AgPb_(10)SbTe_(12)热电材料的液相可控合成及其电学输运性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AgPb_(10)SbTe_(12)材料是一种极具应用前景的新型热电材料,具有较高的热电性能。目前制备该材料的方法主要是熔融冷却法和机械合金法,这两种制备方法易操作,但同时需要的制备温度较高,并且难于实现对材料尺寸和形貌的控制。而尺寸以及形貌对材料的热电性能有重要的影响,因此选取合适的制备工艺设计并制备具有特定尺寸和形貌的AgPb_(10)SbTe_(12)热电材料,可为进一步地提高该材料的热电性能提供新的途径。
     本论文采用反应条件温和的水热法和溶剂热法,通过调节实验参数(如碱浓度,溶剂,表面活性剂等),可控制备了不同尺寸的立方和花状粒子,并利用XRD、FESEM、TEM以及热电性能测试系统等分析测试手段对其微观结构、形貌和热电性能进行了较为系统的研究,探讨了所制备材料的可能生长机制。结合材料热电性能的测试与分析,总结材料形貌、结构和性能之间的关系。
     实验结果表明,制备的不同尺寸的AgPb_(10)SbTe_(12)立方和花状粒子具有显著的尺寸和形貌依赖的热电性能:AgPb_(10)SbTe_(12)立方粒子的电导率大于花状粒子,相同形貌的样品,尺寸越小,电导率越低;材料都在一定温度范围内经历了从p型半导体向n型半导体的转变;热导率随温度的升高而降低,并且远远小于块体材料的热导率。
     在此基础上,利用胺辅助溶剂热法制备了AgPb_(10)SbTe_(12)棒状粒子,考察了不同的反应参数(温度,丙酮,甲酰胺和联胺用量等)在生成AgPb_(10)SbTe_(12)棒状粒子中的作用。结合实验数据,提出了生成棒状粒子可能的“原位自牺牲模板”生长机制与化学反应机理。
     AgPb_(10)SbTe_(12)棒状粒子电学输运性能测试结果表明所制备的AgPb_(10)SbTe_(12)棒状粒子表现出典型的半导体特性,电导率随温度的升高而增加;在测试温度范围内会经历从p型半导体到n型半导体的转变。
AgPb_mSbTe_(m+2) material is one of the most promising state-of-art thermoelectric materials, and it possesses relatively high thermoelectric properties. So far, the methods for the preparation of AgPb_mSbTe_(m+2) materials have been mostly melt cooling method and mechanical alloying method, these two routes are readily to operate, yet high synthetic temperature is necessary and difficult to control the morphologies and sizes of the as-prepared samples. Since the sizes and morphologies have key influence in the thermoelectric properties of the materials, choosing appropriate synthetic route to prepare AgPb_mSbTe_(m+2) with specific sizes and morphologies provides a new route for further improving thermoelectric properties.
     Here in this paper, mild hydrothermal and solvothermal method were chosen to prepare the products. AgPb_(10)SbTe_(12) nanocubes and flower-like crystals having different sizes were obtained via adjusting experiment parameters (such as, the concentration of alkali, solvent, and surfactant et al.), and X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDX), and thermoelectric integrated system test were used to systematically characterize the structure, morphology, composition, and thermoelectric properties of the samples, summarizing the relation among morphologies, structure, and properties.
     Experiment results indicate the as-synthesized AgPb_(10)SbTe_(12) nanocubes and flower-like crystals with different sizes possess obvious size and shape dependent thermoelectric properties: AgPb_(10)SbTe_(12) nanocubes present more excellent electrical conductivity compared to flower-like crystals, and the samples having smaller sizes have lower electrical conductivity for the products with the same morphologies; Moreover, the samples all go through the transformation from p-type semiconductor to n-type semiconductor; The thermal conductivities for the as-prepared products all decrease with rising temperature, and thermal conductivities are far more lower than the bulk materials.
