电化学恒电位沉积技术制备了Bi_2Te_3及Bi_(2-x)Sb_xTe_3薄膜温差电材料,通过控制沉积电位可以调节薄膜的组成,影响材料的温差电性能,进而能够根据需要设计材料,进行有目的的电化学合成。电沉积Bi_2Te_3薄膜为n型半导体,-0.030V是最佳沉积电位,其塞贝克系数约为-44μV?K-1。而Bi_(2-x)Sb_xTe_3薄膜为p型半导体,控制沉积电位为-0.5V条件下电沉积薄膜的塞贝克系数达最大,为213μV·K~(-1),其组成为Bi_(0.5)Sb_(1.5)Te_3。在室温范围内,电沉积Bi_(2-x)Te_(3+x)和Bi_(2-x)Sb_xTe_3温差电薄膜的塞贝克系数均随温度的升高呈现上升的趋势,而薄膜电阻却不断降低。此外,多元掺杂能够提高材料的电导率,是改善材料温差电性能的有效方法。
     以多孔氧化铝薄膜为模板,通过直流电沉积技术成功制备了Bi_2Te_3和Bi_(2-x)Sb_xTe_3一维纳米线温差电材料。恒电位沉积的Bi_2Te_3纳米线为多晶体,具有六方晶体结构。恒电流沉积的Bi_(2-x)Sb_xTe_3纳米线的组成随着沉积电流的变化而改变,因此可以通过调节沉积电流的大小控制纳米线的组成,进而改善材料的温差电性能。纳米线阵列的塞贝克系数远远小于块状材料,成分分布不均匀以及纳米线直径较大是影响性能提高的主要原因。
Low dimensional thermoelectric materials have attacted much attention due to their extensive application on pelter coolers and power generators. The purposes of this dissertation are to electrochemically fabricate Bi_2Te_3 based nanostructured thermoelectric materials. The reduction process for unitary, binary and ternary system of Bi~(3+), HTeO_2~+, SbO~+ in acid nitric medium was investigated by means of cathodic polarization, cyclic voltammetry and electrochemical impedance measurements. The mechanisms were developed to direct the production of Bi_2Te_3 and Bi_(2-x)Sb_xTe_3 thermoelectric films and nanowire arrays. By using ESEM, FETEM, HREM, SEAD, XPS, XRD, EDS and EDX techniques, the morphology, structure, composition, and properties of the deposited materials were examined. And the factors influencing thermoelectric performances of the thin films and nanowire arrays were thoroughly studied.
     The electrochemical behaviors of Bi3+, HTeO2+ and SbO+ in Bi-Te, Sb-Te and Bi-Sb-Te system are different from that of monocomponent system because of ion interaction. HTeO2+ plays important role in the whole reduction process, which can be reduced firstly because of its strong adsorption on the surface of the Pt electrode, then react with other ions to form the proper compounds.
     The Bi_2Te_3 and Bi_(2-x)Sb_xTe_3 thermoelectric thin films were prepared by potentiostatic electrodeposition. The composition of the film and its thermoelectric properties can be controlled through adjusting electrodeposition potential, so the synthesis of the materials can be easily performed according to the actual requirements. N-type semiconductive film of Bi_2Te_3 was prepared at the potential of -0.030V with the largest seebeck coefficient of -44μV·K~(-1). The Bi_(2-x)Sb_xTe_3 film is p-type semiconductor and when to be electrodeposited at -0.5V it possesses the largest seebeck coefficient of 213μV·K~(-1), whose composition was proved to be Bi_(0.5)Sb_(1.5)Te_3. When the temperature increased in the scope of 300~350K, the seebeck coefficient of the Bi_2Te_3 and Bi_(2-x)Sb_xTe_3 thermoelectric thin films increased while their resistance reduced, which means that they can be used under room temperature. In addition multidoping is the effective method for improving the thermoelectric properties of materials.
