兔—人嵌合型抗-HEV IgM质控物及耐RNase病毒样颗粒的双质粒双表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分兔-人嵌合型戊型肝炎病毒IgM抗体质控物的构建
     目的本研究拟用化学交联方法构建一种兔-人嵌合型戊型肝炎病毒(Hepatitis Evirus,HEV)IgM抗体作为抗-HEV IgM检测质控物。
     方法基因重组蛋白NE2作为抗原免疫家兔,获得兔抗-HEV IgG,酶免方法检测其滴度和活性后,蛋白A亲合层析纯化IgG,十二烷基磺酸钠聚丙烯酰胺凝胶电泳(Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis,SDS-PAGE)分析IgG纯度,紫外分光光度计测定260/280nm吸光度并计算抗体浓度。EDC(1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride,1-乙基-3[3-二甲基氨基丙基]碳二亚胺)交联兔抗-HEV IgG与人IgM。抗-HEV IgM酶联免疫测定(enzyme-linkedimmunosorbent assay,ELISA)试剂盒同时检测嵌合抗体和阳性血清,并比较两者滴度。嵌合抗体稀释后,放置于不同温度条件下,保存不同时间后,ELISA检测稳定性。
     结果未纯化的兔抗-HEV IgG滴度为1∶100,000,纯化后,SDS-PAGE电泳结果显示轻链和重链两条带(25kD和50kD),没有杂带,达到电泳纯,抗体浓度达10mg/ml。嵌合抗体与人抗.HEV IgM阳性血清滴度均为1∶160,说明其同抗原的亲和性与真实的人类样本相似。稳定性实验表明,此嵌合抗体在室温、4℃可至少保存两个月,而在较低温度如-20℃、-70℃和反复冻融条件下不稳定。
     结论本研究用化学交联方法成功构建了抗-HEV IgM嵌合抗体质控物,在国内外尚属首次,其克服了传统血清质控物的缺点,根据已建立起的方法,可以构建一系列应用于免疫测定检测不同病毒特异IgM抗体的阳性质控物。
     第二部分双质粒双表达构建内含长片段RNA的病毒样颗粒
     目的本研究拟通过改变大肠杆菌噬菌体MS2-RNA 19mer茎环结构(包装位点,pac site)的数量、位置和亲和力,构建能够表达内含长片段嵌合体RNA耐核糖核酸酶病毒样颗粒(virus-like particles,VLPs)的双质粒原核表达系统,探讨茎环结构在表达内含更长片段RNA的VLPs时所起的作用。
     方法利用pET-28b和pACYCDuet-1构建两种双质粒表达系统,质粒之一为本室已经构建好的内含MS2成熟酶蛋白和衣壳蛋白的质粒pET-MC。另一质粒的构建方法分别如下:(1)设计均含有PacI酶切位点的上下游引物,且下游引物含有茎环结构的突变体(C-variant),扩增HIV gag序列,单酶切连接目的序列与表达载体pACYC-3V(内含3段SARS-CoV基因、C-variant、1段HCV基因和2段H5N1基因),构建重组载体pACYC-3V-gag。(2)设计均含有PacI酶切位点的上下游引物,且下游引物含有茎环结构的突变体,扩增HIV gag序列,单酶切连接目的序列和表达载体pACYC-pol(内含HIV pol序列及一个C-variant),构建重组载体pACYC-pol-gag。双质粒共转化入表达菌株BL21(DE3)。IPTG诱导表达,超声碎菌,DNaseⅠ和RNase A双酶消化,氯化铯密度梯度离心,超声处理液透析过夜后丙烯葡聚糖凝胶层析纯化得到VLPs。电镜观察后RT-PCR验证包装外源RNA的长度。
     结果成功构建了重组载体pACYC-3V-gag和pACYC-pol-gag并得到两VLPs。丙烯葡聚糖凝胶层析纯化后,VLPs OD_(260)(0.3)高于OD_(280)(0.15)。DNaseⅠ和RNase A双酶消化结果表明,所包装的RNA具有耐RNase和DNase消化的特性。RT-PCR验证第一种VLPs中包装了2,698bp的目的序列,第二种VLPs逆转录后扩增出了pol和gag的部分片段,分别为600bp和450bp,间接说明VLPs能够包装3,250bp的外源RNA。
     结论本研究将MS2 RNA突变型包装位点的数量增加至两个并改变其在外源RNA中的位置,利用双质粒双表达系统可表达内含2.7~3.2kb外源RNA片段的耐RNase的VLPs,初步阐明了包装位点的数量和位置在外源RNA包装中的作用。
Background The aim of this study was to conduct synthetic rabbit-human antibodies conjugate as controls in immunoassays that measure specific IgM to hepatitis E virus.
     Methods Two New Zealand white rabbits were injected with the HEV recombinant protein NE2 with ORF2 immunodominant epitope as antigen,and the titer of antibody was detected by ELISA.Rabbit IgG was isolated from immune sera by HiTrap affinity columns chromatography on protein A-Sepharose.The purified IgG was quantified by eppendorf biophotometer,and then evaluated by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis(SDS-PAGE).Cross-linker 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride)(EDC) was used to conjugate IgG fraction and human IgM.To determine if the conjugate was similar to human samples, conjugate and positive control serum from real patients were all detected by anti-HEV IgM ELISA and the end point titers were compared.Finally,the stability of antibody conjugate was examined.The chimeric antibodies were diluted,the stock solution were then incubated,in duplicate,at different temperature for different times.Then samples were removed at each time point and were stored at -70℃until the completion of the examination.All samples were tested by ELISA using a HEV IgM Diagnostic Kit.
     Results After immunization a reasonable titer 1:100,000 of IgG antibodies was being built up in these antisera.By SDS-PAGE analysis,the major stained bands were the heavy and light chains of IgG,50KD and 25KD respectively.No other minor bands were found in sample.The concentration of IgG was about 10mg/ml.The end point titers of antibody conjugate and positive serum were all 1:160,therefore,no significant difference in the end point titer between the serum-derived and the antibody conjugate, Stability of the antibody conjugate indicated that antibody conjugate were not completely stable at temperature below 4℃,room temperature was the better temperature to keep the antibody conjugate stability.
     Conclusion Rabbit-human antibodies conjugate against HEV described in this study offers an alternative method to prepare positive control instead of traditional serum positive control.This is the first demonstration of the chemically conjugated method to construct anti-HEV IgM positive control.According to the established method,it could also construct a series of positive controls applicable to any immunoassays,such as ELISA,immunoblot and IFA,to detect the presence of IgM specific for a given antigen.
     Baekgroud This study changed affinity,number and position of MS2-RNA 19mer stem-loop(pac site) in exougenous RNA and constructed two kinds of ribonuclease resistant virus-like particles by two-plasmid system to demonstrate whether larger size RNA could be encapsulated to produce virus-like particles by increasing the amount and affinity of the pac site.