     Based on the above synthesis route, amine-assisted solvothermal method was used to synthesize poly-crystalline AgPb_(10)SbTe_(12) rods, and investigate the possible roles of different synthetic parameters (such as, acetone, synthetic temperature, formamide and hydrazine et al.) in the formation of AgPb_(10)SbTe_(12) rods. A possible‘in-situ self-sacrifice template’growth mechanism and chemical reaction mechanism is proposed integrating the experiment results.
     The transport property results of the AgPb_(10)SbTe_(12) rods reveal the as-prepared samples display typical semiconductor character, the electrical conductivity increases with the rising temperature; and goes through the conversion from p-type semiconductor to n-type semiconductor like the naocubes and flower-like crystals.
引文
[1] Lyeo H K, Khajetoorians A A, Shi L, et al. Profiling The Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution[J]. Science, 2004, 303(5659): 816-817.
    [2] Minnich A J, Dresselhaus M S, Ren Z F, et al. Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects[J]. Energy Environ. Sci., 2009, 2(5): 466-479.
    [3]鄢永高. AgPb_()SbTe_(<2+m>)类化合物的制备与热电性能[D].武汉:武汉理工大学学位论文,2007: 20-27.
    [4] Kitagawaa H, Noguchi T, Kiyabu M, et al. High-Pressure Synthesis of A Novel Form of Endohedral Li Diamond from Li Graphite Intercalation Compound[J]. J. Phys. Chem. Solids, 2004, 65(5): 933-938.
    [5] Cho S, DiVenere A, Wong G K, et al. Transport Properties of Bi_(1-x)Sb_x Alloy Thin Films Grown on CdTe(111)[J]. Phys. Rev. B, 1999, 59(16): 10691-10696.
    [6] Chao P W, Chu H T, Kao Y H. Nonlinear Band-Parameter Variations in Dilute Bismuth-Antimony Alloys[J]. Phys. Rev. B, 1974, 9(10): 4030-4034.
    [7] Rodr′?guez J E, de F′?sica D C R. Synthesis and Thermoelectric Properties of Polycrystalline Bi-Sb Alloys[J]. Revista de F′?sica, 2007, 34(10): 19-27.
    [8] Huang R J, Cai F S, Gong L H, et al. Low Temperature Thermoelectric Properties of Bi-Sb Alloys with Partial Substitution of Ag or Zn for Sb[C]. AIP Conf. Proc., 2008, 986(54): 27-33.
    [9] Smith G E, Wolfe R. Thermoelectric Properties of Bismuth-Antimony Alloys[J]. J. Appl. Phys., 1962, 33(3): 841-846.
    [10] Martin-Lopez R, Lenoir B, Devaux X, et al. Mechanical Alloying of Bi-Sb Semiconducting Alloys[J]. Mater. Sci. Eng. A, 1998, 248(1-2): 147-152.
    [11] Lee Y H, Koyanagi T. Thermoelectric Properties of N-Bi-Sb Sintered Alloys Prepared by Spark Plasma Sintering Method[C]. Proc. ICT 2001, Thermoelectrics, Beijing, 2001: 278-281.
    [12] Hiroyuki K, Hiroyuki N, Kiyabu T, et al. Thermoelectric Properties of Bi-Sb Semiconducting Alloys Prepared by Quenching and Annealing[J]. J. Phys. Chem. Sol., 2004, 65(7): 1223-1227.
    [13] Chung D Y, Hogan T P, Rocci-Lane M, et al. A New Thermoelectric Material: CsBi4Te6[J]. J. Am. Chem. Soc., 2004, 126(20): 6414-6428.
    [14] Lenoir B, Cassart M, Kinany-Alaoui M, et al. Thermoelectric Properties of Bi-Sb Alloys Prepared by THM[C]. AIP Conf. Proc., 1994: 230-234.
    [15] Cho S, Divenere A, Wong G K, et al. Thermoelectric Transport Properties ofN-Doped and P-Doped Bi0.91Sb0.09 Alloy Thin Films[J]. J. Appl. Phys., 1999, 85(7): 655-3660.
    [16] Noguchi H, Kitagawa H, Kiyabu T, et al. Low Temperature Thermoelectric Properties of Pb- or Sn-Doped Bi-Sb Alloys[J]. J. Phys. Chem. Sol., 2007, 68(1): 91-95.