     The Bi_2Te_3 and Bi_(2-x)Sb_xTe_3 thermoelectric nanowire arrays have beensuccessfully fabricated by direct current deposition respectively in porous anodic aluminum oxide template. The potentiostatic deposits of Bi_2Te_3 nanowires are polycrystalline with hexagonal structure. The compostion of the galvanostatic deposits of Bi_(2-x)Sb_xTe_3 nanowires is determined by the current, so the thermoelectric properties of the nanowires can be controlled through adjusting electrodeposition current. The seebeck coefficient of nanowire arrays is much lower than that of bulk materials. The main factors to affect the thermoelectric performance are uneven distribution of the composition and the large diameter of the nanowires.
引文
[1] D. M. Rowe,温差电转换及其应用(高敏, 张景韶 译),北京:兵器工业出版社,1996,62~63
    [2] 田莳,功能材料,北京:北京航空航天出版社,1995,195
    [3] D. M. Rowe,CRC Handbook of Thermoelectrics,Boca Raton:CRC Press,1994,407~440
    [4] G. P. Meisner,D. T. Moreni,S. Hu,et al,Structure and lattice thermal conductivity of fractionally filled skutterudites:solid solutions of fully filled and unfilled end members,Physical Review Letters,1998,80(16):3551~3554
    [5] G. P. Nolas,D. T. Moreni,T. M. Tritt,Skutterudites:A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications, Annual Review of Materials Science,1999,29(1):89~116
    [6] J. L. Feldman,D. J. Sing,I. I. Martin,Lattice dynamics and reduced thermal conductivity of filled skutterudites,Physical Review B,1998,61(14):R9209~R9212
    [7] D. A. Gajewski,N. R. Diney,E. D. Bauer,et al,Heavy fermion behaviour of the cerium-filled skutterudites CeFe4Sb12 and Ce0.9Fe3CoSb12,Journal of Physics: Condensed Matter,1998,10(31):6973~6985
    [8] X. F. Tang,L. D. Chen,T. Goto,et al,Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4-xSb12,Journal of Materials Research,2001,16(3):837~843
    [9] B. C. Chakoumakos,B. C. Sales,D. G. Mandrus,et al,Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30,Journal of Alloys and Compounds,2000,296(1-2):80~86
    [10] Y. Kawaharada,K. Kurosaki,M. Uno,et a1,Thermoelectric properties of CoSb3,Journal of Alloys and Compounds,2001,315 (1-2):193~197
    [11] G. S. Nolas,M. Kaeser,R. T. Littleton,et a1,High figure of merit in partially filled ytterbium skutterudite material,Applied Physics Letters,2000,77(12):1855~1857
    [12] 唐新峰,陈立东,後藤孝,等,填充式 skutterudite 化合物: BayFexCo4-xSb12 的多步固相反应合成及结构,物理学报,2000,49(11):2196~2200
    [13] 罗派峰,唐新峰,李涵,等,Ba 和 Ce 两种原子复合填充 BamCenFeCo3Sb12化合物的合成及热电性能,物理学报,2004,53(9):3234~3238
    [14] B. C. Sales, D. Mandrus, B. C. Chakoumakos, et al,Filled skutterudite antimonides:electron crystals and phonon glasses,Physical Review B,1997,56(23):15081~15089
    [15] J. P. Fleural,A. Borshchevsky,T. Caillat,et al,High figure of merit in Ce-filled skutterudites,Proceedings of the 15th International Conference on Thermoelectrics,IEEE,1996,91~95
    [16] B. C. Sales,D. Mandrus,R. K. Williams,Filled skutterudite antimonides:a new thermoelectric materials,Science,1996,272:1325~1328
    [17] L. D. Chen,T. Kawahara,X. F. Tang,et al,Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sbl2,Journal of Applied Physics,2001,90(4):1864~1868
    [18] 唐新峰,陈立东,後藤孝,等,n 型 BayNixCo4-xSbl2 化合物的热电性能,物理学报,2002,51(12):2823~2828
    [19] G. S. Nolas,J. L. Cohn,G. A. Slack,et al,Semiconducting Ge clathrates: promising candidates for thermoelectric applications , Applied Physics Letters,1998,73(2):178~180