     Methods Two kind of two-plasmid expression systems were constructed using vectors pET-28b and pACYCDuet-1.One plasmid was plasmid pET-MC constructed by our lab with 1.7kb maturase and coat protein gene of MS2.Another two plasmids were constructed as follows:(1) HIV gag sequence was amplified using sense and reverse primers containing PacI restriction sites.The C-variant of wild-type MS2 RNA stem loop was inserted into the reverse primer.The PCR-amplified DNA fragments was ligated to pACYC-3V vector(three parts of SARS-CoV genes,C-variant,one part of HCV,two parts of H5N1)to generate recombinant plasmid pACYC-3V-gag.(2) HIV gag sequence was amplified using sense and reverse primers contained PacI restriction sites.The C-variant of wild-type MS2 RNA stem loop was inserted into the reverse primer.The PCR-amplified DNA fragment was ligated to pACYC-pol vector(C-variant,HIV-pol) to generate recombinant plasmid pACYC-pol-gag.Then both plasmids were co-transformed into E.coli strain BL21(DE3),Expression was induced by adding IPTG. The cells were sonicated and centrifuged in order to pellet the cell debris.RNase A and DNase 1 were added in order to eliminate E.coli RNA and DNA.VLP were purified by CsCl gradient.After centrifugation,the virus-like particles band is pulled and then dialyzed against sonication buffer to move CsCl.The nuclease treated crude extract of virus-like particles may be also purified by gel exclusion chromatography using a resin such as Sephacryl S-200.Electron microscopy may be used to count the virus-like particles directly.RT-PCR was carried out using the down stream primer to verify the VLPs.
     Results Two expression vectors pACYC-3V-gag and pACYC-pol-gag had been constructed.Two kinds of virus-like particles were expressed in E.coli BL21(DE3).The particles were purified by Sephacryl S-200.The OD_(260) was higher than OD_(280).Electron microscopy was used to observe the VLP directly.The RT-PCR results of the first VLP showed that the 2,698bp target RNA was packaged into VLP.The RT-PCR results of the second VLP showed that parts of HIV pol(600bp) and gag(450bp) were amplified,and the 3,250bb target RNA could be packaged into VLP.
     Conclusion By using two C-virants of wild-type stem loop and changing their position in exogenous RNA,the virus-like particles with 2.7~3.2kb exogenous RNA were constructed using two-plasmid system.Therefore,increasing the number of the C-virant of wild-type stem loop and chaging its position could improve the length of exogenous RNA packaged into virus-like particles.
引文
[1]胡华军,陈勇,洪艳.戊型肝炎病毒的研究概况及进展[J].国际流行病学传染病学杂志,2006,33(3):197-200.
    [2]庄辉,王佑春.我国戊型肝炎研究[J].北京大学学报(医学版),2002,34(5):434-439.
    [3]Balayan MS,Andjaparidze AG,Savinskaya SS,et al.Evidence for a virus in non-A,non-B hepatitis transmitted via the fecal-oral route[J].Intervirology,1983,20(1):23-31.
    [4]Reyes GR,Purdy MA,Kim JP.Isolation of a cDNA from the virus responsible for enterically transmitted non-A,non-B hepatitis[J].Science,1990,247(4948):1335-1339.
    [5]Harrison TJ.Hepatitis E virus-- an update[J].Liver,1999,19(3):171-176.
    [6]Tam AW,Smith MM,Guerra ME,et al.Hepatitis E virus(HEV):molecular cloning and sequencing of the full-length viral genome[J].Virology.1991,185(1):120-131.
    [7]Koonin EV,Gorbalenya AE,Purdy MA,et al.Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus:delineation of an additional group of positive-strand RNA plant and animal viruses[J].Proc Natl Acad Sci U S A.1992,89(17):8259-8263.
    [8]Chobe LP,Lole KS,Arankalle VA.Full genome sequence and analysis of Indian swine hepatitis E virus isolate of genotype 4[J].Vet Microbiol,2006,114(3-4):240-251.
    [9]Emerson SU,Purcell RH.Hepatitis E virus[J].Rev Med Vir,2003,13(3):145-154.
    [10]Caron M,Enouf V,Than SC,et al.Identification ofgenotype 1 hepatitis E virus in samples from swine in Cambodia[J].J Clin Microbiol,2006,44(9):3440-3442.
    [11]Lu L,Li C,Hagedorn CH.Phylogenetic analysis of global hepatitis E virussequences:genetic diversity,subtypes and zoonosis[J].Rev MedVirol,2006,16(1):5-36.
    [12]Zuckerman AJ.Hepatitis E virus[J].BMJ,1990,300(6738):1475-1476.
    [13]Goens SD,Perdue ML.Hepatitis E viruses in humans and animals[J].Anim Health Res Rev,2004,5(2):145-156.
    [14]Ward P,M(u|¨)ller P,Letellier A,et al.Molecular characterization of hepatitis E virus detected in swine farms in the province of Quebec [J]. Can J Vet Res, 2008, 72(1):27-31.
    [15] Herremans M, Vennema H, Bakker J, et al. Swine-like hepatitis E viruses are a cause of unexplained hepatitis in the Netherlands [J]. J Viral Hepat, 2007, 14(2):140-146.
    [16] Buti M, Plans P, Dominguez A, et al. Prevalence of hepatitis E virus infection in children in the northeast of Spain [J]. Clin Vaccine Immunol, 2008,15(4):732-734.
    [17] Choi IS, Kwon HJ, Shin NR, et al. Identification of swine hepatitis E virus (HEV) and prevalence of anti-HEV antibodies in swine and human populations in Korea [J]. J Clin Microbiol, 2003,41(8):3602-3608.
    [18] Arora NK, Nanda SK, Gulati S, et al. Acute viral hepatitis types E, A, and B singly and in combination in acute liver failure in children in north India [J]. J Med Virol, 1996,48(3):215-221.
    [19] Ahn JM, Kang SG, Lee DY, et al. Identification of novel humanhepatitis E vims (HEV) isolates and determination of the seroprevalence of HEV in Korea [J]. J Clin Microbiol, 2005, 43 (7):3042-3048.
    [20] Mushahwar IK. Hepatitis E virus: molecular virology, clinical features, diagnosis, transmission,epidemiology, and prevention [J]. J Med Virol, 2008, 80 (4): 646-658.
    [21] Zhu G, Qu Y, Jin N, et al. Seroepidemiology and Molecular Characterization of Hepatitis E Virus in Jilin, China[J]. Infection, 2008 36(2): 140-6.
    [22] Chen Y, Tian DY, Xia NS. Epidemiology and genotypes of HEV in Wuhan [J]. Chin J Dig Dis,2005, 6(4): 182-188.
    [23] Tanaka T, Takahashi M, Kusano E, et al. Development and evaluation of an efficient cell-culture system for Hepatitis E virus [J]. J Gen Virol, 2007, 88(Pt 3):903-911.