    [17] Kitagawa H, Nagamori T, Tatsuta T, et al. Liquid Phase Growth of Bi0.5Sb1.5Te3 by Sliding-Boat Method[J]. Scr. Mater., 2003, 49(4): 309-313.
    [18] Heikes R R, Ure R W. Thermoelectricity: Science and Engineering[M]. New York:Interscience Publ., 1961.
    [19] Purkayastha A, Lupo F, Kim S, et al. Low-Temperature, Template-Free Synthesis of Single-Crystal Bismuth Telluride Nanorods[J]. Adv. Mater., 2006, 18(4): 496-500.
    [20] Wang W L, Wan C C, Wang Y Y. Investigation of Electrodeposition of Bi_2Te_3 Nanowires into Nanoporous Alumina Templates with A Rotating Electrode[J]. J. Phys. Chem. B, 2006, 110(26): 12974-12980.
    [21] Xu X C, Chen L D, Wang C F, et al. Template Synthesis of Heterostructured Polyaniline/Bi_2Te_3 Nanowires. J. Sol. St. Chem., 2005, 178(6): 2163-2166.
    [22] Deng Y, Xiang Y, Song Y Z. Template-Free Synthesis and Transport Properties of Bi_2Te_3 Ordered Nanowire Arrays via A Physical Vapor Process[J]. Cryst. Growth Des., 2009, 9(4): 3079-3082.
    [23] Mi J L, Lock N, Sun T, et al. Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi_2Te_3 Nanostring-Cluster Hierarchical Structure[J]. ACS Nano, 2010, 4(5): 2523-2530.
    [24] Zhang Y C, Wang H, Stephan K, et al. Surfactant-Free Synthesis of Bi_2Te_3-Te Micro-Nano Heterostructure with Enhanced Thermoelectric Figure of Merit[J]. ACS Nano, 2011, 5(4): 3158-3165.
    [25] Harman T C, Taylor P J, Walsh M P, et al. Quantum Dot Superlattice Thermoelectric Materials and Devices[J]. Science, 2002, 297(5590): 2229-2232.
    [26] Wang L, Chen G, Wang Q, et al. Shape-Controlled Synthesis and Electrical Conductivities of AgPb_(10)SbTe_(12) Materials[J]. J. Phys. Chem. C, 2010, 114(13): 5827-5834.
    [27] Zhu T J, Chen X, Cao Y Q, et al. Controllable Synthesis and Shape Evolution of PbTe Three-Dimensional Hierarchical Superstructures via An Alkaline Hydrothermal Method[J]. J. Phys. Chem. C, 2009, 113(19): 8085-8091.
    [28] Urkayastha A, Yan Q Y, Gandhi D D, et al. Surfactant-Directed Synthesis of Branched Bismuth Telluride/Sulfide Core/Shell Nanorods[J]. Adv. Mater., 2008, 20(14): 2679-2683.
    [29] Jung H, Park D Y, Xiao F, et al. Electrodeposited Single Crystalline PbTeNanowires and Their Transport Properties[J]. J. Phys. Chem. C, 2011, 115(7): 2993-2998.
    [30] Yan Q Y, Chen H, Zhou W W, et al. A Simple Chemical Approach for PbTe Nanowires with Enhanced Thermoelectric Properties[J]. Chem. Mater., 2008, 20(20): 6298-6300.
    [31] DiSalvo F J. Thermoelectric Cooling and Power Generation[J]. Science, 1999, 285(5429): 703-706.
    [32] Zhu P W, Imai Y, Isoda Y, et al. Enhanced Thermoelectric Properties of PbTe Alloyed with Sb2Te3[J]. J. Phys.: Condens. Matter, 2005, 17(46): 7319-7326.
    [33] Koenig J, Jacquot A, Boettner H. N-type Lead-Chalcogenide Thermoelectric Materials Alloyed with Tin[M]. Boston: Thermoelectric Power Generator: Mater. Res. Soc. Symp. Proc., 2008, 1044: 147-152.