    [20] J. L. Cohn,G. S. Nolas,V. Fessatidis,et al,Glasslike heat conduction in high-mobility crystalline semiconductors,Physical Review Letters,1999,82(4):779~782
    [21] V. L. Kuznetsov,L. A. Kuznetsova,A. E. Kaliazin,et al,Preparation and thermoelectric properties of clathrate compounds , Journal of Applied Physics,2000,87(11):7871~7875
    [22] G. Chen,M. S. Dresselhaus,G. Dresselhaus,et al,Recent developments in thermoelectric materials,International Materials Reviews,2003,48(1):45~66
    [23] 蔡克峰,Ⅰ-型锗基笼形物—极有希望的热电材料,功能材料与器件学报,2004,10(2):139~144
    [24] S. J. Poon,Electronic and thermoelectric properties of half-Heusler alloys,Semiconductors and Semimetals,2001,70:37~75
    [25] B. A. Cook,J. L. Harringa,T. Morelli,et al,TiNiSn:a gateway to the (1,1,1) intermetallic compounds,Proceedings of the 15th International Conference on Thermoelectrics,IEEE,1996,122~127
    [26] H. Hohl,A. P. Ramirez,C. Goldmann,et a1,New compounds with MgAgAs-type structure:NbIrSn and NbIrSb,Journal of Physics: Condensed Matter,1998,10(35):7843~7850
    [27] H. Hohl,A. P. Ramirez,C. Goldmann,et a1,Efficient dopants for ZrNiSn-based thermoelectric materials , Journal of Physics: Condensed Matter,1999,11(7):1697~1709
    [28] C. Uher,J. Yang,S. Hu,et a1,Transport properties of pure and doped MNiSn (M=Zr,Hf),Physical Review B,1999,59(13):8615~8621
    [29] Y. Xia,S. Bhatacharya,V. Ponnambalam,et a1,Thermoelectric properties of semimetallic (Zr,Hf)CoSb half-Heusler phases,Journal of Applied Physics,2000,88(4):1952~1955
    [30] D. P. Yong,P. Khalifah,R. J. Cava,et a1,Thermoelectric properties of pure and doped FeMSb (M=V,Nb),Journal of Applied Physics,2000,87(1):317~321
    [31] K. Mastronardi,D. Yong,C. C. Wang,et a1,Antimonides with the half-Heusler structure: New thermoelectric materials , Applied Physics Letters,1999,74(10):1415~1417
    [32] 黄向阳,徐政,陈立东,Half-Heusler 热电半导体材料,无机材料学报,2004,19(1):25~30
    [33] I. Terasaki,Y. Sasago,K. Uchinokura,Large thermoelectric power in NaCo2O4 single crystals,Physical Review B,1997,56(20):12685~12687
    [34] H. Yakabe,K. Kikuchik,I. Terasaki,et a1,Thermoelectric properties of transition-metal oxide NaCo2O4 system,Proceedings of the 16th International Conference on Thermoelectrics,IEEE,1997,523~527
    [35] J. Nan,J. Wu,Y. Deng,et al,Synthesis and thermoelectric properties of (NaxCa1-x)3Co4O9 ceramics,Journal of the European Ceramic Society,2003,23(6):859~863
    [36] S. Li,R. Funahashi,T. Matsubara,et al,Thermoelectric properties of oxides Ca2Co2O5 with Bi substitution,Journal of Materials Science Letters,2000,19(15):l339~1341
    [37] Y. Miyazaki , K. Kudo , M. A. Koshima , et a1 , Low-temperature thermoelectric properties of the composite crystal (Ca2CoO3.34)0.614(CoO2),Japanese Journal of Applied Physics,2000,39:L531~L533
    [38] R. Funahashi,I. Matsubara,Thermoelectric properties of Pb and Ca doped (Bi2Sr2O4)xCoO2 whiskers,Applied Physics Letters,2001,79(3):362~364
    [39] W. Shin,N. Murayama,High performance p-type thermoelectric oxide based on NiO,Materials Letters,2000,45(6):302~306
    [40] M. Ohtaki,T. Tsubota,K. Eguchi,et al,High-temperature thermoelectric properties of (Zn1-xAlx)O,Journal of Applied physics,1996,79(3):1816~1818