    [24] Wei S, Walsh P, Huang R, et al. A novel sporadic strain of hepatitis E virus in south China isolated by cell culture [J]. J Med Virol, 2000, 61(3): 311-318.
    [25] Sreenivasan MA, Arankalle VA, Sehgal A, et al.Non-A, non-B epidemic hepatitis: visualization of virus-like particles in the stool by immune electron microscopy[J]. J Gen Virol. 1984, 65 (Pt 5):1005-1007.
    [26] Saeed AA, al-Rasheed A, Olewicz G, et al. ELISA for diagnosis of acute sporadic hepatitis E[J].Lancet, 1992, 339(8797):882.
    [27] Li F , Zhuang H , Kolires S , et al. Persistent and transient antibody response to hepatitis E virus detected by Western immunoblot using open reading frame 2 and 3 and glutathione S2transferase fusion proteins [J ]. J Clin Microbiol, 1994, 32 :2060 - 2066
    [28] Erker JC, Desai SM, Mushahwar IK.Rapid detection of Hepatitis E virus RNA by reverse transcription-polymerase chain reaction using universal oligonucleotide primers[J]. J Virol Methods, 1999, 81(1-2): 109-113.
    [29] Zhang JZ, Im SW, Lau SH, et al. Occurrence of hepatitis E virus IgM, low avidity IgG serum antibodies, and viremia in sporadic cases of non-A, -B, and -C acute hepatitis [J]. J Med Virol,2002, 66(1): 40-48.
    [30] Herremans M, Bakker J, Duizer E, et al. Use of serological assays for diagnosis of hepatitis E virus genotype 1 and 3 infections in a setting of low endernicity [J]. Clin Vaccine Immunol, 2007,14 (5): 562-568.
    [31] Lin CC, Wu JC, Chang TT, et al. Diagnostic value of immunoglobulin G (IgG) and IgM anti-hepatitis E virus (HEV) tests based on HEV RNA in an area where hepatitis E is not endemic [J]. J Clin Microbiol, 2000, 38(11):3915-3918.
    [32] Martin DA, Muth DA, Brown T, et al. Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections [J]. J Clin Microbiol, 2000,38 (5): 1823-1826.
    [33] Myint KS, Guan M, Chen HY, et al. Evaluation of a new rapid immunochromatographic assay for serodiagnosis of acute hepatitis E infection [J]. Am J Trop Med Hyg, 2005, 73(5):942-946.
    
    [34] Elkady A, Tanaka Y, Kurbanov F, et al. Evaluation of anti-hepatitis E virus (HEV) immunoglobulin A in a serological screening for HEV infection [J]. J Gastroenterol, 2007,42(11):911-917.
    [35] Takahashi M, Kusakai S, Mizuo H, et al. Simultaneous detection of immunoglobulin A (IgA) and IgM antibodies against hepatitis E virus (HEV) Is highly specific for diagnosis of acute HEV infection [J]. J Clin Microbiol, 2005, 43(1):49-56.
    [36] Myint KS, Endy TP, Gibbons RV, et al. Evaluation of diagnostic assays for hepatitis E virus in outbreak settings [J]. J Clin Microbiol, 2006,44(4): 1581-1583.
    [37] Chow WC, Lee AS, Lim GK,et al.Acute viral hepatitis E: clinical and serologic studies in Singapore[J].J Clin Gastroenterol. 1997, 24(4):235-238.
    [38] Koshy A, Grover S, Hyams KC, et al. Short-term IgM and IgG antibody responses to hepatitis E virus infection [J]. Scand J Infect Dis, 1996, 28 (5): 439-441.
    [39] Petersen PH, Ricos C, Stockl D, et al. Proposed guidelines for the internal quality control of analytical results in the medical laboratory [J]. Eur J Clin Chem Clin Biochem, 1996,34(12):983-999.
    [40] DeGuzman LJ, Pitrak DL, Dawson GJ, et al. Diagnosis of acute hepatitis E infection utilizing enzyme immunoassay[J].Dig Dis Sci, 1994, 39(8):1691-1693.
    [41] Bendall R, Ellis V, Ijaz S,et al.Serological response to hepatitis E virus genotype 3 infection: IgG quantitation, avidity, and IgM response[J]. J Med Virol, 2008, 80(1):95-101.
    [42] Myint KS, Endy TP, Shrestha MP, et al. Hepatitis E antibody kinetics in Nepalese patients[J].Trans R Soc Trop Med Hyg, 2006, 100(10): 938-941.
    [43]Favorov MO,Fields HA,Purdy MA,et al.Serologic identification of hepatitis E virus infections in epidemic and endemic settings[J].J Med Virol,1992,36(4):246-250. [44]Hackett J Jr,Hoff-Velk J,Golden A,et al.Recombinant mouse-human chimeric antibodies as calibrators in immunoassays that measure antibodies to Toxoplasma gondii[J].J Clin Microbiol,1998,36(5):1277-1284. [45]Jones ML,Barnard RT.Use of chimeric antibodies as positive controls in an enzyme-linked immunosorbent assay for diagnosis of scrub typhus(infection by Orientia tsutsugamushi)[J].Clin Vaccine Immunol,2007,14(10):1307-1310. [46]巴德年.编著.当代免疫学技术与应用[M].北京:北京医科大学中国协和医科大学联合出版社,1998:309-312. [47]李金明,编著,临床酶免疫测定技术[M].北京:人民军医出版社.2005:19-20,31-33. [48]J.萨姆布鲁克,D.W.拉萨尔.Molecular cloning a laboratory manual(分子克隆实验指南)[M].黄培堂等,译.3版.北京:科学出版社.2002,1716-1719. [49]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社.2004:8-9. [50]Grabarek Z,Gergely J.Zero-length cross linking procedure with theuse of active esters[J].Anal Biochem,1990;185(1):131-135. [51]Hamilton RG,Engineered human antibodies as immunologic quality control reagents[J].Ann Biol Clin(Paris),1990,48(7):473-477. [52]Hamilton RG.Application of engineered chimeric antibodies to the calibration of human antibody standards[J].Ann Biol Clin(Paris),1991,49(4):242-248. [53]Miyachi J,Doi K,Kitamura K,et al.Chemically humanized murine monoclonal antibody against a cell nuclear antigen:usefulness in autoimmune diagnostics[J].J Clin Lab Anal,1992,6(6):343-350. [54]李少伟,张军,何志强,等.大肠杆菌表达的戊型肝炎病毒ORF2片段的聚合现象研究[J].生物工程学报,2002,18(4):463-467. [55]李少伟,何志强,王颖彬,等.戊型肝炎病毒衣壳蛋白同源二聚体的相互作用结构域[J].生物工程学报,2004,20(1):90-98. [56]张军,顾颖,欧山海,等.戊型肝炎病毒衣壳蛋白中和表位的构象诱导[J].病毒学报,2004,20(2):26-28. [57]葛胜祥,张军,彭秋,等.基于多聚化重组抗原的检测戊型肝炎病毒IgM与IgG抗体的ELISA 的建立及初步评估[J].病毒学报,2003,19(1):74-82.
