长江河口湿地碳通量的地面监测及遥感模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以上海崇明东滩河口湿地为例,通过地面监测、遥感分析和模型模拟等途径,探讨了河口湿地碳通量的变化及其影响因子,并特别分析了潮汐作用和植物入侵对河口湿地碳通量的影响以及遥感模型在湿地生态系统总初级生产力估算中的应用。本研究的主要结论如下:
     (1)在2005-2007年期间,崇明东滩河口湿地表现为较强的碳汇,其固碳强度为562-834 gCm-2 yr-1,远高于目前已报道的其他类型湿地;其碳循环各分量(生态系统总初级生产力,生态系统呼吸和二氧化碳净交换量)表现出明显的季节和年际动态。在2005年和2007年,分别位于较高潮滩和较低潮滩的两个站点(下面简称为高滩站和低滩站)二氧化碳净交换量(下面简称为净碳交换量)的季节动态具有显著性差异,其年累计净碳交换量之差高达100 gCm-2 yr-1以上。在大多情况下,两站点的净碳交换量对气象因子的响应是一致的,但在极端状况下则表现出明显差异,这说明对于具有环境梯度的生态系统而言,净碳交换量本身及其对环境因子的响应均存在一定的异质性。显然,这些因素对全球变化研究中的尺度上推增添了较多的不确定性。
     (2)崇明东滩河口湿地会受到潮汐作用的影响,其周期为15天,本研究观测到净碳交换量也表现出类似的周期性变化,其周期为10-20天。低滩站对潮汐作用的影响表现得更为敏感。潮汐作用通过水淹直接对土壤呼吸产生抑制来影响净碳交换量,其影响也呈现出季节性变化。白天的净碳交换量是植物光合作用与土壤呼吸作用叠加的结果,因此其对潮汐作用的响应则更为复杂,同时受植被物候与潮高的影响。考虑到潮汐作用期间潮水会将有机质转移至邻近海域,这显然将影响河口湿地碳源/汇属性的评估,因此,进一步的研究需要考虑横向碳通量。
     (3)根据遥感图像分析,东滩湿地的入侵植物互花米草在2005-2006年间扩张迅速,且当其盖度在20-40%间时,扩张最快。在各站点,互花米草在近海的区域比相应近岸的区域扩张更快。在研究期间,生态系统总初级生产力、生态系统呼吸和净生态系统生产力(数值上等同净碳交换量)都随互花米草盖度的增加而增加。同时,互花米草的入侵也改变了碳通量对环境因子的响应。高光照条件下的光抑制得到一定程度的缓解;生态系统呼吸对温度的响应也发生一些变化,在相对低温区域(<26℃),生态系统呼吸对温度的敏感性增加,而在相对高温区域(>26℃),对温度的敏感性则降低。
     (4)基于涡度协方差技术的通量监测塔只能获得几百米或几千米范围内的净碳交换量,因此其结果很难直接上推到较大的区域尺度或全球尺度。VPM模型通过耦合通量塔监测数据和遥感数据来估算生态系统总初级生产力,从而能在尺度上推中扮演重要角色。最大光能利用效率在很大程度上决定了VPM模型能否很好地拟合通量塔估算的生态系统总初级生产力。本研究发现,在VPM模型应用中,如果估算最大光能利用效率的时间窗口太长(5-10月),生态系统总初级生产力会被低估,而采用较短时间窗口估算的最大光能利用效率,可增加VPM模型的拟合度。从近海区到近岸区,VPM模型拟合的效果递增,这表明潮汐作用及水文条件也会影响到VPM模型的拟合效果。
With the help of eddy covariance and remote sensing technique, we investigated the carbon dynamic patterns and the associated driving factors and also tried to simulate gross primary productivity of an estuarine wetland located on Chongming Island of Shanghai, China. Meanwhile, we examined how plant invasion and tidal activity affect wetland carbon fluxes. The main findings are summarized as follows:
     (1) During three years observation (2005-2007), the wetland behaved as strong C-CO2 sink, with the strength of 562-834 g C m-2 yr-1. Seasonal patterns of net ecosystem exchange of CO2 (NEE) showed significant differences between high and low elevation sites in 2005 and 2007, and the cumulative NEE at high elevation site was higher than that at low elevation site by a magnitude of 100 g C m-2 yr-1. The carbon fluxes showed similar responses to meteorological variables at two sites, but differed largely in extreme conditions. The decreased tidal activity along the altitudinal gradient, combined with the different plant speceis composition, mainly accounted for the different behaviors of carbon fluxes. This study identified the heterogenity of carbon fluxes and their response to meteorological variables inside ecosystems with environmental gradients, which brought great uncertainty in whole ecosystem estimation and upscaling.
     (2) One year of continuous data from high and low elevation sites were analyzed to evaluate the tidal effect on carbon flux. The measured wavelet spectra and cospectra of NEE and other environmental factors demonstrated that the dynamics of NEE at both sites exhibit a tidal-driven pattern with obvious characteristics at scales between 10 and 20 days (256-512-h). Environmental factors exerted major controls on the carbon balance at finer temporal scales. NEE was more sensitive to tides at the low elevation site than at the high elevation site. Overal the mean nighttime NEE during spring tides was lower than that during neap tides, indicating suppressed ecosystem respiration under inundation. Larger differences were observed at the low elevation site due to the longer inundation. In contrast, daytime NEE was more variable since plant reacted differently in different growth period and under different tidal elevations. Whilst tides would also transport organic matter to nearby estuary and hence may incur carbon emission in the receiving ecosystems. Thus, further study on lateral carbon transport is required to investigate the tidal effect on the carbon sink/source role of the wetland.
     (3) From 2005 to 2006, the percent of cordgrass (Spartina alterniflora) increased by 10-30% on the wetland, and largest increases were observed when the previous percent fell in the range of 20-40%. For each site, the fetch that faced the sea experienced larger increases than that faced the dike. Gross primary production (GPP), ecosystem respiration (RE) and net ecosystem productivity increased with rising percent of S. alterniflora. The increased carbon sequestration rates in C3 species community invaded by C4 species S. alterniflora showed potential in alleviating climate warming. The invasion of S. alterniflora also alterd the responses of carbon flux to environmental factors. With greater percent of S. alterniflora, the light inhibition under strong insolation was relieved; the temperature sensitivity increased when temperature was below 26℃, while increased when temperature rose above 26℃.