    [41] M. Ohtaki,H. Koga,T. Tokunaga,et a1,Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3(M=Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi),Journal of Solid State Chemistry,1995,120(1):105~111
    [42] W. J. Weber,C. W. Griffin,J. L. Bates,Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3,Journal of the American Ceramic Society,1987,70(4):265~270
    [43] M. Yasukawa,N. Murayama,High temperature thermoelectric properties and figure-of-merit of sintered Nd、Ce、CuO,Journal of Materials Science,1997,32(24):6489~6494
    [44] R. T. Littleton IV,T. M. Tritt,J. W. Kolis,et al,Transition-metal pentatellurides as potential low-temperature thermoelectric refrigeration materials,Physical Review B,1999,60(19):13453~13457
    [45] R. T. Littleton IV,T. M. Tritt,J. W. Kolis,et al,Suppression of the resistivity anomaly and corresponding thermopower behavior in the pentatelluride system by the addition of Sb: Hf1-xZrxTe5-ySby,Physical Review B,2001,64:121104~121107
    [46] B. M. Zawilski,R. T. Littleton IV,T. M. Tritt,Investigation of the thermal conductivity of the mixed pentatellurides Hf1-xZrxTe5,Applied Physics Letters,2000,77(15):2319~2321
    [47] R. T. Littleton IV,T. M. Tritt,J. W. Kolis,et al,Effect of antimony doping on the thermoelectric properties of the transition metal pentatelluride (Hf1-xZrxTe5-ySby),Proceedings of the 18th International Conference on Thermoelectrics,IEEE,1999,614~618
    [48] R. T. Littleton IV,T. M. Tritt,C. R. Feger,et al,Effect of Ti substitution on the thermoelectric properties of the pentatelluride materials M1-xTixTe5 (M=Hf,Zr),Applied Physics Letters,1998,72(16):2056~2058
    [49] 张建中,王凤跃,伍绍中,温差电材料研究的新动向,电源技术,2003,27(1):64~67
    [50] T. Caillat,J. P. Fleurial,A. Borshchevsky,Preparation and thermoelectric properties of semiconducting Zn4Sb3,Journal of Physics and Chemistry of Solids,1997,58(7):1119~1125
    [51] 朱铁军,赵新兵,胡淑红,等,新型热电材料β-Zn4Sb3 的电学性能,稀有金属材料与工程,2001,30(3):187~189
    [52] S. G. Kim,I. I. Mazin,D. J. Singh,First-principles study of Zn-Sb thermoelectrics,Physical Review B,1998,57(11):6199~6203
    [53] T. Caillat,J. P. Fleurial,A. Borshchevsky,Thermal conductivity of Zn4-xCdxSb3 solid solutions , Proceedings of the 1997 MRS Spring Symposium,MRS,1997,103~108
    [54] 朱文,杨君友,张同俊,等,热电材料的最新进展,金属功能材料,2002,9(4):20~23
    [55] K. Kirihara,K. Kimura,Covalency semiconductor-like and thermoelectric properties of Al-based quasicrystals:icosahedral cluster solids,Science and Technology of Advanced Materials,2000,1(4):227~236
    [56] 张建中,王凤跃,伍绍中,温差电材料研究新进展,家用电器科技,2001,12:41~42
    [57] M. G. Kanatzidis,T. J. Mccarthy,T. A. Tanzer,et al,Synthesis and thermoelectric properties of the new ternary bismuth sulfides KBi6.33S10 and K2Bi8S13,Chemistry of Materials,1996,8(7):1465~1474
    [58] H. W. Hillhouse,M. T. Tuominen,Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous,Microporous and Mesoporous Materials,2001,47:39~50
    [59] L. D. Hicks,M. S. Dresselhaus,Effect of quantum-well structures on the thermoelectric figure of merit , Physical Review B , 1993 , 47(19) :12727~12731
    [60] L. D. Hicks,T. C. Harman,M. S. Dresselhaus,Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials,Applied Physics Letters,1993,63(23):3230~3232
    [61] M. S. Dresselhaus,T. Koga,X. Sun,et a1,Low dimensional thermoelectrics, Proceedings of the 16th International Conference on Thermoelectrics,IEEE,1997,12~20
