碳包覆磁性纳米颗粒的合成、结构及磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包覆磁性纳米颗粒作为一类新型的磁性纳米复合材料受到了研究者们的广泛关注。碳包覆层不仅能够对纳米磁性颗粒起到保护作用使之免疫于外界环境的侵蚀而保持其固有的性质,而且能够赋予磁性纳米颗粒以新颖的性质,如导电性和生物相容性等。碳包覆磁性纳米颗粒不仅在磁性记录介质、铁磁流体等方面具有重要的应用价值,而且在生物传感器、靶向药物载体等方面具有巨大的应用潜力。目前为止合成碳包覆磁性金属纳米颗粒的方法包括电弧放电法、化学气相沉积法、热解法、聚能法和爆炸法等,尽管每种方法都有优缺点,但是这些方法大多需要较高的能量和复杂的实验装置,导致了繁琐的实验操作和较高的成本,因而在实际应用中受到很大限制。发明一种简单而高效的合成碳包覆纳米金属颗粒的方法仍然是一个巨大的挑战。
     本论文综述了碳包覆磁性纳米颗粒的国内外研究现状,系统介绍了这类纳米复合材料的合成方法和应用领域。三聚氰胺是一种重要的有机化工原料,是生产三聚氰胺甲醛树脂(MF)的原料,还可应用于具有阻燃性的热塑性塑料和耐火材料的合成等。据相关文献报道,三聚氰胺既可以作为氮化剂也可以作为碳化剂。在此基础上,我们发明了一种新颖而简单的以三聚氰胺为碳源的热解法来合成碳包覆磁性纳米颗粒。这个方法的实质是三聚氰胺和金属氧化物之间发生的固态复分解反应。此方法中我们以水热法制备的纳米氧化物或复合物纳米颗粒作为金属或合金的前驱体,通过与三聚氰胺在高纯氮气氛中高温条件下的固态复分解反应成功合成出一系列碳包覆纳米磁性颗粒。通过X射线衍射(XRD)、透射电子显微镜(TEM)、高倍透射电子显微镜(HRTEM)、拉曼(Raman)光谱和振动样品磁强计(VSM)等手段对样品进行了表征和测试。主要工作如下:
     1、我们以一步水热法制备的Fe/Fe3O4纳米复合物为金属前驱体,用三聚氰胺作碳源在600-700℃的温度范围内合成出了碳包覆的Fe/Fe3C纳米复合物。TEM和HRTEM表征结果说明:600℃产物颗粒分散于无定形碳基质中;650℃产物为接近球形的石墨包覆的纳米颗粒;700℃产物为石墨包覆的纳米棒。我们根据相关文献报道提出了具有不同微观结构和形态的产物的可能的形成机理,同时对合成过程中所涉及的反应进行了归纳和解释。另外在利用XRD对产物相组成分析的基础上,对产物的磁性能的变化进行了研究。
     2、在上一步合成碳包覆的Fe/Fe3C纳米复合物的基础上,我们通过改变反应条件成功合成出了碳包覆金属Fe单质纳米颗粒。另外我们分别以水热法制备的纳米复合物Fe/Fe3O4、氧化物Co3O4和NiO(经过进一步煅烧得到)为各自金属前驱体,用三聚氰胺作还原剂和碳源合成出了碳包覆金属Co、Ni纳米颗粒。根据XRD分析结果我们将在不同温度条件(650-750℃)下合成的碳包覆金属Co、Ni纳米颗粒样品进行对比发现:没有金属碳化物Co3C、Ni3C的生成。根据文献我们对此进行了解释。除了利用TEM和HRTEM观察确认碳包覆纳米颗粒的石墨壳的存在外,我们还用拉曼(Raman)光谱测试进一步研究了石墨的结晶性。利用VSM在室温条件下测试样品的磁性能,分别探讨了不同温度条件所得的碳包覆金属Co、Ni纳米颗粒样品磁性能的变化。
     3、用一步水热法分别制备的掺杂不同量的Co和Ni的铁钴合金/钴铁氧体、铁镍合金/镍铁氧体纳米复合物为合金前驱体,用三聚氰胺作还原剂和碳源在较低的温度(650℃)条件下合成出了具有不同Co/Fe、Ni/Fe比例的碳包覆合金Fe-Co、Fe-Ni纳米颗粒。另外在合成碳包覆的Fe/Fe3C纳米复合物的基础上,改变反应条件探讨是否有Co或Ni取代的碳化铁(Fe, M)3C (M=Co或Ni)相的生成。XRD表征结果说明产物依然为合金(无碳化物等杂相存在)。从热力学观点我们对此进行了分析和证明。根据由VSM对样品的室温磁性能测试结果,我们分别研究了碳包覆合金Fe-Co、Fe-Ni纳米颗粒样品的磁性能随Co/Fe比和Ni/Fe比的变化规律。
     4、用一步水热法分别制备的掺杂不同量(0.1-0.4)的La或Nd的铁钴合金/钴铁氧体纳米复合物为合金前驱体,用三聚氰胺作还原剂和碳源在高温(700或800℃)条件下合成出了碳包覆的掺杂稀土的Fe-Co合金纳米颗粒。XRD表征结果显示La与Fe、Co形成体心立方(bcc)结构的合金,而Nd以氧化物Nd2O3的形式存在。根据由VSM对样品的室温磁性能测试结果,我们探讨了碳包覆的掺杂稀土La和Nd的Fe-Co合金纳米颗粒的磁性能随稀土La或Nd掺杂量的变化规律。
Carbon-encapsulated magnetic nanoparticles (CEMNPs) have attracted great attention as one kind of novel magnetic nanomaterials. The carbon encapsulation can immunize the nanoparticles against environmental degradation and therefore retain their intrinsic nanocrystalline properties. Moreover, carbon encapsulation can endow these magnetic nanoparticles with better electrical conductivity and higher biocompatibility. CEMNPs not only possess wide applications in magnetic recording media and ferrofluids but also have very promising applications in biosensors and targeted drug delivery.
     Up to date, CEMNPs have been synthesized by various methods, such as arc discharge, chemical vapor dposition (CVD), explosion, thermal decomposition method and cumulative method. Most of these methods, however, involve high energy consumption and require sophisticated apparatus, which typically leads to complicated operation and high costs in terms of practical applications. Therefore, it is still a big challenge to develop a simple and cost-effective method to synthesize CEMNPs.