     (4) Vegetation photosynthesis model (VPM), which combines the measurements of eddy flux tower and satellited-derived data, shows robust in simulating ecosystem productivity and thus acts as a strong candidate for upscaling work. We tried two methods to calculate maximum light use efficiency (e0), which in large part determined the performance of VPM. e0 derived from long-term (almost whole growing season) dataset would lead to an underestimate of GPP. In comparison, use of short-term eo greatly enhanced the simulation. This was mainly due to the summer passive condition and scattered distribution of data points for estimating eo. Meanwhile, uptake of CO2 by canopy was more like instantaneous response. Best simulation was observed at high elevation site. We proposed that the tidal activity affected the reflectance and associated vegetation indices (VIs), which was partly reflected in the dynamics of VI along the altitudinal gradient. Thus, a refinement of VI is required for ecosystems that experience flooding. Some other reasons, like bias in the partitioning of NEE into GPP and RE, different weather conditions on days that satellite does not pass by was also discussed.
引文
[1]Adam P. Saltmarsh Ecology [M]. Cambridge:Cambridge University Press,1990.
    [2]Adiku SGK, Reichstein M, Lohila A, Dinh NQ, Aurela M, Laurila T, Lueers J, Tenhunen JD. PIXGRO:A model for simulating the ecosystem CO2 exchange and growth of spring barley [J]. Ecological Modelling,2006,190:260-276.
    [3]Albuquerque ALS, Mozeto AA. C:N:P ratios and stable carbon isotope compositions as indicators of organic matter sources in a riverine wetland system (Moji-Guacu River, Sao Paulo-Brazil) [J]. Wetlands,1997,17:1-9.
    [4]Anderson DE, Verma SB, Rosenberg NJ. Eddy-correlation measurements of CO2, latent-heat, and sensible heat fluxes over a crop surface [J]. Boundary-Layer Meteorology,1984,29:263-272.
    [5]Armstrong W, Wright, E J, Lythe S, et al. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a humber salt marsh [J]. Journal of Ecology,1985,73:323-339.
    [6]Asner GP, Wessman CA, Archer S. Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems [J]. Ecological Applications,1998,8:1003-1021.
    [7]Atkinson LP, Hall JR. Methane distribution and production in the Georgia salt marsh [J]. Estuarine, Coastal and Shelf Science,1976,4:677-686.
    [8]Aurela M, Riutta T, Laurila T, Tuovinen JP, Vesala T, Tuittila ES, Rinne J, Haapanala S, Laine J. CO2 exchange of a sedge fen in southern Finland-The impact of a drought period [J]. Tellus Series B-Chemical and Physical Meteorology,2007,59:826-837.
    [9]Baldocchi D. Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought [J]. Plant Cell and Environment,1997,20:1108-1122.
    [10]Baldocchi D. Breathing of the terrestrial biosphere:lessons learned from a global network of carbon dioxide flux measurement systems [J]. Australian Journal of Botany,2008,56:1-26.
    [11]Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, U KTP, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bulletin of the American Meteorological Society,2001,82:2415-2434.
    [12]Baldocchi D, Falge E, Wilson K. A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales [J]. Agricultural and Forest Meteorology,2001,107:1-27.
    [13]Baldocchi D, Valentini R, Running S, Oechel W, Dahlman R. Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems [J]. Global Change Biology,1996,2:159-168.
    [14]Bartlett KB, Harriss RC. Review and assessment of methane emissions from wetlands [J]. Chemosphere,1993,26:261-320.
    [15]Begon M, Townsend CR, Harper JL. Ecology:From individuals to ecosystems (Fourth edition) [M]. Oxford:Blackwell publishing,2006.
    [16]Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Deanta RC, Couteaux M, Escudero A, Gallardo A, Kratz W, Madeira M, Malkonen E, Mcclaugherty C, Meentemeyer V, Munoz F, Piussi P, Remacle J, Desanto AV. Litter mass-loss rates in pine forests of Europe and Eastern United-States-Some relationships with climate and litter quality [J]. Biogeochemistry,1993,20:127-159.
    [17]Bertness MD. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh [J]. Ecology,1991,72:138-148.
    [18]Bertness MD, Pennings SC. Spatial variation in process and pattern in salt marsh plant communities in eastern North America [A]. In:Weinstein MP, Kreeger DA. Concepts and controversies in tidal marsh ecology [M]. Dordrecht:Kluwer Academic Publishers,2000:39-58.
    [19]Black TA, DenHartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest [J]. Global Change Biology,1996,2:219-229.
    [20]Boesch DF, Brinsfield RB, Magnien RE. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture [J]. Journal of Environmental Quality,2001,30:303-320.
    [21]Bonneville MC, Strachan IB, Humphreys ER, Roulet NT. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties [J]. Agricultural and Forest Meteorology,2008,148:69-81.
    [22]Bouchard V, Creach V, Lefeuvre JC, Bertru G, Mariotti A. Fate of plant detritus in a European salt marsh dominated by Atriplex portulacoides (L.) Aellen [J]. Hydrobiologia,1998,374:75-87.
    [23]Bouchard V, Lefeuvre JC. Primary production and macro-detritus dynamics in a European salt marsh:carbon and nitrogen budgets [J]. Aquatic Botany,2000,67: 23-42.
    [24]Bouma TJ, Bryla DR. On the assessment of root and soil respiration for soils of different textures:Interactions with soil moisture contents and soil CO2 concentrations [J]. Plant and Soil,2000,227:215-221.
    [25]Bowden WB. The biogeochemistry of nitrogen in fresh-water wetlands [J]. Biogeochemistry,1987,4:313-348.
    [26]Brevik EC, Homburg JA. A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA [J]. Catena,2004, 57:221-232.
    [27]Brix H, Sorrell BK, Lorenzen B. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? [J]. Aquatic Botany,2001,69:313-324.
    [28]Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu LK. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers [J]. Global Change Biology,2008,14:1854-1876.
