磁控溅射制备PbTe薄膜及Al惨杂性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PbTe作为一种重要的Ⅳ-Ⅵ族化合物半导体材料,具有优良的光电和热电特性,如折射率较高和热导率较低,在红外探测、光纤激光技术及温差制冷方面已有广泛的应用。本论文主要从两个方面对PbTe进行了研究:在硅衬底上制备了PbTe薄膜,研究了工艺参数对PbTe薄膜的结晶性能、光学透射率和电学性能的影响;在硅衬底上用磁控溅射的方法制备了Al掺杂PbTe薄膜并把制备的薄膜放入真空退火炉中退火,研究了退火温度和退火时间对薄膜的影响。主要研究成果如下:
     1.利用磁控溅射法在不同实验条件下制备了PbTe薄膜,研究了溅射功率、衬底温度、薄膜厚度对薄膜的结晶性能、光学性能和电学性能的影响。研究表明:
     (1)在不同功率下所制备的碲化铅薄膜都具有明显的(200)择优取向性,并且随着溅射功率的增大,薄膜的择优取向逐渐提高,透射率变大,电阻率减小。在功率为30W的条件下制备的薄膜的质量最好。
     (2)对在实验条件相同的条件下所制备的不同膜厚的碲化铅薄膜进行分析可知,膜厚为200nm的薄膜透射率最高,电阻率最小。
     (3)不同沉积温度下制备的碲化铅薄膜中,当衬底不加热时薄膜的(200)择优取向性最好。衬底温度为300℃时制备的PbTe薄膜的透射率最高,200℃时制备的薄膜的电阻率最低。
     2.用磁控溅射的方法制备Al掺杂PbTe薄膜,并对其进行退火处理。研究了退火温度和退火时间对薄膜的影响。研究表明退火温度和退火时间对薄膜的结晶程度、表面形貌、光学性能和电学性能都有重要的影响。
     (1)在980℃的条件下对样品进行不同时间的退火处理,实验结果说明随着退火时间的延长碲化铅的(200)衍射峰高度越来越低。样品表面上出现的黑色花状聚集越来越密集,排列越来越均匀。样品的透射率和电阻率都随着退火时间的延长呈现出减小的趋势。
     (2)在不同温度下退火的样品都具有良好的(200)择优取向,随着退火温度的升高PbTe的(200)衍射峰强度下降,半高宽度较窄。退火前样品的表面呈现片状堆砌结构,经过退火处理后,表面出现了花状聚集,并且随着温度的升高花状聚集的数量越来越多,分布越来越均匀。在1173K的条件下退火得到的样品透射率和电阻率都是最大的。
As a very importantⅣ-Ⅵcompound semiconductor, PbTe has excellent photoelectric andthermoelectric characteristics, such as the high refractive index and the positive temperaturecoefficient of the gap,the large carrier mobility. Those unusual charaeteristies make PbTesemiconductor unique among polar compounds and have important application in many fields,such as infrared detectors, light-emitting devices and more recently as infrared laser in fiberoptics, thermoelectric materials, solar energy panel and window coatings. In this paper, we fromtwo aspects to study PbTe semiconductor material: first, we deposit PbTe films onto Si(111)substrate by magnetron sputtering and sutdy the effect of the process parameters on the PbTefilms of crystallization properties, optical transmission rate and electrical properties; second,Al-doped PbTe films were prepared by radio frequency magnetron sputtering and then annealedin the vacuum resistance furnace, the effect of annealing temperature and annealing time on thecharacteristics of Al/PbTe films were investigated. The main research results are as follows:
     1. We deposit PbTe films by magnetron sputtering at different experimental conditions and sutdythe effect of the sputtering power, substrate temperature, film thickness on crystallizationproperties, optical transmission rate and electrical properties of PbTe films. Research shows that:
     (1) PbTe thin films have strong (200) optimizing orientation direction prepared in differentpowers. With the increase of sputtering power, the preferred orientation of films graduallyimprove, transmission rate improve, resistivity reduce. We can obtain the best quality films at30W power condition.
     (2) From the study of PbTe thin films with different thicknesses prepared at the sameexperimental condition, we can conclued that film with 200nm thickness has the highesttransmission rate and minimum resistivity.
     (3) Among those PbTe thin films deposited at different deposition temperatures, the filmsprepared at room temperature have strongest (200) optimizing orientation direction. We can getthe highest transmission rate when the substrate temperature is 300℃, while, when the substrate temperature is 200℃, the resistance of PbTe film is the lowest.