     In this thesis, we review relevant studies of CEMNPs at home and abroad. Especially we summarize the various synthetic methods of CEMNPs and their several applications. The organic compound melamine (C3N3(NH2)3) is an important chemical raw material, which is extensively used in the syntheses of melamine-formaldehyde resins, flame-retardant thermoplastic polyester and of fireproof materials. It has been reported that melamine can be used both as nitridation reagent and carburization reagent. Here we describe a simple method to synthesize CEMNPs using melamine as the carbon source. The essence of this method is considered to be a modified solid-state metathesis reaction between melamine and metal oxide. In this method, the hydrothermally prepared nanoparticles of metal oxides or alloy/oxide composites are utilized as metal or alloy precursors. A series of CEMNPs have been successfully fabricated through solid-state reactions between melamine and the precursors in ultra pure nitrogen atmosphere. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectrometry and vibrating sample magnetometry (VSM) have been used to characterize the materials. The main work of the thesis is as follows:
     1. Fe/Fe3O4 nanocomposite was firstly prepared by the hydrothermal one-process method and then used as the metal precursor. Fe/Fe3C nanocomposites were synthesized using melamine as the carbon source. The morphology and structure of products were examined by TEM and HRTEM characterization. The nanocrystalline Fe/Fe3C composite particles formed at 600℃are embedded in an amorphous carbon matrix, while the products obtained at 650℃and 700℃are composed of carbon-encapsulated near-sphere and rod-like nanoparticles respectively. The possible formation mechanisms of as-prepared nanostructures with different morphologies are discussed. Meanwhile the involved reactions in the method are summarized. The effects of reaction temperature, reaction time and the amount of melamine on the magnetic properties of products are studied according to XRD and VSM characterizations.
     2. On the basis of the synthesis of carbon-encapsulated Fe/Fe3C nanoparticles, we successfully synthesized carbon-encapsulated Fe nanoparticles by changing reaction conditions. Furthermore, metal oxides Co3O4 and NiO nanoparticles were prepared by hydrothermal method and subsequent calcination and used as metal precursors. Carbon-encapsulated Co and Ni nanoparticles were also successfully fabricated using melamine as reduction reagent and carbon source. The XRD characterization results show that no carbide (Co3C and Ni3C) are formed in the syntheses of carbon-encapsulated Co and Ni nanoparticles repectively, which is different from that of carbon-encapsulated Fe nanoparticles. The reasons for this result are discussed based on relevant literature. Besides XRD, TEM and HRTEM characterizations, Raman spectrometry was employed to examine the crystallinity of the carbon shell of CEMNPs. VSM was used to measure the magnetic properties of materials as a function of magnetic field at room temperature. The effects of temperature on the morphology and magnetic properties of CEMNPs are mainly investigated.