    [29]Callaway JC. The introduction of Spartina alterniflora in south San Francisco Bay [M]. San Francisco:San Francisco State University,1990:60.
    [30]Campbell GS, Norman JM. In introducation to environmental biophysics [M]. New York:Springer,1998.
    [31]Cao MK, Marshall S, Gregson K. Global carbon exchange and methane emissions from natural wetlands:Application of a process-based model [J]. Journal of Geophysical Research-Atmospheres,1996,101:14399-14414.
    [32]Cavelier J, Penuela MC. Soil respiration in the cloud forest and dry deciduous forest of Serrania De Macuira, Colombia [J]. Biotropica,1990,22:346-352.
    [33]Chalmers AG, Wiegert RG, Wolf PL. Carbon balance in a salt-marsh-Interactions of diffusive export, tidal deposition and rainfall-caused erosion [J]. Estuarine, Coastal and Shelf Science,1985,21:757-771.
    [34]Chapin FS, Matson PA, Mooney HA. Principles of terrestrial ecosystem ecology [M]. New York:Spring Science,2002.
    [35]Chapman VJ. Salt marshes and salt deserts of the world [M]. New York: Interscience Press,1974.
    [36]Chen HL, Li B, Fang CM, Chen JK, Wu JH. Exotic plant influences soil nematode communities through litter input [J]. Soil Biology & Biochemistry, 2007,39:1782-1793.
    [37]Chen HL, Li B, Hu JB, Chen JK, Wu JH. Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze Estuary [J]. Marine Ecology-Progress Series,2007,336:99-110.
    [38]Chen JQ, Zhao B, Ren WW, Saunders SC, Ma ZJ, Li B, Luo YQ, Chen JK. Invasive Spartina and reduced sediments:Shanghai's dangerous silver bullet [J]. Journal of Plant Ecology,2008,1:79-84.
    [39]Chen ZY, Li B, Zhong Y, Chen JK. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences [J]. Hydrobiologia,2004,528:99-106.
    [40]Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. Global carbon sequestration in tidal, saline wetland soils [J]. Global Biogeochemical Cycles,2003,17: 1111-1120.
    [41]Chmura GL, Coffey A, Crago R. Variation in surface sediment deposition on salt marshes in the Bay of Fundy [J]. Journal of Coastal Research,2001,17:221-227.
    [42]Choi YH, Wang Y. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements [J].2004,18, doi:10.1029/2004GB002261.
    [43]Christie MC, Dyer KR, Turner P. Sediment flux and bed level measurements from a macro tidal mudflat [J]. Estuarine, Coastal and Shelf Science,1999,49: 667-688.
    [44]Cicerone RJ, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles,1988,2:299-327.
    [45]Clark KL, Gholz HL, Moncrieff JB, Cropley F, Loescher HW. Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems [J]. Ecological Applications,1999,9:936-948.
    [46]Costanza R, dArge R, deGroot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, vandenBelt M. The value of the world's ecosystem services and natural capital [J]. Nature,1997,387: 253-260.
    [47]Craig JK, Crowder LB. Factors influencing habitat selection in fishes with a review of marsh ecosystems[A]. Weinstein MP, Kreeger DA. Concepts and Controversies in Tidal Marsh Ecology[M]. Dordrecht:Kluwer Academic Publishers,2000.
    [48]Cranford PJ, Gordon DCJ, Jarvis CM. Measurement of cordgrass, Spartina alterniflora, production in a macrotidal estuary, Bay of Fundy [J]. Estuaries,1989, 12:27-14.
    [49]Crawford RMM. Oxygen availability as an ecological limit to plant-distribution [J]. Advances in Ecological Research,1992,23:93-185.
    [50]Dame RF. The flux of floating macrodetritus in the North Inlet estuarine ecosystem [J]. Estuarine, Coastal and Shelf Science,1982,15:337-344.
    [51]Dame RF. The importance of Spartina alterniflora to Atlantic coast estuaries [J]. Aquatic Science,1989,1:639-660.
    [52]Dame RF, Spurrier JD, Williams TM, Kjerfve B, Zingmark RG, Wolaver TG, Chrzanowski TH, McKellar HN, Vernberg FJ. Annual material processing by a salt-marsh estuarine-basin in South-Carolina, USA [J]. Marine Ecology-Progress Series,1991,72:153-166.
    [53]Dankers N, Binsbergen M, Zegers K. Transportation of water, particulate and dissolved organic and inorganic matter between a salt marsh and Ems-Dollard estuary, the Netherlands [J]. Estuarine, Coastal and Shelf Science,1984,19: 143-165:
    [54]Davidson EA, Belk E, Boone RD. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biology,1998,4:217-227.
    [55]Deegan LA, Hughes JE, Rountree RA. Salt marsh ecosystem support of marine transient species [A]. In:Weinstein MP, Kreeger DA. Concepts and controversies in tidal marsh ecology [M]. Dordrecht:Kluwer Academic Publishers,2000.
    [56]Delaune RD, Smith CJ, Patrick WH. Methane release from gulf-coast wetlands [J]. Tellus Series B-Chemical and Physical Meteorology,1983,35:8-15.
    [57]Deng F, Chen JM, Ishizawa M, Yuen CW, Mo G, Higuchi K, Chan D, Maksyutov S. Global monthly CO2 flux inversion with a focus over North America [J]. Tellus Series B-Chemical and Physical Meteorology,2007,59:179-190.
    [58]Denning AS, Collatz GJ, Zhang CG, Randall DA, Berry JA, Sellers PJ, Colello GD, Dazlich DA. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model.1. Surface carbon fluxes [J]. Tellus Series B-Chemical and Physical Meteorology,1996,48:521-542.
    [59]Desjardins RL, Buckley DJ, Stamour G. Eddy flux measurements of CO2 above corn using a microcomputer system [J]. Agricultural and Forest Meteorology, 1984,32:257-265.
    [60]Dickinson RE, Pinty B, Verstraete MM. Relating surface albedos in GCM to remotely sensed data [J]. Agricultural and Forest Meteorology,1990,52: 109-131.
    [61]Dise NB. Methane emission from Minnesota peatlands-Spatial and seasonal variability [J]. Global Biogeochemical Cycles,1993,7:123-142.