     2. The Al-doped PbTe films were deposited onto Si substrate by radio frequency magnetronsputtering and then annealed in the vacuum resistance furnace. The effect of annealingtemperature and annealing time on the characteristics of Al/PbTe films were investigated.Itindicates that the annealing time and temperature have a great influence on the surfacemorphology, transmittance and resistivity of the Al/PbTe thin films.
     (1) The Al-doped PbTe thin films were annealed at 980℃conditions for different times, theexperimental result indicates that with the time of annealing extension , the height of PbTe(200)diffraction peak lower. On the surface of the samples flower shape gathers become more andmore intensive and evenly. The transmission rate and resistivity of The samples present a trendof decrease as the extension of annealing time.
     (2) All the samples annealed at different temperatures have obvious (200)directionoptimizing orientation; after annealed, the height of the diffraction peak (200) markedly reduced,some flower shape gathers appear on the surfaces of the specimens.with the annealingtemperature increases, flower shape gathers become more and more intensive and evenly. Thesample which annealed at 1173 K has the highest transmission rate and largest resistivity.
引文
[1] R.Klann, T.Hofer, R.Buhleier etal. Fast recombination Processes in lead chaleogenidesemieonductors studied via transient optical nonlinearities[J]. J. Appl. Phys, 1995, 77: 277- 286.
    [2] P.C.Findlay, C.R.Pidgeon, R.Kotitschke etal. Auger recombination dynamics of lead saltsunder picosecond free-electron-laser excitation[J]. Phys.Rev.B, 1998, 58:12908–12915.
    [3] J.R.Meyer, C.L.Felix, W.W.Bewley etal. Auger coefficients in type-ⅡInAs / Ga1-XInXSbquantum wells[J]. J. Appl. Phys.Lett., 1998, 73:2857-2859.
    [4] R.Loudon. Adv.Phys.,1964,13: 423.
    [5] R.Dalven. Electron-optical-polaron coupling constant in PbS, PbSe,and PbTe[J]. Phys.Rev.B,1971,3(6):1953-1954.
    [6] D.A.Broido and T.L.Reinecke. Thermoelectric transport in quantum well superlattices[J].Appl.Phys.Lett.,1997, 70(21): 2834-2836.
    [7] H.S.Lee, B.Cheong, T. S. Lee, K.S. Lee etal. Thermoelectric PbTe thin film for superresolution optical data storage[J]. Appl. Phys. Lett., 2004, 85(14): 2782-2784.
    [8]杨树人,王宗昌,王兢.半导体材料[M].北京:科学出版社,2004:255~257.
    [9]刘倩,张方辉,牟强.碲化铅薄膜电学特性的研究[J].电子元件与材料, 2006,25(2):26-27.
    [10]高敏,张景韶,D.M.ROWE.温差电转化及其应用[M].北京:兵器工业出版社,1996:175-177.
    [11]魏迎春,马勉军.高折射率长波红外材料PbTe的研究现状[J].红外, 2007,28(12):34-37.
    [12]魏迎春,马勉军.沉积温度对PbTe薄膜结构和光学性能的影响[J].红外,2008,29(8):26-29.
    [13] R.S.Allgaier and W.W.Scanlon. Mobility of Electrons and Holes in PbS, PbSe and PbTebetween Room Temperature and 4.2°K[J]. Phys.Rev., 1958, 111(4):1029-1037.
    [14] A.A.Andreev.J.Phys.1968,C4(29):50.
    [15] M.Schluter, G.Martinez,and M.L.Cohen. Electronic structure of PbSe and PbTe.I.Bandstructures,densities of states,and effective masses[J]. Phys.Rev.B, 1975, 11(2): 651–659.
    [16] R.Dalven.Areview of the semiconductor properties of PbTe, PbSe, PbS and PbO[J].Infrared Physics, 1969, 9(4): 141-184.
    [17]穆武第,程海峰,唐耿平,陈朝辉.直流磁控溅射制备PbTe薄膜[J].功能材料,2007增刊, 38:1329-1331.
    [18]朱玲心,严义埙,张文德等.碲化铅材料及其沉积膜的性质[J].红外研究,1985, 4 (1):1 8.
    [19]范滨,张凤山. PbTe、ZnSe材料的低温特性[J].上海交通大学学报,1997,31(10):67-71.
    [20] R.Dalven. A review of the semiconductor properties of PbTe, PbSe, PbS and PbO[J].Infrared. Phys., 1969, 9(4): 141-184.
    [21]刘恩科,朱秉升,罗晋生等.半导体物理学[M].国防工业出版社,370.