    [1]Calendar R.The Bacteriophades[M].2nd.Xford University Press,Inc.New York:2006:175.
    [2]Davis JE,Strauss JH,Sinsheimer RL.Bacteriophage MS2:another RNA phage[J].Science,1961,134(3488):1427-1429.
    [3]Fiers W,Contreras R,Duerinck F,et al.Complete nucleotide sequence of bacteriophageMS2RNA:primary and secondary structure of the rep licase gene[J].Nature,1976,260(8):500-507.
    [4]Ni CZ,White CA,Mitchell RS,et al.Crystal structure of the coat protein from the GA bacteriophage:model of the unassembled dimer[J].Protein Sci,1996,5(12):2485-2493.
    [5]LeCuyer KA,Behlen LS,Uhlenbeck OC.Mutants of the bacteriophage MS2 coat proteinthat alter its cooperative binding to RNA[J].Biochemistry,1995,34(33):10600-10606.
    [6]Anobom CD,Albuquerque SC,Albernaz FP,et al.Structural studies of MS2 bacteriophage virus particle disassembly by nuclear magnetic resonance relaxation measurements[J].Biophys J,2003,84(6):3894-3903
    [7]Lago H,Fonseca SA,Murray JB.Dissecting the key recognition features of the MS2bacteriophage translational repression complex[J].Nucleic Acids Res,1998,26(5):1337-1344.
    [8]Stockley PG,Stonehouse N J,Murray JB,et al.Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein[J].Nucleic Acids Res,1995,23(13):2512-2518.
    [9]Horn WT,Convery MA,Stonehouse NJ,et al.The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid:further challenges in the modeling of ligand-RNA interactions[J].RNA,2004,10(11 ):1776-1782.
    [10]Kuzmanovic DA,Elashvili I,Wick C,et al.The MS2 coat protein shell is likely assembled under tension:a novel role for the MS2 bacteriophage A protein as revealed by small-angle neutron scattering[J].J Mol Biol,2006,355(5):1095-1111.
    [11]Beckett D,Uhlenbeck OC.Ribonucleoprotein complexes of R17 coat protein and a translation operator analog[J].J Mol Biol,1988,204(4):927-938.
    [12]Valegard K,Liljas L,Fridborg K,et al.The three-dimensionalstructure of the icosahedral bacterial virus MS2.Nature,1990,345(6270):36-41.
    [13] Valegard K, Murray J B, Stockley P G, et al. Crystal structure of an RNA bacteriophage coat protein-operator complex [J]. Nature, 1994, 371 (6498): 623-626.
    [14] Tars K, Bundule M, Fridborg K, et al. The crystal structure of bacteriophage GA and a comparison of bacteriophages belonging to the major groups of Escherichia coli leviviruses [J]. J Mol Biol, 1997, 271 (5): 759-773.
    [15] Peabody DS. Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2[J].Mol Gen Genet, 1997, 254 (4):358-364.
    [16] Pickett GG, Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein [J]. Nucleic Acids Res, 1993, 21(19): 4621-4626.
    [17] Beckett D, Wu HN, Uhlenbeck OC. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly [J]. J Mol Biol, 1988,204(4):939-947
    [18] Torpova K, Basnak G, Twarock R, et al. The three-dimensional structure of genomic RNA in bacteriophage MS2: implications for assembly [J]. J Mol Biol, 2008, 375(3):824-836.
    [19] Grahn E, Stonehouse NJ, Murray JB, et al. Crystallographic studies of RNA hairpins in complexes with recombinant MS2 capsids: implications for binding requirements [J]. RNA, 1999,5(1):131-138.
    [20] Stockley PG, Rolfsson O, Thompson GS, et al. A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid [J]. J Mol Biol, 2007, 369(2):541-552.
    [21] Horn WT, Tars K, Grahn E, et al. Structural basis of RNA binding discrimination between bacteriophages Qbeta and MS2 [J]. Structure, 2006, 14(3):487-495.
    [22] Peabody DS. The RNA binding site of bacteriophage MS2 coat protein [J]. EMBO J, 1993,12(2):595-600.
    [23] Talbot SJ, Goodman S, Bates SRE, et al. Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex [J]. Nucleic Acids Res,1990,18 (12): 3521-3528.
    [24] Parrott AM, Lago H, Adams CJ, et al. RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour [J]. Nucleic Acids Res. 2000,28(2):489-497.
    [25] Wu HN, Uhlenbeck OC. Role of a bulged A residue in a specific RNA-protein interaction [J].Biochemistry, 1987, 26 (25): 8221-8227.
    [26] Grahn E, Moss T, Helgstrand, et al. Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex [J]. RNA, 2001, 7 (11): 1616-1627.
    [27] Carey J, Lowary P, Uhlenbeck OC. Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site [J]. Biochemistry, 1983, 22 (20): 4723-4730.
    [28]Witherell GW,Wu HN,Uhlenbeck OC.Cooperative binding of R17 coat protein to RNA[J].Biochemistry,1990,29(50):11051-11057.
    [29]Hirao I,Peabody D,Ellington AD.The limits of specificity:An experimental analysis with RNA aptamers to MS2 coat protein variants[J].Mol Divers,1998,4(2):75-89.
    [30]Ling CM,Hung PP,Overby LR.Independent assembly of Qβ and MS2 phages in doubly infected Escherichia coli[J].Virology,1970,40(4):920-929.
    [31]Mastico RA,Talbot SJ,Stockley PG.Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid[J].J Gen Virol,1993,74(4):541-548.
    [32]Dreier J,Stormer M,Kleesiek K.Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays[J].J Clin Microbiol,2005,43(9):4551-4557.
    [33]李金明.RNA病毒扩增检测的质控品和标准品的研究进展[J].中华检验医学杂志.2004,27(12):873-874.
    [34]Legendre D,Fastrez J.Production in Saccharomycescerevisiae of MS2 virus-like particles packaging functional heterologous mRNAs[J].J B iotechnol,2005,117(2):183-194.
    [35]Pasloske BL,DuBois DB,Brown DM,et al.Methods of quantifying viralload in an animal with a ribonuclease resistant RNA preparation[P].US Patent.6,399,307.2002-07-4.
    [36]Pasloske BL,DuBois DB,Brown D,et al.Ribonuclease resistant RNA preparation and utilization[P].US Patent.6,214,982.2001-04-10.
    [37]Drosten C,Seifried E,Roth WK.TaqMan 5-Nuclease Human Immunodeficiency Virus Type 1PCR Assay with Phage-Packaged Competitive Internal Control for High-Throughput Blood Donor Screening[J].J Clin Microbiol,2001,39(12):4302-4308.