    [62]Dixon RK, Krankina ON. Can the terrestrial biosphere be managed to conserve and sequester carbon? [A]. In:Carbon sequestration in the biosphere:processes and products [M]. NATO ASI series, Series 1. Global environment Change,1995: 153-179.
    [63]Drexler JZ, Bedford BL. Pathways of nutrient loading and impacts on plant diversity in a New York peatland [J]. Wetlands,2002,22:263-281.
    [64]Dring MJ, Luning K. Influence of spring-neap tidal cycles on the light available for photosynthesis by benthic marine plants [J]. Marine Ecology-Progress Series, 1994,104:131-137.
    [65]Edwards NT, Sollins P. Continuous measurement of carbon dioxide evolution from partitioned forest floor components [J]. Ecology,1973,54:406-412.
    [66]Ehrenfeld JG Effects of exotic plant invasions on soil nutrient cycling processes [J]. Ecosystems,2003,6:503-523.
    [67]Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97:7043-7050.
    [68]Ewanchuk PJ, Bertness MD. The role of waterlogging in maintaining forb pannes in northern New England salt marshes [J]. Ecology,2004,85:1568-1574.
    [69]Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models [J]. Science,1998,282:442-446.
    [70]Friedl MA, Davis FW, Michaelsen J, Moritz MA. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables:An analysis using a scene simulation model and data from FIFE [J]. Remote Sensing of Environment,1995,54:233-246.
    [71]Gallagher JL, Reimold RJ, Linthurst RA, Pfeiffer WJ. Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh [J]. Ecology,1980,61: 303-312.
    [72]Giani L, Dittrich K, MartsfeldHartmann A, Peters G Methanogenesis in saltmarsh soils of the North Sea coast of Germany [J]. European Journal of Soil Science, 1996,47:175-182.
    [73]Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo HQ, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones MB, Johnson DA, Kiely G, Li SG, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana JF, Stoy PC, Svejcar T, Tuba Z, Zhou GS. Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements [J]. Rangeland Ecology & Management,2010,63: 16-39.
    [74]Glatzel S, Basiliko N, Moore T. Carbon dioxide and methane production potentials of peats from natural, harvested, and restored sites, eastern Quebec, Canada [J]. Wetlands,2004,24:261-267.
    [75]Glenn AJ, Flanagan LB, Syed KH, Carlson PJ. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex [J]. Agricultural and Forest Meteorology,2006, 140:115-135.
    [76]Goodwin BJ, McAllister AJ, Fahrig L. Predicting invasiveness of plant species based on biological information [J]. Conservation Biology,1999,13:422-426.
    [77]Gordon DCJ, Cranford P J. Export of organic matter from macrotidal salt marshes in the upper Bay of Fundy, Canada [A]. In:Mitsch WJ. Global wetlands:Old world and new [M]. Amsterdam:Elsevier Science,1994.
    [78]Greco S, Baldocchi DD. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest [J]. Global Change Biology,1996,2: 183-197.
    [79]Gu LH, Fuentes JD, Shugart HH, Staebler RM, Black TA. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness:Results from two North American deciduous forests [J]. Journal of Geophysical Research-Atmospheres,1999,104:31421-31434.
    [80]Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models [J]. Nature,2002,415:626-630.
    [81]Halupa PJ, Howes BL. Effects of tidally mediated litter moisture-content on decomposition of Spartina alterniflora and S. patens [J]. Marine Biology,1995, 123:379-391.
    [82]Hanan NP, Burba G, Verma SB, Berry JA, Suyker A, Walter-Shea EA. Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption [J]. Global Change Biology,2002,8:563-574.
    [83]Hanan NP, Kabat P, Dolman AJ, Elbers JA. Photosynthesis and carbon balance of a Sahelian fallow savanna [J]. Global Change Biology,1998,4:523-538.
    [84]Heilman JL, Cobos DR, Heinsch FA, Campbell CS, McInnes KJ. Tower-based conditional sampling for measuring ecosystem-scale carbon dioxide exchange in coastal wetlands [J]. Estuaries,1999,22:584-591.
    [85]Heinsch FA, Heilman JL, McInnes KJ, Cobos DR, Zuberer DA, Roelke DL. Carbon dioxide exchange in a high marsh on the Texas Gulf Coast:Effects of freshwater availability [J]. Agricultural and Forest Meteorology,2004,125: 159-172.
    [86]Heinsch FA, Zhao MS, Running SW, Kimball JS, Nemani RR, Davis KJ, Bolstad PV, Cook BD, Desai AR, Ricciuto DM, Law BE, Oechel WC, Kwon H, Luo HY, Wofsy SC, Dunn AL, Munger JW, Baldocchi DD, Xu LK, Hollinger DY, Richardson AD, Stoy PC, Siqueira MBS, Monson RK, Burns SP, Flanagan LB. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:1908-1925.
    [87]Hemminga MA, Buth G J C. Decomposition in salt marsh ecosystems of the S.W. Netherlands:the effects of biotic and abiotic factors [J]. Plant Ecology,1991,62: 73-83.
    [88]Hoguane AM, Hill AE, Simpson JH, Bowers DG. Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique [J]. Estuarine, Coastal and Shelf Science,1999,49:251-264.
    [89]Holliday R. Solar energy consumption in relation to crop yield [J]. Agricultual Progress,1966,41:24-34.
    [90]Huete A, Justice C, Liu H. Development of vegetation and soil indexes for MODIS-EOS [J]. Remote Sensing of Environment,1994,49:224-234.
    [91]Huete A, Liu HQ, Batchily K, vanLeeuwen W. A comparison of vegetation indices global set of TM images for EOS-MODIS [J]. Remote Sensing of Environment,1997,59:440-451.
    [92]Hunt ERJ, Running SW. Simulated dry matter yields for aspen and spruce stand in the North American boreal forest [J]. Canadian Journal of Remote Sensing, 1992,18:126-133.
    [93]Intergovernmental Panel on Climate Change (IPCC). Climate Change in 2007: The physical science basis [R]. Cambridge:Cambridge University Press,2007.
    [94]Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions [J]. Science,2003,300:1538-1542.
