离子膜电解法用于小苏打母液脱盐实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以天然碱为原料加工生产小苏打是小苏打生产的主要方法,对于采用溶采方法开采的天然碱矿其小苏打母液(废碱液)循环使用时,由于氯化钠的不断累积,使循环母液的含盐量增加,从而直接影响天然碱矿的回采率和利用率,并且进一步使生产小苏打的质量下降,大量碳酸钠、碳酸氢钠随小苏打母液排掉,不仅浪费了资源,而且造成了环境的污染,因此需要对小苏打母液进行脱盐处理。
     本文研究了离子膜电解的方法用于天然碱生产小苏打母液电解脱盐,并回收碳酸钠、碳酸氢钠的可行性,探索采用天然碱生产小苏打过程中新的盐碱分离技术。实验首先进行了电解体系的选择,通过对比阴、阳离子膜电解槽电解实验,确定以阴离子膜电解槽对母液进行电解脱盐处理。针对阴离子膜电解的方法,探讨了不同阴离子膜、不同电流密度和不同的阳极电解液及其浓度对小苏打母液电解脱盐电流效率及电解能耗的影响。实验研究结果表明,在小苏打母液电解脱盐过程中,AMI均相阴离子膜对氯离子具有较好的选择透过性,并且其化学性能及机械性能稳定;电解过程中电流效率较高时的电流密度范围为2500-3000A/m2;最后确定了阴离子膜电解槽阳极所采用的最佳电解液及其浓度为25%氯化钠溶液或25%氢氧化钠溶液。
     天然碱生产小苏打过程中的循环母液经离子膜电解脱盐处理后可继续用于注井洗矿,从而保障天然碱矿体中氯化钠不至于富集,实现小苏打母液的循环利用、清洁化生产,从原理上为含盐碱矿的天然资源的合理开发利用找到一条较为理想的工艺方法。
The baking soda is produced by trona as the main method of production of baking soda. When the trone mining is exploited by dissolve mining methods, Mine will produce a large number of filtration, centrifugation mother liquor (spent caustic). When the filtration, centrifugation mother liquor recycling, due to the continuous accumulation of sodium chloride, this will result in the salt content of mother liquor increases, and thus directly affect the recovery rate and utilization of alkaline mineral. This will also enable the production decline in the quality of baking soda. A lot of sodium carbonate, sodium bicarbonate with the filtration, centrifugation mother liquor is drained. This is not only a waste of resources, but also caused environmental pollution.
     This paper preliminarily studies on the feasibility of the ion-exchange membrane electrolysis technique to desalination and explores new salt separation technology. The salt will be removed by ion-exchange membrane electrolysis from filtration, centrifugation mother liquor, and sodium carbonate, sodium bicarbonate will be recovered, through the anion and cation membrane electrolysis experiment, anion-exchange membrane electrolysis technique is adopted for the mother liquor desalination. For the anion-exchange membrane electrolysis technique, dicussing the influence of different anion membrane different current densities and different anode electrolyte on current efficiency and electrolysis energy consumption of desalination. The results of experiment showed that AMI homogeneous anion membrane is very well in chemical stability, mechanical strength and selectivity for chloride. The optimum current density is 2500-3000A/m2. The optimum anode electrolyte and its concentration is 25% sodium chloride solution or 25% sodium hydroxide solution.
     Trona mother liquid which is treated by ion-exchange membrane electrolysis can be used for the injection and well washing. This could protect the trone low concentration in sodium chloride and achieve recycling, clean production. In principle, with salt mines for the rational development and utilization of natural resources, we can find a more satisfactory process.