    [38]Beld M,Minnaar R,Weel J,et al.Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with a RNA internal control[J].J Clin Microbiol,2004,42(7):3059-3064.
    [39]Villanova GV,Gardiol D,Taborda MA,et al.Strategic approach to produce low-cost,efficient and stable competitive internal controls for the detection of RNA viruses using RT-PCR[J].J Clin Microbiol,2007,45(11):3555-3563.
    [40]WalkerPeach CR,Winkler M,DuBois DB,et al.Ribonuclease-resistant RNA controls(Armored RNA) for reverse transcription-PCR,branched DNA,and genotyping assays for hepatitis C virus.Clin Chem,1999,45(12):2079-2085.
    [41]Huang J,Yang CM,Wang LN,et al.A novel real-time multiplex reverse transcriptase-polymerase chain reaction for the detection of HIV-1 RNA by using dual-specific armored RNA as internal control[J].Intervirology,2008,51(1):42-49.
    [42]Huang Q,Cheng Y,Guo Q,et al.Preparation of a chimeric armored RNA as a versatile calibrator for multiple virus assays[J].Clin Chem.2006,52(7):1446-1448.
    [43]Wei Y,Yang C,Wei B,et al.Ribonuclease-resistant virus-like particles containing long chimeric RNA sequences produced by a two-plasmid coexpression system[J].J Clin Microbiol.2008,46(5):1734-1740.
    [44]魏玉香,张括,魏葆珺,等.耐核糖核酸酶内含长片段嵌合体RNA的病毒样颗粒的构建和表达[J].中华检验医学杂志,2008,31(3):280-286.
    [45]Pasloske BL,Walkerpeach CR,Obermoeller RD,et al.Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards[J].J Clin Microbiol,1998,36(12):3590-3594
    [46]李金明,宋如俊,王露楠,等.耐核糖核酸酶内含HCV RNA病毒样颗粒的的表达[J].中华微生物学和免疫学杂志,2003,23(10):811-813.
    [47]李金明,宋如俊,王露楠,等.耐核糖核酸酶病毒样颗粒的构建和表达[J].中华检验医学杂志,2003,26(2):86-88.
    [48]彭建明,李金明,许克前,等.内含人甲胎蛋白的mRNA部分的序列的耐核糖核酸酶病毒样颗粒的构建与表达[J].中华肝脏病杂志,2005,13(4):304-306.
    [49]Lowary RT,Uhlenbeck UC.An RNA mutation that increases the affinity of an RNA-protein interaction[J].Nucleic Acids Res,1987,15(24):10483-10493.
    [50]Borer PN,Lin Y,Wang S,et al.Proton NMR and structural features of a RNA 24-nucleotide hairpin[J].Biochemistry,1995,34(19):6488-6503.
    [51]Dertinger D,Behlen LS,Uhlenbeck OC.Using phosphorothioate substituted RNA to investigate the thermodynamic role of phosphates in a sequence specific RNA-protein complex[J].Biochemistry,2000,39(1):55-63.
    [52]van den Worm SH,Stonehouse N J,Valegard K,et al.Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments[J].Nucleic Acids Res,1998,26(5):1345-1351.
    [53]Grahn E,Stonehouse NJ,Adams C J,et al.Deletion of a single hydrogen bonding atom from the MS2 RNA operator leads to dramatic rearrangements at the RNA-coat protein interface[J].Nucleic Acids Res,2000,28(23):4611-4616.
    [54]Convery MA,Rowsell S,Stonehouse NJ,et al.Crystal structure of an RNA aptamer-protein complex at 2.8 A resolutions[J].Nat Struct Biol,1998,5(2):133-139.
    [55]Konnick EQ,Williams SM,Ashwood ER,et al.An RNA mutation that increases the affinity of an RNA-protein interaction[J].Nucleic Acids Res,1987,15(24):10483-10493.
    [56]Rowsell S,Stonehouse N J,Convery MA,et al.Crystal structure of a series of RNA apatamers complexed to the same protein target[J].Nat Struct Biol,1998,5(11):970-975
    [57]Romaniuk PJ,Lowary PT,Wu HN,et al.RNA binding site of R17 coat protein[J].Biochemistry,1987,26(6):1563-1568.
    [58]Hiral I,Spingola M,Peabody D,et al.The limits of specificity:an experimental analysis with RNA aptamers to MS2 coat protein variants[J].Mol Divers,1998-1999,4(2):75-89.
    [59]Valegard K,Murray JB,Stonehouse NJ,et al.The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions[J].J Mol Biol,1997,270(5):724-738.
    [60]黄杰,王忠芳,杨昌梅,等.利用MS2噬菌体包膜蛋白与RNA的特异性相互作用构建临床检测用病毒样颗粒[J].中华检验医学杂志.2007,30(3):323-324.
    [61]J.萨姆布鲁克,D.W.拉萨尔.Molecular cloning a laboratory manual(分子克隆实验指南)[M]黄培堂等,译.3版.北京:科学出版社,2002:611-618.
    [62]J.萨姆布鲁克,D.W.拉萨尔.Molecular cloning a laboratory manual(分子克隆实验指南)[M].黄培堂等,译.3版.北京:科学出版社,2002:408-411
    [63]Zhou MY,Clark SE,Gomez-Sanchez CE.Universal cloning method by TA strategy[J].Biotechniques.1995,19(1):34-35.
    [64].J.萨姆布鲁克,D.W.拉萨尔.Molecular cloning a laboratory manual(分子克隆实验指南)[M].黄培堂等,译.3版.北京:科学出版社,2002:68-71.
    [65]J.萨姆布鲁克,D.W.拉萨尔.Molecular cloning a laboratory manual(分子克隆实验指南)[M].黄培堂等,译.3版.北京:科学出版社,2002:99-101.
    [66]J.萨姆布鲁克,D.W.拉萨尔.Molecular cloning a laboratory manual(分子克隆实验指南)[M].黄培堂等,译.3版.北京:科学出版社,2002:26-30
    [67]Stockley PG,Stonehouse NJ,Valegard K.Molecular mechanism of RNA phage morphogenesis [J].Int J Biochem,1994,26(10-11):1249-1260.
    [68]Johnson J,Chiu EW.Structures of virus and virus-like particles[J].Curr Opin Struct Biol,2000,10(2):229-235.
    [69]杨昌梅.单质粒双表达系统制备内含长片段嵌合体RNA耐核糖核酸酶病毒样颗粒的研究[D].北京:中国协和医科大学,2008.
    [1]Balayan MS,Andjaparidze AG,Savinskaya SS,et al.Evidence for a virus in non-A,non-B hepatitis transmitted via the fecal-oral route[J].Intervirology,1983,20(1):23-31.
    [2]Reyes GR,Purdy MA,Kim JP.Isolation of a cDNA from the virus responsible for enterically transmitted non-A,non-B hepatitis[J].Science,1990,247(4948):1335-1339.