    [95]Jiang LF, Luo YQ, Chen JK, Li B. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China [J]. Estuarine, Coastal and Shelf Science,2009,81:74-82.
    [96]Katul G, Lai CT, Schafer K, Vidakovic B, Albertson J, Ellsworth D, Oren R. Multiscale analysis of vegetation surface fluxes:From seconds to years [J]. Advances in Water Resources,2001,24:1119-1132.
    [97]Kimball JS, Thornton PE, White MA, Running SW. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region [J]. Tree Physiology,1997,17:589-599.
    [98]King GM, Wiebe WJ. Methane release from soils of a Georgia salt-marsh [J]. Geochimica Et Cosmochimica Acta,1978,42:343-348.
    [99]Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities [J]. Nature,2002,417:67-70.
    [100]Kneib RT. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States [A]. Weinstein MP, Kreeger DA. Concepts and Controversies in Tidal Marsh Ecology [M]. Dordrecht:Kluwer Academic Publishers,2000.
    [101]Kourtev PS, Ehrenfeld JG, Huang WZ. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey [J]. Soil Biology & Biochemistry,2002,34:1207-1218.
    [102]Lafleur PM, McCaughey JH, Joiner DW, Bartlett PA, Jelinski DE. Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland [J]. Journal of Geophysical Research-Atmospheres,1997,102:29009-29020.
    [103]Lafleur PM, Roulet NT, Admiral SW. Annual cycle of CO2 exchange at a bog peatland [J]. Journal of Geophysical Research-Atmospheres,2001,106: 3071-3081.
    [104]Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog [J]. Global Biogeochemical Cycles,2003,17, doi:10.1029/2002GB001983.
    [105]Lambers H, Chapin FS, Pons TL. Plant physiological ecology [M]. New York: Springer-Verlag,1998.
    [106]Landin MC. Growth habits and other considerations of smooth cordgrass, Spartina alterniflora Loisel [A]. In:Mumford TF, Peyton JP, Sayce JR, Harbell S, editors. Spartina workshop record [M]. Seattle:Washington Sea Grant Program, University of Washington,1991.
    [107]Laurence AB. Salt marshes-Present functioning and future change [J]. Mangroves and Salt Marshes,1999,3:227-241.
    [108]Law BE, Waring RH, Anthoni PM, Aber JD. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models [J]. Global Change Biology,2000,6:155-168.
    [109]Leuning R. Measurements of trace gas fluxes in the atmosphere using eddy covariance:WPL correction revisited [A]. In:Lee XH, Massman WJ, Law B, editors. Handbook of micrometeorology:A guide to surface flux measurement and analysis [M]. Boston:Kluwer Academic Publishers,2004:119-132.
    [110]Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects [J]. Ecological Engineering,2009,35:511-520.
    [111]Li ZQ, Yu GR, Xiao XM, Li YN, Zhao XQ, Ren CY, Zhang LM, Fu YL. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data [J]. Remote Sensing of Environment, 2007,107:510-519.
    [112]Liao CZ, Luo YQ, Fang CM, Chen JK, Li B. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary [J]. Oecologia,2008,156:589-600.
    [113]Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China [J]. Ecosystems,2007,10:1351-1361.
    [114]Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. Altered ecosystem carbon and nitrogen cycles by plant invasion:A meta-analysis [J]. New Phytologist,2008,177:706-714.
    [115]Linn DM, Doran JW. Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils [J]. Soil Science Society of America Journal,1984,48:1267-1272.
    [116]Liu J, Chen JM, Cihlar J, Park WM. A process-based boreal ecosystem productivity simulator using remote sensing inputs [J]. Remote Sensing of Environment,1997,62:158-175.
    [117]Lloyd J, Taylor JA. On the temperature-dependence of soil respiration [J]. Functional Ecology,1994,8:315-323.
    [118]Luo YQ, Zhou XH. Soil respiration and the environment [M]. Burlington: Academic Press,2006.
    [119]Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA. Biotic invasions:Causes, epidemiology, global consequences, and control [J]. Ecological Applications,2000,10:689-710.
    [120]Magenheimer JF, Moore TR, Chmura GL, Daoust RJ. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick [J]. Estuaries,1996,19:139-145.
    [121]Matthews E, Fung I. Methane emissions from natural wetlands:Global distribution, area, and environmental characteristics of sources [J]. Global Biogeochemical Cycles,1987,1:61-86.
    [122]McHugh JM, Dighton J. Influence of mycorrhizal, inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in nursery systems [J]. Restoration Ecology,2004,12:533-545.
    [123]Mendelssohn IA, Mckee KL. Spartina alterniflora die-back in Louisiana: Time-course investigation of soil waterlogging effects [J]. Journal of Ecology, 1988,76:509-521.
    [124]Mendelssohn IA, Postek MT. Elemental analysis of deposits on the roots of Spartina alterniflora Loisel [J]. American Journal of Botany,1982,69:904-912.
    [125]Milton SJ. Litterfall of the exotic acacias in the south Western Cape [J]. Journal of South African Botany,1981,47:147-155.
    [126]Mitchell CE, Power AG. Release of invasive plants from fungal and viral pathogens [J]. Nature,2003,421:625-627.
    [127]Mitchell DT, Coley PGF, Webb S, Allsopp N. Litterfall and decomposition processes in the coastal fynbos vegetation, south-western Cape, South-Africa [J]. Journal of Ecology,1986,74:977-993.
    [128]Mitra S, Wassmann R, Vlek PLG. An appraisal of global wetland area and its organic carbon stock [J]. Current Science,2005,88:25-35.
    [129]Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch VJ. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes [J]. Agricultural and Forest Meteorology,2007,147:209-232.
    [130]Monteith JL. Solar radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology,1972,9:747-766.
    [131]Morris JT. Effects of oxygen and salinity on ammonium uptake by Spartina alterniflora Loisel and Spartina patens (Aiton) Muhl [J]. Journal of Experimental Marine Biology and Ecology,1984,78:87-98.
    [132]Neumann HH, Denhartog G, King KM, Chipanshi AC. Carbon-dioxide fluxes over a faised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (Nowes) [J]. Journal of Geophysical Research-Atmospheres, 1994,99:1529-1538.