    [62] L. D. Hicks,M. S. Dresselhaus,Thermoelectric figure of merit of a one-dimensional conductor,Physical Review B,1993,47(24):16631~16634
    [63] X. Sun , Z. Zhang , M. S. Dresselhaus , Theoretical modeling of thermoelectricity in Bi nanowires,Applied Physics Letters,1999,74(26):4005~4007
    [64] M. S. Dresselhuas,Z. Zhang,X. Sun,et al,Prospects for bismuth nanowires as thermoelectrics,Proceedings of the 1998 MRS Fall Symposium,MRS,1999, 215~226
    [65] M. S. Dresselhaus,Y. M. Lin,Advance in 1D and 2D thermoelectric materials , Proceedings of the 18th International Conference on Thermoelectrics,IEEE,1999,92~99
    [66] Z. Zhang , X. Sun , M. S. Dresselhaus , Theoretical investigation of thermolelectric transport properties of cylindrical Bi nanowire,Physical Review B,2000,62(7):4610~4623
    [67] I. Stark,S. Matthias,New micro thermoelectric devices based on bismuth telluride-type thin solid films , Proceedings of the 18th International Conference on Thermoelectrics,IEEE,1999,465~472
    [68] S. Ghamaty,N. Eisner,Development of quantum well thermoelectric device,Proceedings of the 18th International Conference on Thermoelectrics,IEEE,1999,485~488
    [69] F. Besse,C. Boulanger,J. M. Lecuire,et al,Prearation of Bi1-xSbx films by electrodeposition,Journal of Applied Electrochemistry,2000,30(3):385~392
    [70] Z. Zhang,X. Sun,M. S. Dresselhaus,et al,Electronic transport properties of single-crystal bismuth nanowire arrays,Physical Review B,2000,61(7):4850~4861
    [71] Y. Wu,R. Fan,P. Yang,Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,Nano Letters,2002,2(2):83~86
    [72] 朱文,杨君友,张同俊,等,纳米超晶格热电材料的研究进展,材料导报,2002,16(12):16~18
    [73] 李洪林,荀立,冉均国,纳米 Bi2Te3 基热电材料最新研究进展,现代技术陶瓷,2005,26(2):16~20
    [74] R. Venkatasubramanlan , E. Siivola , T. Colpitts , et a1 , Thin-film thermoelectric devices with high room temperature figures of merit,Nature,2001,413:597~602
    [75] A. Giani,A. Boulouz,F. Pascal Delannoy,et al,MOCVD growth of Bi2Te3 layers using diethyl-tellurium as a precursor,Thin Solid Films,1998,315:99~103
    [76] B. Aboulfarah,A. Mzerd,A. Giani,et al,Growth of (Bi1-xSbx)2Te3 thin films by metal-organic chemical vapour deposition,Materials Chemistry and Physics,2000,62(2):179~182
    [77] A. Giani,A. Al Bayaz,A. Foucaran,et al,Elaboration of Bi2Se3 by metalorganic chemical vapour deposition,Journal of Crystal Growth,2002,236:217~220
    [78] T. C. Harman,D. L. Spears,D. R. Calawa,et al,Characterization of p-type PbEuTe/PbTe MQW structures with high thermoelectric figures of merit in the PbTe quantum wells,Proceedings of the 16th International Conference on Thermoelectrics,IEEE,1997,416~423
    [79] L. D. Hicks,T. C. Harman,X. Sun,et al,Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit,Physical Review B,1996,53(16):10493~10496
    [80] J. L. Liu,K. L. Wang,C. D. Moore,et al,Experimental study of a surfactant-assisted SiGe graded layer and a symmetrically strained Si/Ge superlattice for thermoelectric applications,Thin Solid Films,2000,369(1-2):121~125
    [81] A. Heinrich,H. Griessmann,G. Behr,et al,Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films,Thin Solid Films,2001,381(2):287~295
    [82] G. M. Beensh-Marchwicka,W. Mielcarek,E. Prociow,Evaluation of pulse magnetron sputtered Ge films doped with antimony for sensors application,Sensors and Actuators B: Chemical,2001,76:361~365