    [34] Gorsse S, Pereira P B, Decourt R, et al. Microstructure Engineering Design for Thermoelectric Materials: An Approach to Minimize Thermal Diffusivity[J]. Chem. Mater., 2010, 22(3): 988-993.
    [35] Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit[J]. Science, 2004, 303(5659): 818-821.
    [36] Burkov A T, Vedernikov M V. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995: 387-399.
    [37] Joshi G, Lee H, Lan Y C, et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured P-Type Silicon Germanium Bulk Alloys[J]. Nano Lett., 2008, 8(12): 4670-4674.
    [38] Wang X W, Lee H, Lan Y C, et al. Enhanced Termoelectric Fgure of Merit in Nanostructured N-Type Silicon Germanium Bulk Alloy[J]. Appl. Phys. Lett., 2008, 93(12): 193121(1-3).
    [39] Zebarjadi M, Joshi G, Zhu G H, et al. Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites[J]. Nano Lett., 2011, 11(6): 2225-2230.
    [40] Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features[J]. Adv. Mater., 2010, 22(36): 3970-3980.
    [41] Rodot M H, Dupouy M G. AgSbTe2-PbTe Solid Solution Thermoelectrical Properties[J]. Academie des sci., 1959, 9(2): 1872-1874.
    [42]鄢永高,唐新峰,刘海君等. n型(AgSbTe_2)_x(PbTe)_(1-x)热电材料的制备和性能[J].武汉理工大学学报,2007,29(11): 1-3.
    [43] Quarez E, Hsu K F, Pcionek R N, et al. Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m: The Myth of Solid Solutions[J]. J. Am. Chem. Soc., 2005, 127(25): 9177-9190.
    [44] Chen N, Gascoin F, Snydera G J. Macroscopic Thermoelectric Inhomogeneities in (AgSbTe)2)_x(PbTe)_(1-x)[J]. Appl. Phys. Lett., 2005, 87(17): 171903(1-3).
    [45] Arachchige I U, Wu J S, Dravid V P, et al. Nanocrystals of the Quaternary Thermoelectric Materials: AgPb_mSbTe_(m+2)(m=1-18): Phase-Segregated or Solid Solutions[J]. Adv. Mater., 2008, 20(50): 3638-3642.
    [46] Chang M L, Jeng M S, Chou Y W, et al. Electrical Behaviors for Growth of LAST Alloys using Vapor Phase Deposition[J]. J. Alloys Compd., 2011, 509(10): 4089-4091.
    [47] Wang H, Li J F, Nan C W, et al. High-Performance Ag_(0.8)Pb_(18+x)SbTe_(20) Thermoelectric Bulk Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering[J]. Appl. Phys. Lett., 2006, 88(092104): 092104(1-3).
    [48] Zhou M, Li J F, Kita T, et al. Nanostructured AgPb_mSbTe_(m+2) System Bulk Materials with Enhanced Thermoelectric Performance[J]. J. Am. Chem. Soc., 2008, 130(13): 4527-4532.
    [49] Abhijeet J, Karkamkar M G, et al. Chemical Routes to Nanocrystalline Thermoelectrically Relevant AgPb_mSbTe_(m+2) Materials[J]. J. Am. Chem. Soc., 2006, 128(18): 6002-6004.
    [50] Li H, Cai K F, Wang H F, et al. The Influence of Co-Doping Ag and Sb on Microstructure and Thermoelectric Properties of PbTe Prepared by Combining Hydrothermal Synthesis and Melting[J]. J. Solid State Chem., 2009, 182(4): 869-874.
    [51] Zhao X B, Ji X H, Zhang Y H. Bismuth Telluride Nanotubes and The Effects on The Thermoelectric Properties of Nanotube-Containing Nanocomposites[J]. Appl. Phys. Lett., 2005, 86(6): 062111-062114.
    [52] Lan Y C, Poudel B, Ma Y, et al. Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride[J]. Nano Lett., 2009, 9(4): 1419-1422.
    [53] Li Q, Ding Y, Shao M W, et al. Sonochemical Synthesis of Nanocrystalline Lead Chalcogenides: PbE(E=S, Se, Te)[J]. Mater. Res. Bull., 2003, 38(3): 539-543.