    [133]Nicholls RJ, Hoozemans FMJ, Marchand M. Increasing flood risk and wetland losses due to global sea-level rise:regional and global analyses [J]. Global Environmental Change-Human and Policy Dimensions,1999,9:S69-S87.
    [134]Noormets A, Chen J, Crow TR. Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA [J]. Ecosystems,2007,10: 187-203.
    [135]Noormets A, McNulty SG, DeForest JL, Sun G, Li Q, Chen J. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest [J]. New Phytologist,2008,179:818-828.
    [136]Odum EP. Fundamentals of ecology [M]. Philadelphia:W.B. Saunders Company, 1959.
    [137]Odum EP. Tidal marshes as outwelling/pulsing systems [A]. In:Weinstein MP, Kreeger DA. Concepts and controversies in tidal marsh ecology [M]. Dordrecht: Kluwer Academic Publishers,2000.
    [138]OECD Guidelines for aid agencies for improved conservation and sustainable use of tropical and subtropical wetlands [R]. Paris:Organization for Economic Co-operation and Development,1996.
    [139]Oechel WC, Vourlitis GL, Hastings SJ, Ault RP, Bryant P. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems [J]. Global Change Biology,1998,4:77-90.
    [140]Ohtaki E. Application of an Infrared carbon-dioxide and humidity instrument to studies of turbulent transport [J]. Boundary-Layer Meteorology,1984,29: 85-107.
    [141]Otto S, Groffman PM, Findlay SEG, Arreola AE. Invasive plant species and microbial processes in a tidal freshwater marsh [J]. Journal of Environmental Quality,1999,28:1252-1257.
    [142]Penman HL. The earth's potential [J]. Science Jour,1968,4:43-47.
    [143]Pennings SC, Callaway RM. Salt marsh plant zonation:The relative importance of competition and physical factors [J]. Ecology,1992,73:681-690.
    [144]Pimentel D, Lach L, Zuniga R, Morrison D. Environmental and economic costs associated with nonindigenous species in the United States [J]. Biological Invasions,2002:285-303.
    [145]Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O'Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T. Economic and environmental threats of alien plant, animal, and microbe invasions [J]. Agriculture Ecosystems & Environment,2001,84:1-20.
    [146]Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. Terrestrial ecosystem production-A process model-based on global satellite and surface data [J]. Global Biogeochemical Cycles,1993,7:811-841.
    [147]Prince SD, Goward SN. Global primary production:A remote sensing approach [J]. Journal of Biogeography,1995,22:815-835.
    [148]Purvaja R, Ramesh R. Natural and anthropogenic methane emission from coastal wetlands of South India [J]. Environmental Management,2001,27:547-557.
    [149]Qi Y, Xu M, Wu JG. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget:Nonlinearity begets surprises [J]. Ecological Modelling, 2002,153:131-142.
    [150]Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B, Vorosmarty CJ. Potential net primary productivity in South-America-Application of a global-model [J]. Ecological Applications,1991, 1:399-429.
    [151]Ravit B, Ehrenfeld JG, Haggblom MM. A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey [J]. Estuaries,2003,26:465-474.
    [152]Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm [J]. Global Change Biology,2005,11: 1424-1439.
    [153]Reidenbaugh TG, Banta WC. Origin and effects of Spartina wrack in a Virginia salt marsh [J]. Gulf Research Reports,1980,6:393-401.
    [154]Rodenbeck C, Houweling S, Gloor M, Heimann M. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport [J]. Atmospheric Chemistry and Physics,2003,3:1919-1964.
    [155]Roman CT, Daiber FC. Organic-carbon flux through a Delaware Bay salt-marsh-Tidal exchange, particle-size distribution, and storms [J]. Marine Ecology-Progress Series,1989,54:149-156.
    [156]Ruimy A, Dedieu G, Saugier B. TURC:A diagnostic model of continental gross primary productivity and net primary productivity [J]. Global Biogeochemical Cycles,1996,10:269-285.
    [157]Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data [J]. Remote Sensing of Environment, 1999,70:108-127.
    [158]Running SW, Thornton PE, Nemani RR, Glassy JM. Global terrestrial gross and net primary productivity from the Earth Observing System [A]. In:Sala OE, Jackson RB, Odum EP, Mooney HA. Methods in ecosystem science [M]. New York:Springer-Verlag,2000:44-57.
    [159]Russell G, Arvis P, Monteith JL. Absorption of radiation by canopies and stand growth [A]. In:Russell G, Jarvis P, Monteith JL. Plant canopies:Their growth, form and function [M]. Cambridge:Cambridge University Press,1989:21-40.
    [160]Sahagian D, Melack J. Global wetland distribution and functional characterization:Trace gases and the hydrologic cycle, IGBP Report 46 [R]. Stockholm:Geosphere Biosphere Programme Secretariat,1988.
    [161]Schmid HP. Footprint modeling for vegetation atmosphere exchange studies:a review and perspective [J]. Agricultural and Forest Meteorology,2002,113: 159-183.
    [162]Schmid HP, Lloyd CR. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas [J]. Agricultural and Forest Meteorology, 1999,93:195-209.
    [163]Schotanus P, Nieuwstadt FTM, de Bruin HAR. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes [J]. Boundary-Layer Meteorology,1983,26:81-93.
    [164]Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions [J]. Journal of Ecology,1996,84:219-228.
    [165]Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A. Exchange of greenhouse gases between soil and atmosphere:Interactions of soil physical factors and biological processes [J]. European Journal of Soil Science,2003,54: 779-791.
    [166]Smith VC, Bradford MA. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time [J]. Applied Soil Ecology, 2003,24:197-203.
    [167]Stoy PC, Katul GG, Siqueira MBS, Juang JY, McCarthy HR, Kim HS, Oishi AC, Oren R. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests:a wavelet analysis [J]. Tree Physiology,2005,25:887-902.
    [168]Swinbank WC. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere [J]. Journal of Meteorology,1951,8:135-145.
    [169]Syed KH, Flanagan LB, Carlson PJ, Glenn AJ, Van Gaalen KE. Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta [J]. Agricultural and Forest Meteorology,2006,140:97-114.