    [83] D. V. Damodara,R. C. Mallik,Study of scattering of charge carriers in thin films of (Bi0.25Sb0.75)2Te3 alloy with 2% excess Te,Materials Research Bulletin,2002,37(12):1961~1971
    [84] I. H. Kim,Electronic transport properties of the flash-evaporated p-type Bi0.5Sb1.5Te3 thermoelectric thin films,Materials Letters,2000,44(2):75~79
    [85] G. H. Chandra,O. M. Hussain,S. Uthanna,et al,Characterization of AgGa0.25In0.75Se2 thin films,Vacuum,2001,62(1):39~45
    [86] Z. Zhang,J. Y. Ying,M. S. Dresselhaus,Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process,Journal of Materials Research,1998,13:1745~1748
    [87] T. E. Huber,R. Calcao,Thermoelectric properties of Bi and Bi2Te3 composites , Proceedings of the 16th International Conference on Thermoelectrics,IEEE,1997,404~408
    [88] Y. M. Lin,O. Rabin,S. B. Cronin,et al,Experimental investigation of thermoelectric properties of Bi1-xSbx nanowire arrays,Proceedings of the 21th International Conference on Thermoelectrics,IEEE,2002,253~256
    [89] J. Heremans,C. M. Thrush,Y. M. Lin,et al,Bismuth nanowire arrays:Synthesis and galvanomagnetic properties,Physical Review B,2000,61(4):2921~2930
    [90] M. Barati,J. C. L. Chow,P. K. Ummat,et al,Temperature dependence of the resistance of antimony nanowire arrays,Journal of Physics: Condensed Matter,2001,13:2955~2962
    [91] C. Jin,X. Xiang,C. Jia,et al,Electrochemical fabrication of large-area,ordered Bi2Te3 nanowire arrays,Journal of Physical Chemistry B,2004,108(6):1844~1847
    [92] L. Li,G. Li,Y. Zhang,et al,Pulsed electrodeposition of large-area,ordered Bi1-xSbx nanowire arrays from aqueous solutions , Journal of Physical Chemistry B,2004,108(50):19380~19383
    [93] J. F. Behnke,A. L. Prieto,A. M. Stacy,et al,Electrodeposition of CoSb3 nanowires , Proceedings of the 18th International Conference on Thermoelectrics,IEEE,1999,451~453
    [94] 王为,张伟玲,王惠,等,液相电沉积技术制备 n-型铋碲纳米线阵列温差电材料,无机材料学报,2004,19(1):127~132
    [95] A. L. Prieto,M. S. Sander,M. Martín-González,et al,Electrodeposition of ordered Bi2Te3 nanowire arrays,Journal of the American Chemical Society,2001,123(29):7160~7161
    [96] M. S. Sander,A. L. Prieto,R. Gronsky,et al,Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates,Advanced Materials,2002,14(9):665~667
    [97] M. S. Sander,R. Gronsky,T. Sands,et al,Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates,Chemistry of Materials,2003,15(1):335~339
    [98] M. Martín-González,A. L. Prieto,R. Gronsky,et al,High-density 40 nm diameter Sb-rich Bi2-xSbxTe3 nanowire arrays,Advanced Materials,2003,15(12):1003~1006
    [99] M. Martín-González,G. J. Snyder,A. L. Prieto,et al,Directrodeposition of highly dense 50 nm Bi2Te3-ySey nanowire arrays,Nano Letters,2003,3(7):973~977
    [100] L. Prieto,M. Martín-González,J. Keyani,et al,The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires,Journal of the American Chemical Society,2003,125:2388~2389
    [101] M. Martín-González,A. L. Prieto,M. S. Knox,et al,Electrodeposition of Bi1-xSbx films and 200-nm wire arrays from a nonaqueous solvent,Chemistry of Materials,2003,15(8):1676~1681
    [102] J. P. Fleurial,J. A. Herman,G. J. Snyder,et al,Electrochemical deposition of (Bi,Sb)2Te3 for thermoelectric microdevices,Proceedings of the 2000 MRS Spring Symposium,MRS,2000,Z11.3.1~ Z11.3.8