引文
[1]田晓丽,张凤英.循环水溶采天然碱贫尾矿技术的开发应用[J].纯碱工业,2002,(1):22-23
    [2]郑大中,郑若锋.天然碱矿床及其盐湖形成机理初探[J].盐湖研究,2002,10(2):1-8
    [3]王敦华.我国天然碱资源及开发利用概况[J].盐湖研究,990,(3):43-45
    [4]张晓梅.天然碱矿石中硫酸根含量的快速测定[J].化工矿物与加工,2004,(8):32-33
    [5]大连化工研究设计院.纯碱工学(第二版)[M],北京:化学工业出版社,2004.65-66
    [6]李武.中国天然碱工业[M].北京:化学工业出版社,1994.197-198
    [7]张毓海.内蒙古化学史研究Ⅶ.天然碱的早期开采与应用[J].内蒙古工业大学学报,1995,14(4):73-79
    [8]孟翠鸣.天然碱和天然小苏打资源及开发动态[J].化工矿产地质,2001,23(3):191-192
    [9]王方强,李浩.吴城天然碱矿溶采理论与实践[J].化工矿山技术,1993,23(2):21-23
    [10]付玉华,徐旺生,杨海域.溶解开采深埋型天然碱时存在的问题及对策[J].化学工业与工程技术,1998,19(4):26-28
    [11]张晨鼎.水平钻井溶采天然碱技术的进展[J].纯碱工业,2004,(1):10-13
    [12]张宁.杂卤石溶采过程溶解平衡预测与柱浸模拟实验[D].成都:成都理工大学,2007
    [13]安莲英,殷辉安,唐明林,郝丽芳.溶浸开采杂卤石的机理及可行性研究[J].矿业工程,2004,24(3):5-7
    [14]李武.中国天然碱工业[M].北京:化学工业出版社.197-198
    [15]张晨鼎.美国在开发科罗拉多苏打石矿床资源[J].纯碱工业,1999,(6):13-15
    [16]刘进荣,张晨鼎,王红旺等.天然碱蒸发过程的相图分析与计算[J].纯碱工业,1994,(4):14-23
    [17]王红旺,贺占海,刘忠义.天然碱碳酸化法生产纯碱的相图分析与相图计算[J].纯碱工业,2004,(5):19-25
    [18]王红旺,武朝军,刘忠义.天然碱碳化法制小苏打(或纯碱)相图计算[J].纯碱工业,2000,(6):2-10
    [19]李小森,张通,王红旺.内蒙古天然碱液五元体系的相图研究[J].纯碱工业,1994,(4):9-13
    [20]李小森,张晨鼎,张通.内蒙古天然碱液四元体系的相图研究[J].纯碱工业,1994,(4):1-8
    [21]Liu he, Yi shou zhi, Wu yan, Wu jia quan. Research on Turbidity Removal and Byproduct Magnesium Hydroxide in Alkalify Flocculation Desalination Pretreatment. Environmental Science and Information Application Technology Vol. 1[C],2009:665-668
    [22]Bi jun Luo, Xin hua Zhao. Study on Water Quality Chemical Stability of Desalinated Seawater in Municipal Water Supply Systems. Environmental Science and Information Application Technology Vol.1 [C],2009:344-348
    [23]宣叔衡.浅论天然碱卤水制纯碱中盐碱的分离方法[J]化工设计,1999,9(3):18-20
    [24]赵天源,曾之平,任保增.吴城盐碱矿的盐碱分离实验研究[J].纯碱工业,1993,(2):1-4
    [25]李邦民.淡盐水脱氯技术浅析[J].氯碱工业,2001,(5):8-9
    [26]汤义武,舒余德,蒋汉瀛.电渗电解脱盐过程的数学模型[J].中南工业大学学报,1999,30(1):31-33
    [27]赵天源,赵红坤,曾之平,任红宇,李伟然.天然盐碱矿生产倍半碱和食盐的工艺路线简析[J]郑州大学学报(工学版),1998,19:35-37
    [28]王树卿,陈增荣,苏占虎.用天然碱生产小苏打母液综合利用的相图分析[J]小苏打工业,1997,5:38-42
    [29]邱会仙,杜和兵.安棚碱矿生产系统中循环脱盐的可行性分析[J]纯碱工业,2007,(1):24-25
    [30]Alan B. Cancy, Syracuse; Theodore J. Jenczewski, Sherrill, bothofN. Y. Electrodialytic Process [P]. US4219396,1980-08-26
    [31]Krishnamurthy Mani, Denville; Frederick P. Chlanda, Rockaway, both of N.J. Preparing Alkall Metal Hydroxide by Water Splitting and Hydrolysis [P]. US4391680, 1983-05-05
    [32]Joseph M.Ilardi, De Witt, N. Y.; David Goldstein, East brunswich, N.J. Solution Mining of Trona or Nahcolite Ore with Aqueous NAOH and HCL Solvents [P]. US4498706,1985-02-12
    [33]陈薇,邓冰葱.电化学在环境工程领域中的应用[J]化学与粘合,2004,(04):226-229
    [34]高盐生,董江庆.电化学技术在环境污染治理中的应用[J]内蒙古环境科学,2008,(01):81-83
    [35]侯峰岩,俞彩云.现代电化学技术与环境保护[J]化工环保,2003,23(05):274-278
    [36]徐铜文,黄川徽.双极膜电渗析再生有机胺类脱硫剂的方法[P].中国专利,200510038208.3.2008-12-10
    [37]Kim D H, Moon S H, Cho J. Investigation of the adsorption and transport of natural organic matter(NOM)in ion-exchange membranes[D]. Desalination,2002,151:11-20
    [38]Xu T W. Ion exchange membranes:State of their development and perspective[J]. J Membr Sci,2005,263:1-29