    [170]Tans PP, Fung IY, Takahashi T. Observational constraints on the global atmospheric CO2 budget [J]. Science,1990,247:1431-1438.
    [171]Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay-rates-a microcosm test [J]. Ecology,1989,70:97-104.
    [172]Taylor DI, Allanson BR. Organic-carbon fluxes between a high Marsh and estuary, and the inapplicability of the outwelling hypothesis [J]. Marine Ecology-Progress Series,1995,120:263-270.
    [173]Teal JM. Energy flow in the salt marsh ecosystem of Georgia [J]. Ecology,1962, 43:614-624.
    [174]Teal JM, Howes BL. Salt marsh values:Retrospection from the end of the century [A]. In:Weinstein MP, Kreeger DA. Concepts and controversies in tidal marsh ecology [M]. Dordrecht:Springer-Verlag,2000:9-19.
    [175]Templer P, Findlay S, Wigand C. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem[J]. Wetlands,1998,18:70-78.
    [176]Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao MS, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE. Evaluation of MODIS NPP and GPP products across multiple biomes [J]. Remote Sensing of Environment,2006, 102:282-292.
    [177]Turner DP, Ritts WD, Cohen WB, Gower ST, Zhao MS, Running SW, Wofsy SC, Urbanski S, Dunn AL, Munger JW. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation [J]. Remote Sensing of Environment,2003,88:256-270.
    [178]Turner DP, Ritts WD, Cohen WB, Maeirsperger TK, Gower ST, Kirschbaum AA, Running SW, Zhao MS, Wofsy SC, Dunn AL, Law BE, Campbell JL, Oechel WC, Kwon HJ, Meyers TP, Small EE, Kurc SA, Gamon JA. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring [J]. Global Change Biology,2005,11:666-684.
    [179]Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M. A cross-biome comparison of daily light use efficiency for gross primary production [J]. Global Change Biology,2003,9:383-395.
    [180]Turner RE, Woo SW, Jitts HR. Estuarine influences on a continental-shelf plankton community [J]. Science,1979,206:218-220.
    [181]Valentini R, DeAngelis P, Matteucci G, Monaco R, Dore S, Mugnozza GES. Seasonal net carbon dioxide exchange of a beech forest with the atmosphere [J]. Global Change Biology,1996,2:199-207.
    [182]Valiela IJW, Buchsbaum R, Riestsma C. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores [J]. Bulletin of Marine Science,1984,35:261-269.
    [183]Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RJ. Eddy fuxes of CO2, water-vapor, and sensible heat over a deciduous forest [J]. Boundary-Layer Meteorology,1986,36:71-91.
    [184]Verma SB, Kim J, Clement RJ. Carbon-dioxide, water-vapor and sensible heat fluxes over a tallgrass prairie [J]. Boundary-Layer Meteorology,1989,46:53-67.
    [185]Vermetten AWM, Ganzeveld L, Jeuken A, Hofschreuder P, Mohren GMJ. CO2 uptake by a stand of Douglas-fir-Flux measurements compared with model-calculations [J]. Agricultural and Forest Meteorology,1994,72:57-80.
    [186]Vince SW, Snow, A A. Plant zonation in an Alaskan salt marsh. I. Distribution abundance and environmental factors [J]. Journal of Ecology,1984,72:651-667.
    [187]Wang CH, Tang L, Fei SF, Wang JQ, Gao Y, Wang Q, Chen JK, Li B. Determinants of seed bank dynamics of two dominant helophytes in a tidal salt marsh [J]. Ecological Engineering,2009,35:800-809.
    [188]Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B. Effects of growing conditions on the growth of and interactions between salt marsh plants: Implications for invasibility of habitats [J]. Biological Invasions,2006,8: 1547-1560.
    [189]Waring RH, Law BE, Goulden ML, Bassow SL, McCreight RW, Wofsy SC, Bazzaz FA. Scaling gross ecosystem production at Harvard Forest with remote-sensing-A comparison of estimates from a constrained quantum-use efficiency model and eddy-correlation [J]. Plant Cell and Environment,1995,18: 1201-1213.
    [190]Webb EK, Pearman GI, Leuning R. Correction of flux measurement for density effects due to heat and water vapour transfer [J]. Quarterly Journal of the Royal Meteorological Society,1980,106:85-100.
    [191]Williams TM, Wolaver TG, Dame RF, Spurrier JD. The Bly creek ecosystem study-Organic-carbon transport within a Euhaline salt-marsh basin, North Inlet, South-Carolina [J]. Journal of Experimental Marine Biology and Ecology,1992, 163:125-139.
    [192]Windham L. Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA [J]. Wetlands,2001,21:179-188.
    [193]Windham L, Ehrenfeld JG Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh [J]. Ecological Applications,2003,13: 883-896.
    [194]Windham L, Lathrop RG Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey [J]. Estuaries,1999,22:927-935.
    [195]Windham L, Meyerson LA. Effects of common reed(Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US [J]. Estuaries,2003,26:452-464.
    [196]Windham L, Weis JS, Weis P. Metal dynamics of plant litter of Spartina alterniflora and Phragmites australis in metal-contaminated salt marshes. Part 1: Patterns of decomposition and metal uptake [J]. Environmental Toxicology and Chemistry,2004,23:1520-1528.
    [197]Winter PED, Schlacher TA, Baird D. Carbon flux between an estuary and the ocean:A case for outwelling [J]. Hydrobiologia,1996,337:123-132.
    [198]Witkowski ETF. Effects of nutrient additions on litter production and nutrient return in a nutrient-poor Cape fynbos ecosystem [J]. Plant and Soil,1989,117: 227-235.
    [199]Witkowski ETF. Effects of invasive alien acacias on nutrient cycling in the coastal lowlands of the Cape fynbos [J]. Journal of Applied Ecology,1991,28: 1-15.
    [200]Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA. Net exchange of CO2 in a midlatitude forest [J]. Science,1993, 260:1314-1317.
    [201]Wolff WJ, van Eeden M N, Lammens E. Primary production and import of particulate organic matter on a salt marsh in the Netherlands [J]. Netherlands Journal of Sea Research,1979,13:242-255.
    [202]Woo I, Zedler JB. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha x glauca? [J]. Wetlands,2002,22:509-521.