     3. Different amounts of Co and Ni substituted Fe/Fe3O4 nanocomposites were prepared by the one-step hydrothermal method and used as precursors for Fe-Co and Fe-Ni alloy respectively. Carbon-encapsulated Fe-Co and Fe-Ni alloy nanoparticles were formed through solid-state reactions between their respective precursor and melamine. Additionally on the basis of synthesis of Fe/Fe3C nanocomposites, we investigated if the Co or Ni substituted cementite (Fe, M)3C (M=Co or Ni) could be formed simultaneously with alloys by changing reaction conditions. The XRD characterization results reveal that the as-prepared products are still alloys with no carbide impurities. The formation of alloy has been interpreted from the thermodynamic point of view. The magnetic properties of carbon-encapsulted Fe-Co and Fe-Ni alloy nanoparticles with different Co/Fe and Ni/Fe proportion, respectively, have been discussed according to the room temperature VSM measurement results.
     4. Different amounts of La or Nd substituted cobalt-iron alloy/cobalt ferrite nanocomposites were prepared by one-step hydrothermal method. La or Nd subsititued Fe-Co alloy nanoparticles encapsulated in carbon were synthesized using melamine as reduction regent and carbon source. The XRD characterization results reveal that body-centered cubic (bcc) La-Fe-Co alloys are formed while Nd exists in the form of oxide Nd2O3. The effects of the amount of La and Nd substitution on the magnetic properties carbon-encapsulated Fe-Co alloy nanoparticles have been investigated respectively based on VSM measurement results.
引文
[1]Y, Wang and N, Herron, X-Ray Photoconductive Nanocomposites, Science 1996, 273,632-634.
    [2]贺鹏,赵安赤,聚合物改性中纳米复合新技术,高分子通报,2001,2,74-81.
    [3]曹珍元,纳米材料的化工应用与开发,化工新型材料,2000,28,3-5.
    [4]罗必新,纳米复合材料的设计与应用研究,化工文摘,2009年1期,38-39.
    [5]洪伟良,刘剑洪,田德余,罗仲宽,有机--无机纳米复合材料的制备方法化学研究应用,2000,12,132.
    [6]A. H. Lu, E. L. Salabas, and F. Schiith, Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed 2007,46, 1222-1244.
    [7]余声明,纳米磁性技术的发展如日中天,世界产品与技术,2001,6,14-16.
    [8]李湘洲,超微颗粒材料的应用与展望,中国建材科技,1996,5,6-11.
    [9]李玲,向航,功能材料与纳米技术,北学工业出版社,2002,3-5.
    [10]王世华,无机化学教程,科学出版社,2000,305.
    [11]黄祥卉,二氧化硅基纳米磁性复合体的合成、表征及性能研究,湖南大学博士学位论文,2005.
    [12]F. Caruso, M. Spasova, A. Susha, M. Giersig and R. A. Caruso, Magnetic composite nanoparticles and hollow spheres constructed by sequential layering approach, Chem. Mater.2001,13,109-116.
    [13]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature,1985,318,162-163.
    [14]S. Iijima, Helical microtubules of graphitic carbon, Nature,1991,354,56-58.
    [15]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 2004,306,666-669.
    [16]R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, and S. Subramoney, Single Crystal Metals Encapsulated in Carbon Nanoparticles, Science 1993,259, 346-348.
    [17]S. Tomita, M. Hikita, M. Fujii, S. Hayashi and K. Yamamoto, A new and simple method for thin graphitic coating of magnetic metal nanoparticles, Chem. Phys. Lett 2000,316,361-364.
    [18]许并社,门小琴,王晓敏,市野濑英喜,解思深,电弧放电中纳米洋葱状富勒烯生成机理的研究,材料热处理学报,2001,22,9-12.
    [19]Y. Saito, In Carbon Nanotubes:Preparation and Properties, CRC Press:Boca Raton,1997,60,249-251.