    [3]庄辉,崔怡辉.戊型肝炎病毒IgG抗体酶联免疫诊断试剂盒研究[J],中华预防医学杂志,2001,35(5):315-317.
    [4]Elkady A,Tanaka Y,Kurbanov F,et al.Evaluation of anti-hepatitis E virus(HEV)immunoglobulin A in a serological screening for HEV infection[J].J Gastroenterol,2007,42(11):911-917.
    [5]Takahashi M,Kusakai S,Mizuo H,et al.Simultaneous detection of immunoglobulin A(IgA)and IgM antibodies against hepatitis E virus(HEV) Is highly specific for diagnosis of acute HEV infection [J]. J Clin Microbiol, 2005,43 (1): 49-56.
    [6] Zuckerman AJ. Hepatitis E virus [J]. BMJ, 1990, 300(6738): 1475-1476.
    [7] Myint KS, Endy TP, Gibbons RV, et al. Evaluation of diagnostic assays for hepatitis E virus in outbreak settings [J]. J Clin Microbiol, 2006,44 (4): 1581-1583
    [8] Arora NK, Nanda SK, Gulati S, et al. Acute viral hepatitis types E, A, and B singly and in combination in acute liver failure in children in north India[J]. J Med Virol, 1996, 48 (3):215-221.
    [9] Zhu G, Qu Y, Jin N,et al. Seroepidemiology and Molecular Characterization of Hepatitis E Virus in Jilin, China [J]. Infection. 2008, 36(2): 140-146.
    [10] Chen Y, Tian DY, Xia NS. Epidemiology and genotypes of HEV in Wuhan [J]. Chin J Dig Dis,2005,6(4): 182-188.
    [11] Ward P, Muller P, Letellier A, et al. Molecular characterization of hepatitis E virus detected in swine farms in the province of Quebec [J]. Can J Vet Res, 2008, 72 (1): 27-31.
    [12] Ahn JM, Kang SG, Lee DY, et al. Identification of novel humanhepatitis E virus (HEV) isolates and determination of the seroprevalence of HEV in Korea[J]. J Clin Microbiol, 2005, 43(7):3042-3048.[
    [13] 徐严,王江滨.动物宿主在戊型肝炎传播中的作用临床肝胆病杂志[J].2008,24(1):65-67.
    
    [14] Goens SD, Perdue ML. Hepatitis E viruses in humans and animals [J].Anim Health Res Rev,2004, 5 (2): 145-156.
    [15] Lu L, Li C, Hagedorn CH. Phylogenetic analysis of global hepatitis E virussequences: genetic diversity, subtypes and zoonosis [J]. Rev MedVirol, 2006, 16(1): 5-36.
    [16] Aggarwal R, Krawczynski K. Hepatitis E: an overview and recent advances in clinical and laboratory research [J]. J Gastroenterol Hepatol, 2000, 15(1): 9-20.
    [17] Chobe LP, Lole KS, Arankalle VA. Full genome sequence and analysis of Indian swine hepatitis E virus isolate of genotype 4 [J].Vet Microbiol, 2006, 114 (3-4):240-251.
    [18] Emerson SU, Purcell RH. Hepatitis E virus[J]. Rev Med Vir, 2003,13 (3): 145-154.
    [19] Erker JC, Desai SM, Schlauder GG, et al. A hepatitis E virus variant from the United States:molecularcharacterization and transmission in cynomolgus macaques [J].J Gen Virol, 1999,80(Pt 3): 681-690.
    [20] Caron M, Enouf V, Than SC, et al. Identification of genotype 1 hepatitis E virus in samples from swine in Cambodia [J]. J Clin Microbiol, 2006,44 (9): 3440-3442.
    [21] Buisson Y, Grandadam M, Nicand E, et al. Identification of a novel hepatitis E virus in Nigeria [J]. J Gen Virol, 2000, 81 (Pt 4): 903-909.
    [22] Yazaki Y, Mizuo H, Takahashi M, et al. Sporadic acute or fulminant hepatitis E in Hokkaido,Japan, may be food-borne, assuggested by the presence of hepatitis E virus in pig liver as food [J]. J Gen Virol, 2003, 84 (Pt 9): 2351-2357.
    [23] Choi IS, Kwon HJ, Shin NR, et al. Identification of swine hepatitis E virus (HEV) and prevalence of anti-HEV antibodies in swine and human populations in Korea[J]. J Clin Microbiol,2003, 41 (8): 3602-3608.
    [24] Wei S, Walsh P, Huang R, et al. A novel sporadic strain of hepatitis E virus in south China isolated by cellculture [J].J Med Virol, 2000, 61 (3): 311-318.
    [25] Emerson SU, Arankalle VA, Purcell RH. Thermal stability of Hepatitis E virus [J]. J Infect Dis,2005,192 (5): 930-933.
    [26] Herremans M, Vennema H, Bakker J, et al. Swine-like hepatitis E viruses are a cause of unexplained hepatitis in the Netherlands [J]. J Viral Hepat, 2007, 14(2): 140-146.
    [27] Tanaka T, Takahashi M, Kusano E, et al. Development and evaluation of an efficient cell-culture system for Hepatitis E virus [J]. J Gen Virol, 2007, 88(Pt 3):903-911.
    [28] Lin CC, Wu JC, Chang TT, et al. Diagnostic value of immunoglobulin G (IgG) and IgM anti-hepatitis E virus (HEV) tests based on HEV RNA in an area where hepatitis E is not endemic [J]. J Clin Microbiol, 2000, 38(11):3915-3918.
    [29] Zhang JZ, Im SW, Lau SH, et al. Occurrence of hepatitis E virus IgM, low avidity IgG serum antibodies, and viremia in sporadic cases of non-A, -B, and -C acute hepatitis [J]. J Med Virol,2002, 66 (1): 40-48.
    [30] Martin DA, Muth DA, Brown T, et al.Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections [J]. J Clin Microbiol, 2000, 38 (5): 1823-1826.
    [31] Myint KS, Guan M, Chen HY, et al. Evaluation of a new rapid immunochromatographic assay for serodiagnosis of acute hepatitis E infection [J]. Am J Trop Med Hyg, 2005, 73 (5): 942-946.
    [32] Zhang F, Li X, Li Z, et al. Detection of HEV antigen as a novel marker for the diagnosis of hepatitis E [J]. J Med Virol, 2006,78(11):1441-1448.
    [33] DeGuzman LJ, Pitrak DL, Dawson GJ, et al. Diagnosis of acute hepatitis E infection utilizing enzyme immunoassay [J].Dig Dis Sci, 1994, 39(8):1691-1693.
    [34] Jameel S. Molecular biology and pathogenesis of hepatitis E virus [J]. Expert Rev Mol Med,1999, 1999(6):1-16.