    [22]吴海飞.Ⅳ-Ⅵ族半导体薄膜生长行为及金属/Ⅳ-Ⅵ族半导体界面行为研究[D].杭州:浙江大学,2009:
    [23]陈曦. PbTe纳米材料的可控化学制备[D].杭州:浙江大学,2010:
    [24] T. W. Case. Notes on the change of resistance of certain substrates in light[J]. Phys.Rev.,1917, 9: 305-310.
    [25] R. J.Cushman. Film-type infrared photoconductors[J]. Proeeedings of IRE, 1959, 47 (9):1471-1475.
    [26] Y.K.Yang, W.M.Li, L.Yu etal. Novel infrared detector[J]. Infrared Phys.&Tech., 1997, 38(1):9-12.
    [27] A.S.Barros, E.Abramof and P.H.O.Rappl. Electrical and optical properties of PbTe p-njunction infrared sensors[J]. J. Appl.Phys., 2006, 99(2): 0249041-6.
    [28] J.F.Butler, A.R.Calawa, R.J.Phelan, T.C.Harman, A.J.Strauss and R.H.Rediker. PbTe diodelaser[J]. Appl. Phys.Lett, 1964, 5(4):75-77.
    [29] D. L. Partin and W.Lo. Low threshold current lead-telluride diode lasers grown bymolecular beam epitaxy[J]. J.Appl. Phys., 1981,52(3):1579-1582.
    [30] D.L.Partin. Diode lasers of lead-europium-selenide-telluride grown by molecular beamepitaxy[J]. Appl. phys. Lett., 1983, 43(11): 996-997.
    [31] D.L.Partin, R.F. Majkowski and D.E.Swets. Quantum well diode lasers oflead-europium-selenide-telluride[J]. J.Vac. Sci. Technol. B, 1985, 3(2): 576-580.
    [32] Z.Feit, D.Kostyk, R.J.Woods and P.Mak. PbEuSeTe buried heterostructure lasers grown bymolecular-beam epitaxy[J]. J.Vac. Sci. Technol. B, 1990, 8(2): 200-204.
    [33] Z.Feit, D.Kostyk,R.J.Woods and P Mak. Molecular beam epitaxy grown PbEuSeTeburied-heterostructure lasers with continuous wave operation at 195K[J]. Appl.Phys.Lett., 1990,57: 2891-2893.
    [34] Z.Feit, M.McDonald, R.J.Woods, V.Archambault and P.Mak. Low thresholdPbEuSeTe/PbTe separate confinement buried heterostructure diode lasers[J]. Appl. Phys. Lett.,1996, 68: 738-740.
    [35] J.B.Cadoff, E.Miller. Thermoelectrics Materials and Device[M]. New York: Reinhold PublCorp, 1961.
    [36] W. B. Teutsch. In Thermoelectricity[M]. New york: John White Son Inc,1958.
    [37] D.M.Rowe and C.M.Bhandari. Modern Thermoelectricity[M]. Holt Rinchalt and WistonLondon, 1983, 28-33.
    [38] R.R.Heikes, R.W.Ure. Thermoelectricity: Science and Energy [M]. NewYork : Interscience,1961:105-110.
    [39] D.M.Rowe, Ed.CRC Handbook of Thermoelectrics[M]. Boca Raton:CRC Press, 1995.
    [40] P.W.Zhu, Y.Imai, Y.Shinohara, X.Jia etal.Enhance thermoelectric propertied of PbTe alloyedwith Sb2Te3[J]. Phys.-Condes Matter, 2005,17(46):7319-7326.
    [41] M.Orihashia, Y. Noda, L.D.Chen etal. Carrier concentration dependence of thermalconductivity of iodine-doped n-type PbTe[J]. Phys.Chem.Solids, 2000, 61: 919-923.
    [42] G.T.Alekseeva, M.V.Vedernikov, E.A.Gurieva etal. Hole concentration and thermoelectricfigure of merit for Pb1-xSnxTe solid solutions[J]. Solid Solutions Semiconductors, 2000,34:897-901.
    [43] Y.I.Rarich, B.A.Efimova and I.A.Smirmov. Semiconducting Lead Chalcogenides [M].NewYork:Plenum Press, 1970:326.
    [44] T.C.Hannan, P.J.Taylor, M.P.Walsh etal. Quantum Dot Superlattice Thermoelectric Materialsand Devices[J]. Science,2002, 297: 2229.