    [103] J. R. Lim,J. F. Whitacre,J. P. Fleurial,et al,Fabrication method for thermoelectric nanodevices,Advanced Materials,2005,17(12):1488~1492
    [104] S. A. Sapp,B. B. Lakshmi,C. R. Martin,Template synthesis of bismuth telluride nanowires,Advanced Materials,1999,11(5):402~404
    [105] Y. Zhang,G. Li,Y. Wu,et al,Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes,Advanced Materials,2002,14(17):1227~1230
    [106] T. C. Harman,P. J. Taylor,D. L. Spear,et al,PbTe-based quantum-dot thermoelectric materials with high ZT,Proceedings of the 18th International Conference on Thermoelectrics,IEEE,1999,280~284
    [107] Y. Miyazaki,T. Kajitani,Preparation of Bi2Te3 films by electrodeposition, Journal of Crystal Growth,2001,229:542~546
    [108] S. Golia,M. Arora,R. K. Sharma,et al,Electrochemically deposited bismuth telluride thin films,Current Applied Physics,2003,31:95~197
    [109] S. Michel,S. Diliberto,C. Boulanger,et al,Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters,Journal of Crystal Growth,2005,277:274~283
    [110] K. Tittes,A. Bund,W. Plieth,et al,Electrochemical deposition of Bi2Te3 for the thermoelectric microdevices,Journal of Solid State Electrochemistry,2003,7:714~723
    [111] M. Takahashi,Y. Oda,T. Ogino,et al,Electrodeposition of Bi-Te alloy films,Journal of the Electrochemical Society,1993,140(93):2550~2553
    [112] M. Takahashi,Y. Katou,K. Nagata,et al,The composition and conductivity of electrodeposited Bi-Te alloy films,Thin Solid Films,1994,240:70~72
    [113] M. Takahashi,Y. Muramatsu,T. Suzuki,et al,Preparation of Bi2Te3 films by electrodeposition from solution containing Bi-ethylenediaminetetraacetic acid complex,Journal of the Electrochemical Society,2003,150(3):C169~C174
    [114] D. D. Frari,S. Diliberto,N. Stein,et al,Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1-x)2Te3 films,Thin Solid Films,2005,483:44~49
    [115] M. Nedelcu,M. Sima,T. Visan,et al,Bi2-xSbxTe3 thick thermoelectric films obtained by electrodeposition from hydrochloric acid solutions,Proceedings of the 20th International Conference on Thermoelectrics,IEEE,2001,322~326
    [116] C. Sella,P. Boncorps,J. Vedel,Electrodeposition of CdTe from acidic aqueous solutions,Journal of the Electrochemical Society,1986,133:2043~2047
    [117] T. Montiel-Santillán,O. Solorza,H. Sánchez,Electrochemical research on tellurium deposition from acid sulfate medium,Journal of Solid State Electrochemistry,2002,6:433~442
    [118] D. M. Rowe,CRC Handbook of Thermoelectrics,Boca Raton:CRC Press,1994,219
    [119] M. Takahashi,M. Kojima,S. Sato,Electric and thermoelectric properties of electrodeposited bismuth telluride films,Journal of Applied Physics,2004,96(10):5582~5587
    [120] C. D. Wagner,W. M. Riggs,L. E. Davis,Handbook of X-ray Photoelectron Spectroscopy,Perkin-Elmer:Perkin-Elmer Corporation,1979
    [121] 包建春,徐正,纳米有序体系的模板合成及其应用,无机化学学报,2002,18(10):965~975
    [122] 吴强,胡征,王喜章,等,孔性氧化铝模板与一维纳米新材料的制备,2002,18(7):647~653
    [123] H. Bando,K. Koizumi,Y. Oikawa,et al,The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy,Journal of Physics: Condensed Matter,2000,12:5607~5616
    [124] S. Valizadeh,J. M. George,P. Leisner,et al,Electrochemical deposition of Co nanowire arrays: quantitative consideration of concentrateion profiles,Electrochimica Acta,2001,47:865~874

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700