    [35] Coding JW. Conjugation of antibodies with fiuorochromes: modifications to the standard methods [J]. J Immunol Methods, 1976, 13(3):215-226.
    [36] Koshy A, Grover S, Hyams KC, et al. Short-term IgM and IgG antibody responses to hepatitis E virus infection [J]. Scand J Infect Dis, 1996, 28 (5): 439-441.
    [37] Myint KS, Endy TP, Shrestha MP, et al. Hepatitis E antibody kinetics in Nepalese patients [J].Trans R Soc Trop Med Hyg, 2006, 100 (10): 938-941.
    [38] Favorov MO, Fields HA, Purdy MA, et al. Serologic identification of hepatitis E virus infections in epidemic and endemic settings [J]. J Med Virol, 1992, 36 (4): 246-250.
    [39] Hackett J Jr, Hoff-Velk J, Golden A, et al. Recombinant mouse-human chimeric antibodies as calibrators in immunoassays that measure antibodies to Toxoplasma gondii [J]. J Clin Microbiol,1998, 36 (5): 1277-1284.
    [40] Petersen PH, Ricos C, Stockl D, et al. Proposed guidelines for the internal quality control of analytical results in the medical laboratory[J]. Eur J Clin Chem Clin Biochem, 1996,34(12):983-999.
    [41] Herremans M, Bakker J, Duizer E, et al. Use of serological assays for diagnosis of hepatitis E virus genotype 1 and 3 infections in a setting of low endemicity [J]. Clin Vaccine Immunol, 2007,14 (5): 562-568.
    [42] Ko¨hler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity [J]. Nature, 1975,256(5517):495-497.
    [43] Morrison SL, Johnson MJ, Herzenberg LA, et al. Chimeric human antibodies: mouse antigen binding domains with humanconstant regions [J]. Proc Natl Acad Sci USA, 1984, 81(21):6851-6855.
    [44] Hamilton RG. Engineered human antibodies as immunologic quality control reagents [J]. Ann Biol Clin (Paris), 1990,48 (7):473-477.
    [45] Hamilton RG. Application of engineered chimeric antibodies to the calibration of human antibody standards [J]. Ann Biol Clin (Paris), 1991,49(4):242-248.
    [46] Bose B, Khanna N, Acharya SK, et al. Generation and characterization of a high-affinity chimaeric antibody against hepatitis B surface antigen [J]. Biotechnol Appl Biochem , 2006,43(Pt 2):93-101.
    [47] Jones ML, Barnard RT. Use of chimeric antibodies as positive controls in an enzyme-linked immunosorbent assay for diagnosis of scrub typhus (infection by Orientia tsutsugamushi) [J].Clin Vaccine Immunol, 2007, 14 (10): 1307-1310.
    [48] Luo W, Chen Y, Li L, et al. Construction and characterization of the chimeric antibody 8C11 to the hepatitis E virus [J]. FEMS Immunol Med Microbiol, 2007, 51 (1): 18-25.
    [49] Miyachi J, Doi K, Kitamura K, et al. Chemically humanized murine monoclonal antibody against a cell nuclear antigen: usefulness in autoimmune diagnostics [J]. J Clin Lab Anal , 1992, 6 (6):343-350.
    [50] Middle JG, Libeer JC, Malakhov V, et al. Characterisation and evaluation of external quality assessment scheme serum. Discussion paper from the European External Quality Assessment (EQA) Organisers Working Group C [J]. Clin Chem Lab Med , 1998, 36(2): 119-130.
    [1]Ni CZ,White CA,Mitchell RS,et al.Crystal structure of the coat protein from the GA bacteriophage:model of the unassembled dimmer[J].Protein Sci,1996,5(12):2485-2493.
    [2]LeCuyer KA,Behlen LS,Uhlenbeck OC.Mutants of the bacteriophage MS2 coat proteinthat alter its cooperative binding to RNA[J].Biochemistry,1995,34(33):10600-10606.
    [3]Stockley PG,Stonehouse N J,Valegard K.Molecular mechanism of RNA phage morphogenesis [J].Int J Biochem,1994,26(10-11):1249-1260.
    [4]Anobom CD,Albuquerque SC,Albernaz FP,et al.Structural studies of MS2 bacteriophage virus particle disassembly by nuclear magnetic resonance relaxation measurements[J].Biophys J,2003,84(6):3894-3903.
    [5] Johnson JE, Chiu W. Structures of virus and virus-like particles [J]. Curr Opin Struct Biol, 2000,10(2):229-235.
    [6] Borer PN, Lin Y, Wang S, et al. Proton NMR and structural features of a RNA 24-nucleotide hairpin [J]. Biochemistry, 1995, 34 (19): 6488-6503.
    [7] Heisenberg M. Formation of defective bacteriophage particles by fr amber mutants [J]. J Mol Biol, 1966, 17(1):136-144.
    [8] Pickett GG, Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein [J]. Nucleic Acids Res, 1993, 21 (19): 4621-4626
    
    [9] Lago H, Fonseca SA, Murray JB. Dissecting the key recognition features of the MS2 bacteriophage translational repression complex [J]. Nucleic Acids Res, 1998, 26 (5): 1337-1344.
    [10] Stonehouse NJK, Valegard R. Golmohammadi S, et al. Crystal structures of MS2capsids with mutations in the subunit FG loop [J]. J Mol Biol, 1996,256 (2): 330-339.
    [11] Hirao I, Peabody D, Ellington AD. The limits of specificity: An experimental analysis with RNA aptamers to MS2 coat protein variants [J]. Mol Divers, 1998, 4 (2): 75-89.
    [12] Axblom CK, Tars K, Fridborg L, et al. Structure of phage FR capsids with deletion in the FG loop: implications for viral assembly [J]. Virology, 1998, 249 (1): 80-88.
    [13] Peabody DS. The RNA binding site of bacteriophage MS2 coat protein [J]. EMBO J, 1993;12(2):595-600.
    [14] Beckett D, Wu HN, Uhlenbeck OC. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly [J]. J Mol Biol, 1988, 204 (4): 939-947.
    [15] Horn WT, Tars K, Grahn E, et al. Structural basis of RNA binding discrimination between bacteriophages Qbeta and MS2 [J]. Structure, 2006,14 (3):487-495.
    [16] Stockley PG, Stonehouse NJ, Murray JB, et al. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein [J]. Nucleic Acids Res, 1995,23 (13): 2512-2518.
    [17] Grahn E, Stonehouse NJ, Murray JB, et al. Crystallographic studies of RNA hairpins in complexes with recombinant MS2 capsids: implications for binding requirements [J]. RNA, 1999,5(1): 131-138.
    
    [18] Horn WT, Convery MA, Stonehouse NJ, et al. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions [J]. RNA, 2004, 10 (11): 1776-1782.