    [45] L.D.Hicks, T.C.Harman and M.S.Dresselhaus. Use of quantum-well superlattices to obtain ahigh figure of merit from nonconventional thermoelectric materials[J]. Applied Physics Letters,1993, 63(23): 3230-3232.
    [46] Y.M.Lin and M.S.Dresselhaus. Thermoelectric properties of superlattice nanowires [J].Phy.Rev.B, 2003, 68(7): 14.
    [47]曹春芳,吴惠桢,斯剑霄.徐天宁等分子束外延PbTe单晶薄膜的反常拉曼光谱研究[J].物理学报,2006,55(4):2021-2026.
    [48] H.Beyer, J.Nurnus, H.Bottner, A.Lambrecht. PbTe based superlattice structureswith high thermoelectric efficiency[J]. Applied physics letters, 2002.80:1218~1218.
    [49] U.A.Mengui, Abramof E, Rappl P H O, etal. Electrical properties of PbTe doped withBaF2[J]. Journal of Applied Physics, 2009,105(4): 043709-043709-4.
    [50] S. P. Zimin, M. N. Preobrazhensky, D. S. Zimin, R. F. Zaykina, G. A. Borzova, V.V.Naumov, Growth and properties of PbTe films on porous silicon[J]. Infrared Physics &Technology,1999: 337-342.
    [51] Sushil Kumar, Zishan H. Khan, M.A. Majeed Khan, M. Husain. Studies on thin films oflead chalcogenides[J]. Current Applied Physics, 2005,5(6):561-566.
    [52]于福聚,徐三保.真空沉积PbTe薄膜的结构检测[J].红外研究,1984,4.
    [53] Y.K.Yang, H.Y.Chen, D.M.Li etal. The growth of PbTe on H-terminated Si(111) substrateby hot wall epitaxy[J]. Infrared Physics & Technology, 2003, 44(4):299-301.
    [54] Y.A.Ugai, A.M.Samoilov, M.K.Sharov, B.L.Agapov and E.A.Dolgopolova. Codepositionof Metallic Components in the Growth of Thin PbTeFilms on Si Substrates[J]. InorganicMaterials, 2001, 37(11):1106-1111.
    [55] A.M.Samoylov, S.A.Buchnev, A.M.Khoviv elta. Comparative study of point defects inducedin PbTe thin films doped with Ga by different techniques[J]. Materials Science in SemiconductorProcessing, 2003,6:481-485.
    [56]A.Jdanov, J.Pelleg, Z.Dashevsky and R.Shneck. Growth of PbTe films by magnetronsputtering[J]. Materials Research Society,2002,691:1-6.
    [57] A.Dauscher,M.Dinescu,M.Boffoue. Thin Solid Films [J]. 2006.497:170-176.
    [58] M.Baleva,M.Surtchev. Structural and optical characterization of laser-deposited PbTe filmson silicon substrates [J]. Vacuum, 2002, 69(13):419-423.
    [59] A.Jacquot,B. Lenoir,M.O.Boffoue and A.Dauscher. Pulsed laser deposition of PbTe films onglass substrates[J]. Applied Physics A, 1999, 69(7):613-615.
    [60] Z.H.Dughaish.Lead telluride as thermoelectric material for thermoelectric powergeneration[J]. Phys.B.2002, 322(2):205-223.
    [61] N.Romcevica,M.Romccevica, D.R.Khokhlov. Farinfrared study of impurity local modes ingallium-doped PbTe[J]. Infrared Physics & Technology,1999,40:453-462.
    [62] N.Romcevica, J.Trajica, T.A.Kuzuetsovab. Far-infrared study of impurity local modes inNi-doped PbTe[J]. Journal of Alloys and Compounds,2007,442:324-327.
    [63]范松灿.傅立叶变换红外光谱仪的原理与特点[J].高分子材料研究,2007,11:40-41.
    [64] S.S.Sahay, S.Guruswamy. Epitaxial growth of PbTe film on Si substrate[J].J.MaterSci.Lett,1998,17:1145-1147.
    [65]刘倩、牟强、张方辉.碲化铅单晶及薄膜物理特性的研究[J].陕西科技大学学报,2005,23(2):0045-05
    [66]郝晓涛,马瑾,马洪磊等.薄膜厚度对ZnO:Al透明导电膜性能的影响[J].液晶与显示,2002,17(3):169-174.
    [67]郝晓涛.有机衬底透明导电膜的制备与特性研究[D].济南:山东大学博士学位论文,2002.
    [68]裴光文,钟维烈,岳书彬,单晶、多晶和非晶物质的X射线衍射[M],济南:山东大学出版社,1989,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700