    [54] Zhou M, Li J F, Wang H. Fabrication and Property of High-Performance Ag-Pb-Sb-Te System Semiconducting Thermoelectric Materials[J]. Chin. Sci. Bull., 2007, 52(7): 990-996.
    [55] Wang Z L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies[J]. J. Phys. Chem. B, 2000, 104(6): 1153-1175.
    [56] Lee S M, Cho S N, Cheon J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J]. Adv. Mater., 2003, 15(5): 441-444.
    [57] Zhang S D, Wu C Z, Wu Z C, et al. Construction of PbSe HierarchicalSuperstructures via An Alkaline Etching Method[J]. Cryst. Growth Des., 2008, 8(8): 2933-2937.
    [58] Hou Y L, Kondoh H, Ohta T. PbS Cubes with Pyramidal Pits: An Example of Etching Growth[J]. Cryst. Growth Des., 2009, 9(7): 3119-3123.
    [59] Zhang Y H, Gao L, Yin P G, et al. A Highly Regular Hexapod Structure of Lead Sulfide: Solution Synthesis and Raman Spectroscopy[J]. Chem. Eur. J., 2007, 13(10): 2903-2907.
    [60] Wang X Q, Xi G C, Liu Y K, et al. Controllable Synthesis of PbSe Nanostructures and Growth Mechanisms[J]. Cryst. Growth Des., 2008, 8(4): 1406-1411.
    [61] Li X H, Li H B, Li G D, et al. General Synthesis of Uniform Metal Sulfide Colloidal Particles via Autocatalytic Surface Growth: A Self-Correcting System[J]. Inorg. Chem., 2009, 48(7): 3132-3138.
    [62] Zhang Z T, Zhao B, L. Hu M. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes[J]. J. Solid State Chem., 1996, 121(1): 105-110.
    [63] Ravich Y I, Nemov S A. Hopping Conduction via Strongly Localized Impurity States of Indium in PbTe and Its Solid Solutions[J]. Semiconductors, 2002, 36(1): 3-20.
    [64] Zhu T J, Yan F S, Zhang N, et al. Microstructure and Electrical Properties of Quenched AgPb18Sb1?xTe20 Thermoelectric Materials[J]. J. Phys. D: Appl. Phys., 2007, 40(11): 3537-3540.
    [65] Martin J, Nolas G S, Zhang W, et al. PbTe Nanocomposites Synthesized from PbTe Nanocrystals[J]. Appl. Phys. Lett., 2007, 90(22): 222112(1-3).
    [66] Takashiri M, Miyazaki K, Tanaka S, et al. Effect of Grain Size on Thermoelectric Properties of N-Type Nanocrystalline Bismuth-Telluride Based Thin Films[J]. J. Appl. Phys., 2008, 104(8): 084302(1-6).
    [67] Zhao L D, Zhang B P, Liu W S, et al. Effect of Mixed Grain Sizes on Thermoelectric Performance of Bi_2Te_3 Compound[J]. J. Appl. Phys., 2009, 105(2): 023704(1-6).
    [68] Li F Y, Hu C G, Xiong Y F, et al. Phase-Transition-Dependent Conductivity and Thermoelectric Property of Silver Telluride Nanowires[J]. J. Phys. Chem. C, 2008, 112(41): 16130-16133.
    [69] Xiao F, Chen G, Wang Q, et al. Simple Synthesis of Ultra-Long Ag_2Te Nanowires through Solvothermal Co-Reduction Method. J. Sol. St. Chem., 2010, 183(10): 2382-2388.
    [70] Jang S Y, Kim H S, Park J, et al. Transport Properties of Single-Crystalline N-Type Semiconducting PbTe Nanowires[J]. Nanotechnology, 2009, 20(8): 415204(1-4).
    [71] Xia Y N, Yang P D, Sun Y G, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv. Mater., 2003, 15(5): 353-389.