    [19] Beckett D, Uhlenbeck OC. Ribonucleoprotein complexes of R17 coat protein and a translation operator analog [J]. J Mol Biol, 1988, 204 (4): 927-938.
    
    [20] Dertinger D, Behlen LS, Uhlenbeck OC. Using phosphorothioate substituted RNA to investigate the thermodynamic role of phosphates in a sequence specific RNA-protein complex [J]. Biochemistry, 2000, 39 (1): 55-63.
    [21] Ling CM, Hung PP, Overby LR. Independent assembly of Qβ and MS2 phages in doubly infected Escherichia coli [J]. Virology, 1970, 40 (4): 920-929.
    [22] Mastico RA, Talbot SJ, Stockley PG. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid [J]. J Gen Virol, 1993, 74 ( Pt 4): 541-548.
    [23] Valegard K, Murray JB, Stockley PG, et al. Crystal structure of an RNA bacteriophage coat protein-operator complex [J]. Nature, 1994, 371 (6498): 623-626.
    [24] Valegard K, Murray JB, Stonehouse NJ, et al. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions [J]. J Mol Biol, 1997, 270 (5): 724-738.
    [25] Carey J, Lowary P, Uhlenbeck OC. Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site [J]. Biochemistry, 1983, 22(20): 4723-4730.
    [26] Convery MA, Rowsell S, Stonehouse NJ, et al. Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution [J]. Nat Struct Biol, 1998, 5 (2): 133-139.
    [27] Parrott AM, Lago H, Adams CJ, et al. RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour [J]. Nucleic Acids Res, 2000,28 (2):489-497.
    [28] Romaniuk PJ, Lowary PT, Wu HN, et al. RNA binding site of R17 coat protein [J]. Biochemistry,1987, 26(6): 1563-1568.
    [29] Talbot SJ, Goodman S, Bates SR, et al. Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex [J]. Nucleic Acids Res,1990, 18 (12): 3521-3528.
    [30] Wu HN, Uhlenbeck OC. Role of a bulged A residue in a specific RNA-protein interaction [J].Biochemistry, 1987,26 (25): 8221-8227.
    [31] Grahn E, Stonehouse NJ, Adams CJ, et al. Deletion of a single hydrogen bonding atom from the MS2 RNA operator leads to dramatic rearrangements at the RNA-coat protein interface [J].Nucleic Acids Res, 2000, 28 (23): 4611-4616.
    [32] Grahn E, Moss T, Helgstrand C, et al. Structures of MS2-RNA complexes with variant bases at position-5 [J]. RNA, 2001, 7 (11):1616-1627.
    [33] Konnick EQ, Williams SM, Ashwood ER, et al. An RNA mutation that increases the affinity of an RNA-protein interaction [J]. Nucleic Acids Res, 1987, 15(24):10483-10493.
    [34] Witherell GW, Wu HN, Uhlenbeck OC. Cooperative binding of R17 coat protein to RNA [J].Biochemistry, 1990, 29(50): 11051-11057.
    [35] WalkerPeach CR, Winkler M, DuBois DB, et al.Ribonuclease-resistant RNA controls (Armored RNA) for reverse transcription-PCR, branched DNA, and genotyping assays for hepatitis C virus [J]. Clin Chem, 1999, 45 (12): 2079-2085.
    [36] Peabody DS. Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2 [J].Mol Gen Genet, 1997, 254 (4):358-364.
    [37] Min Jou W, Raeymaekers A, Fiers W. Crystallization of bacteriophage MS2 [J]. Eur J Biochem,1979, 102(2):589-594.
    [38] Rowsell S, Stonehouse NJ, Convery MA, et al. Crystal structure of a series of RNA apatamers complexed to the same protein target [J]. Nat Struct Biol, 1998, 5(11):970-975.
    [39] Wu M, Sherwin T, Brown WL, et al. Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids [J]. Nanomedicine, 2005, l(1):67-76.
    [40] Wu M, Brown WL, Stockley PG. Cell-specific delivery of bacteriophage-encapsidated ricin A chain [J]. Bioconjug Chem, 1995, 6(5):587-595.
    [41] Brown WL, Mastico RA, Wu M, et al. RNA bacteriophage capsid-mediated drug delivery and epitope presentation [J]. Intervirology, 2002, 45 (4-6): 371-380.
    [42] Kovacs EW, Hooker JM, Romanini DW,et al. Dual-surface-modified bacteriophageMS2 as an ideal scaffold for a viral capsid-based drug delivery system [J]. Bioconjug Chem, 2007, 18 (4):1140-1147.
    [43] Wu M, Brown WL, Hill HR, et al. Development of a novel drugdelivery system using bacteriophage MS2 capsids [J]. Biochem Soc Trans, 1996, 24 (3): 413S.
    [44] Wu M, Brown WL, Hill HR, et al. Specific cytotoxicity against cells bearing HIV1 gp120 antigen by bacteriophage-encapsidated ricin A chain: implications for cell specific drug delivery [J]. Biochem Soc Trans, 1997, 25 (2): 158S.
    [45] Argetsinger JE, Gussin JN. Intact ribonucleic acid from defective particles of bacteriophage R17 [J]. J Mol Biol, 1966,21:421-434.
    [46] van Meerten D, Olsthoorn RC, van Duin J, et al. Peptide display on live MS2 phage: restrictions at the RNA genome level [J].J Gen Virol, 2001, 82 (Pt 7): 1797-1805.
    [47] Kozlovska TM, Cielens I, Vasiljeva 1, et al. RNA phage Q beta coat protein as a carrier for foreign epitopes [J]. Intervirology, 1996, 39(1-2):9-15.
    [48] Freivalds J, Dislers A, Ose V, et al. Assembly of bacteriophage Qbeta virus-like particles in yeast Saccharomyces cerevisiae and Pichia pastoris [J]. J Biotechnol, 2006, 123 (3): 297-303.
    [49] Legendre D, Fastrez J. Production in Saccharomycescerevisiae of MS2 virus-like particles packaging functional heterologous mRNAs [J]. J Biotechnol, 2005, 117 (2): 183-194.
    [50] Dreier J, Stormer M, Kleesiek K. Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays [J]. J Clin Microbiol, 2005, 43 (9): 4551-4557.
    [51] Beld M, Minnaar R, Weel J, et al. Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with a RNA internal control [J]. J Clin Microbiol, 2004,42 (7):3059-3064.
    [52] Drosten C, Seifried E, Roth WK. TaqMan 5-Nuclease Human Immunodeficiency Virus Type 1 PCR Assay with Phage-Packaged Competitive Internal Control for High-Throughput Blood Donor Screening [J]. J Clin Microbiol, 2001, 39 (12): 4302-4308.
    [53] Villanova GV, Gardiol D, Taborda MA, et al. Strategic approach to produce low-cost, efficient and stable competitive internal controls for the detection of RNA viruses using RT-PCR [J]. J Clin Microbiol, 2007, 15 (11): 3555-3563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700