    [203]Wu JB, Guan DX, Sun XM, Zhang M, Shi TT, Han SJ, Jin CJ. Photosynthetic characteristics of dominant tree species and canopy in the broadleaved Korean pine forest of Changbai Mountain [J]. Science in China:Series D,2006,49: 89-96.
    [204]Wu JB, Xiao XM, Guan DX, Shi TT, Jin CJ, Han SJ. Estimation of the gross primary production of an old-growth temperate mixed forest using eddy covariance and remote sensing [J]. International Journal of Remote Sensing,2009, 30:463-479.
    [205]Wu JH, Fu CZ, Lu F, Chen JK. Changes in free-living nematode community structure in relation to progressive land reclamation at an intertidal marsh [J]. Applied Soil Ecology,2005,29:47-58.
    [206]Wu WX, Wang SQ, Xiao XM, Yu GR, Fu YL, Hao YB. Modeling gross primary production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS imagery and climate data [J]. Science in China Series D-Earth Sciences, 2008,51:1501-1512.
    [207]Xiao XM, Boles S, Frolking S, Salas W, Moore B, Li C, He L, Zhao R. Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images [J]. International Journal of Remote Sensing,2002a,23: 3579-3594.
    [208]Xiao XM, Boles S, Frolking S, Salas W, Moore B, Li C, He L, Zhao R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using Vegetation sensor data [J]. International Journal of Remote Sensing,2002b,23:3009-3022.
    [209]Xiao XM. Light absorption by leaf chlorophyll and maximum light use efficiency [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:1933-1935.
    [210]Xiao XM, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang QY, Moore B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest [J]. Remote Sensing of Environment,2004,89:519-534.
    [211]Xiao XM, Zhang QY, Braswell B, Urbanski S, Boles S, Wofsy S, Berrien M, Ojima D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment, 2004,91:256-270.
    [212]Xiao XM, Zhang QY, Hollinger D, Aber J, Moore B. Modeling gross primary production of an evergreen needleleaf forest using modis and climate data [J]. Ecological Applications,2005,15:954-969.
    [213]Xiao XM, Zhang QY, Saleska S, Hutyra L, De Camargo P, Wofsy S, Frolking S, Boles S, Keller M, Moore B. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest [J]. Remote Sensing of Environment,2005,94:105-122.
    [214]Xu LK, Baldocchi DD. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California [J]. Agricultural and Forest Meteorology,2004,123:79-96.
    [215]Xu LK, Baldocchi DD, Tang JW. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature [J]. Global Biogeochemical Cycles,2004,18:doi:10.1029/2004GB002281.
    [216]Yamamoto S, Murayama S, Saigusa N, Kondo H. Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan [J]. Tellus Series B-Chemical and Physical Meteorology,1999,51:402-413.
    [217]Yamaji T, Sakai T, Endo T, Baruah PJ, Akiyama T, Saigusa N, Nakai Y, Kitamura K, Ishizuka M, Yasuoka Y. Scaling-up technique for net ecosystem productivity of deciduous broadleaved forests in Japan using MODIS data [J]. Ecological Research,2008,23:765-775.
    [218]Yan H, Fu Y, Xiao X, Huang HQ, He H, Ediger L. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data [J]. Agriculture Ecosystems & Environment, 2009,129:391-400.
    [219]Yan Y, Zhao B, Chen JQ, Guo HQ, Gu YJ, Wu QH, Li B. Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series [J]. Global Change Biology,2008,14:1690-1702.
    [220]Yang SL, Li M, Dai SB, Liu Z, Zhang J, Ding PX. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management [J]. Geophysical Research Letters,2006,33:6408-6408.
    [221]Zedler JB, Kercher S. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes [J]. Critical Reviews in Plant Sciences, 2004,23:431-452.
    [222]Zedler JB, Kercher S. Wetland resources:Status, trends, ecosystem services, and restorability [J]. Annual Review of Environment and Resources,2005,30:39-74.
    [223]Zhao B, Guo H, Yan Y, Wang Q, Li B. A simple waterline approach for tidelands using multi-temporal satellite images:A case study in the Yangtze Delta [J]. Estuarine, Coastal and Shelf Science,2008,77:134-142.
    [224]Zhao B, Yan Y, Guo HQ, He MM, Gu YJ, Li B. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators:An application in the Yangtze River Delta area [J]. Ecological Indicators,2009,9: 346-356.
    [225]陈中义.互花米草入侵国际重要湿地崇明东滩的生态后果[D].上海:复旦大学,2004.
    [226]顾永剑,高宇,郭海强,赵斌.崇明东滩湿地生态系统碳通量贡献区分析[J].复旦学报,2008,47:374-379.
    [227]李博,徐炳声,陈家宽.从上海的杂草区系特征剖析植物入侵的一般特征[J].生物多样性,2001,8:446-457.
    [228]刘树华.近地面层湍流通量研究方法概述-中国农业小气候研究进展[M].北京:气象出版社,1993.
    [229]彭容豪.互花米草对河口盐沼生态系统氮循环的影响:上海崇明东滩实例研究[D].上海:复旦大学,2010.
    [230]宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23:622-628.
    [231]王庚辰.陆地生态系统温室气体排放(吸收)测量方法简评[J].气候与环境研究,1997,2:251-263.
    [232]王卿.互花米草入侵对长江口盐沼植被时空动态的影响[D].上海:复旦大学,2007.
    [233]肖强,郑海雷,叶文景,陈瑶,朱珠.水淹对互花米草生长及生理的影响[J].生态学杂志,2005,24:1025-1028.
    [234]徐宏发,赵云龙.上海市崇明东滩鸟类自然保护区科学考察集[M].北京:中国林业出版社,2005.
    [235]杨红霞,王东启,陈振楼,许世元.长江口崇明东滩潮间带温室气体排放初步研究[J].海洋环境科学,2006,25:20-23.
    [236]于贵瑞,王秋凤,于振良.陆地生态系统水-碳耦合循环与过程管理研究[J]. 地球科学进展,2004,19:833-838.
    [237]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.
    [238]赵广琦,张利权,梁霞.芦苇与入侵种互花米草的光合特性比较[J].生态学报,2005,25:1604-1611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700