    [72] Chen F, Zhou R J, Yang L G, et al. One-Step Fabrication of CdS Nanorod Arrays via Solution Chemistry[J]. J. Phys. Chem. C, 2008, 112(35): 13457-13462.
    [73] Xu, J, Zhang W X, Yang Z H, et al. Large-Scale Synthesis of Long Crystalline Cu_(2-x)Se Nanowire Bundles by Water-Evaporation-Induced Self-Assembly and Their Application in Gas Sensing[J]. Adv. Funct. Mater., 2009, 19(11): 1759-1766.
    [74] Miao L, Tanemura S, Huang R, et al. Large Seebeck Coefficients of Protonated Titanate Nanotubes for High-Temperature Thermoelectric Conversion[J]. ACS Appl. Mater. Inter., 2010, 2(8): 2355-2359.
    [75] Sun J Q, Wang J S, Wu X C, et al. Novel Method for High-Yield Synthesis of Rutile SnO2 Nanorods by Oriented Aggregation[J]. Cryst. Growth Des., 2006, 6(7): 1584-1587.
    [76] Yang W Y, Gao F M, Wei G D, et al. Ostwald Ripening Growth of Silicon Nnitride Nanoplates[J]. Cryst. Growth Des., 2010, 10(1): 29-31.
    [77] Fan H, Zhang Y G, Zhang M F, et al. Glucose-Assisted Synthesis of CoTe Nanotubes in Situ Templated by Te Nanorods[J]. Cryst. Growth Des., 2008, 8(8): 2838-2841.
    [78] Tai G A, Zhou B, Guo W L. Structural Characterization and Thermoelectric Transport Properties of Uniform Single-Crystalline Lead Telluride Nanowires[J]. J. Phys. Chem. C, 2008, 112(30): 11314-11318.
    [79] Zhang F, Wu Q, Xiao P, et al. Synthesis of AlN Hollow Nanospheres via An in Situ Generated Template Method[J]. J. Phys. Chem. C, 2008, 112(30): 11331-11335.
    [80] Zhu H T, Zhang H, Liang J K, et al. Controlled Synthesis of Tellurium Nanostructures from Nanotubes to Nanorods and Nanowires and Their Template Applications[J]. J. Phys. Chem. C, 2011, 115(14): 6375-6380.
    [81] Dong G H, Zhu Y J,Chen L D. Microwave-Assisted Rapid Synthesis of Sb2Te3 Nanosheets and Thermoelectric Properties of Bulk Samples Prepared by Spark Plasma Sintering[J]. J. Mater. Chem., 2010, 20(10): 1976-1981.
    [82]黄永明.水合肼提纯的机理分析[J].天然气化工,2008, 33(6): 47-49.
    [83] Sun M J, Bai L, Liu D Q. A Generic Approach for the Determination of Trace Hydrazine in Drug Substances using in Situ Derivatization-Headspace GC-MS[J]. J. Pharm. Biomed. Anal., 2009, 49(2): 529-533.
    [84] Wang Q, Chen G, Shi X R, et al. Controllable Synthesis of Cu_7Te_4 Nanoparticles and Sheet-Like Particles through The Delayed Reaction andTheir Thermal Stability[J]. Powder Technol., 2011, 207(1-3): 192-198.
    [85] Schirmann J P, Oullins Pleuvry J P, Tellier P. Continuous Production of Azines/Hydrazine Hydrate[P]. US6605265, 1994, US/08/217752.
    [86] Song J M, Lin Y Z, Zhan Y J, et al. Superlong High-Quality Tellurium Nanotubes: Synthesis, Characterization, and Optical Property[J]. Cryst. Growth Des., 2008, 8(6): 1902-1908.
    [87] Mayers B, Xia Y N. Formation of Tellurium Nanotubes through Concentration Depletion at The Surfaces of Seeds[J]. Adv. Mater., 2002, 14(4): 279-282.
    [88] Shi W D, Zhou L, Song S Y, et al. Hydrothermal Synthesis and Thermoelectric Transport Properties of Impurity-Free Antimony Telluride Hexagonal Nanoplates[J]. Adv. Mater., 2008, 20(10): 1892-1897.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700