    [39]Alheritiere C., Ernst W.R., and Davis T.A., Metathesis of magnesium and sodium salt systems by electrodialysis[J].Desalination,1998,115(6):190
    [40]J. L. Gineste, G. Pourcelly. Analysis of factors limiting the use of bipolar membranes: a simplified model to determine trends[J]. Journal of Membrane Science,1996,112:199-208
    [41]张梅玲,尉东升,陶阳宇等.离子膜电解技术在废水处理中的应用研究进展[J].工业水处理,2006,26(8):5-8
    [42]钟飞.草浆黑液膜辅助电解处理的试验性研究[D]南京;南京航空航天大学,2002
    [43]吴辉煌.电化学工程基础[M].北京:化学工业出版社,2008.20-22
    [44]V.A. Shaposhnik, K. Kesore. An early history of electro dialysis with perm selective membranes[J] Journal of Membrane Science,1997,136:35-39
    [45]Hong-Joo Lee, Jae-Hwan Choi, Jaeweon Cho, Seung-Hyeon Moon. Characterization of anion exchange membranes fouled with humate during electrodialysis[J]. Journal of Membrane Science,2002,203:115-126
    [46]Satish J, Parulekar. Optimal current and voltage trajectories for minimum mergeconsumption in batch electrodialysis. Journal of Membrane Science,1998, 148:91-103
    [47]Yoshinobu Tanaka.Mass transport and merge consumption in ion-exchangemembrane electrodialysis of seawater. Journal of Membrane Science,2003,215:265-279
    [48]时钧,袁泉,高从增.膜技术手册[M].北京:化学工业出版社,2001
    [49]钟飞,薛建军.单阳膜电渗析处理草浆黑液碱回收的研究[J].南京航空航天大学学报,2002,34(3):270-274
    [50]谭翎燕.离子交换膜技术及其在钨工业中的应用[J].过滤与分离,200,12(1):27-31
    [51]高锁成,张文静.离子膜鼓泡的原因及预防措施[J].中国氯碱,2009,(4):11-13
    [52]郭彬,张波,赵福昌.离子膜性能下降因素及危害[J]氯碱工业,2002,(2):16-17
    [53]谢建治.钠碱法烟气脱硫废液的膜电解再生技术及机理研究[D].天津:天津大学,2006
    [54]杜世勇.全氟离子交换膜的结构模型[J].水处理技术,1990,16(1):47-49
    [55]张国俊,孟洪,王三反等.孔道电位封闭及“空穴”传递理论初探[J].环境化学,2002,21,(5):417-422.
    [56]孟洪,彭昌盛,卢寿慈.离子交换膜的选择透过性机理[J].北京科技大学学报,2002,24(6):656-660.
    [57]刘丽梅.钠碱再生循环脱硫液中金属离子的溶解平衡特性[D].天津:天津大学,2007
    [58]张丽亚.脱硫吸收液膜电解再生过程的研究[D].天津:天津大学,2007
    [59]任艳琴.燃煤烟气脱硫富液固液分离特性的研究[D].天津:天津大学,2007
    [60]李铁云,陈哲.化工生产对总控工的素质要求[J]内蒙古石油化工,2010,(1):42-43
    [61]程殿斌.离子膜法制碱生产技术[M].北京:化学工业出版社,1998.30-31
    [62]李狄.电化学原理(修订版)[M].北京:北京航空航天大学出版社,1999.22-57
    [63]吴守国,袁悼斌.电化学原理[M].合肥:中国科学技术大学出版社,2006
    [64]梁艳,殷宪立.电解槽加酸的探讨[J].中国氯碱,2009,(7):17-18
    [65]姚宁宁.膜电解技术在碱溶碳分法氧化铝生产新工艺中的应用研究[D].北京:北京化工大学,2010
    [66]邢家悟,康建忠,韩艳华等.单极式离子膜法电解槽[P].中国专利,CN1407139A.2003-4-2
    [67]邢家悟,王伟红,张良虎等.复极式自然循环离子膜电解槽[P].中国专利,CN1189600C.2005-2-16
    [68]慎义勇,郑智慧,支男刚等.阴离子膜电解槽[P].中国专利,00240479.6.2001-11-14
    [69]杨鸿.离子膜电解槽阴、阳极极片涂层调研[J].氯碱工业,2002,(1):11-15
    [70]吴楼涛,李永刚.离子膜法氯碱技术的发展及建议[J]化工进展,2003,22(8):876-880
    [71]林冠发.氯碱电解槽槽电压构成现状与进展[J]中国氯碱,2002,(4):6-10
    [72]谢毅龙.离子膜电解槽阴极电流效率计算[J].氯碱工业,2005,(10):17-20
    [73]辛经萍.浅析离子膜电解槽电流效率的影响因素[J].氯碱工业,2005,(10):15-16
    [74]陆民廷.高电流密度离子膜烧碱电解槽性能比较[J].广西轻工业,2009,(4):36-37
    [75]邢家悟,王伟红.关于离子膜电解槽直流电耗的探讨[J].中国氯碱,2003,(12):13-15
    [76]宣庆国.影响槽电压的因素及降低措施[J]中国氯碱,2003,(1):14-15
    [77]王世荣,李永华.改性隔膜电解槽操作的优化[J]氯碱工业,2009,45(5):18-20
    [78]王德山,荆天辅.离子膜电解槽电流效率的影响因素[J]氯碱工业,2004,(9):11-14
    [79]王德山.离子膜性能恶化的原因及其经济寿命分析[J]中国氯碱,2005,(2):7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700