    [20]Y. Saito, Nanoparticles and filled nanocapsules, Carbon 1995,33,979-988
    [21]Y. Saito, K. Nishikubo, K. Kawabata and T. Matsumoto, Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge, J. Appl. Phys.1996,80,3062-3067.
    [22]S. Seraphin, D. Zhou, and J. Jiao, Filling the carbon nanocages, J. Appl. Phys. 1996,80,2097-2104.
    [23]X. C. Sun, A. Gutierrez, M. J. Yacaman, X. L. Dong and S. R. Jin, Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni, Mater. Sci. Eng. A 2000,286,157-160.
    [24]X. L. Dong. Z. D. Zhang, S. R. Jin, W. M. Sun, X. G. Zhao, Z. J. Li and Y. C. Chuang, Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane, J. Mater. Res.1999,14,1782-1790
    [25]X. L. Dong, Z. D. Zhang, S. R. Jin, and B. K. Kim, Carbon-coated Fe-Co(C) nanocapsules prepared by arc discharge in methane, J. Appl. Phys.1999,86, 6701-6706.
    [26]Z. D. Zhang, J. G. Zheng, I. Skorvanek. G. H. Wen, J. Kovac, F. W. Wang, J. L. Yu, Z. J. Li, X. L. Dong, S. R. Jin, W. Liu and X. X. Zhang, Shell/core structure and magnetic properties of carbon-coated Fe-Co(C) nanocapsules, J. Phys.. Condens. Matter.2001.13,1921-1929.
    [27]Z. D. Zhang, J. L. Yu, J. G. Zheng, I. Skorvanek, J. Kovac, X. L. Dong, Z. J. Li, S. R. Jin, H. C. Yang, Z. J. Guo, W. Liu, and X. G. Zhao, Structure and magnetic properties of boron-oxide-coated Fe(B) nanocapsules prepared by arc discharge in diborane, Phys. Rev. B 2001,64,024404.
    [28]P. E. Nolan, D. C. Lynch, and A. H. Cutler, Graphite encapsulation of catalytic metal nanoparticles, Carbon 1996.34,817-819.
    [29]T. K. Baker, J. J. Chludzinski, N. S. Dudash, and A. Simoens, The Formation of Filamentous Carbon From Decomposition of Acetylene Over Vanadium and Molybenum, Carbon 1983,21.463-468.
    [30]Z. J. Liu,Z. Y, Yuan, W. Zhou, Z. Xu and L. M. Peng, Controlled Synthesis of Carbon-Encapsulated Co Nanoparticles by CVD, Chem. Vap. Deposition 2001,7, 248-251.
    [31]W. S. Seo, S. M. Kim, Y. M. Kim, X. M. Sun and H. J. Dai, Synthesis of ultrasmall ferromagnetic face-centered tetragonal FePt-graphite core-shell nanocrystals, Small 2008,4,1968-1971.
    [32]Z. Y. Zhong, H. Y. Chen, S. B. Tang, J. Ding, J. Y. Lin and K. L. Tan, Catalytic growth of carbon nanoballs with and without cobalt encapsulation, Chem. Phys. Lett.2000,330,41-47.
    [33]W. Teunissen, F.M.F. de Groot, J. Geus, O. Stephan, M. Tence and C. Colliex, The structure of carbon encapsulated NiFe nanoparticles, J. Catal.2001,204, 169-174.
    [34]S. H. Tsai, C. L. Lee, C. W. Chao and H. C. Shih, A novel technique for the formation of carbon encapsulated metal nanoparticles on silicon, Carbon 2000, 38,781-785.
    [35]P. B. Oliete, T. C. Rojas, A. Fernandez, A. Gedanken, Y. Koltypin, and F. Palacio, Characterisation and magnetic behaviour of nickel nanoparticles encapsulated in carbon, Acta Mater.2004,52,2165-2171.
    [36]Y. Koltypin, A. Fernandez, T. C. Rojas, J. Campora, P. Palma, R. Prozorov, and A. Gedanken, Encapsulation of Nickel Nanoparticles in Carbon Obtained by the Sonochemical Decomposition of Ni(C8H12)2, Chem. Mater.1999,11,1331-1335.
    [37]陈学刚,宋怀河,陈晓红,陈晓红,章颂云,张兴英,纳米Fe/C复合材料的原位合成明,材料研究学报,2002,16,146-150.
    [38]陈学刚,宋怀河,陈晓红,萘和二茂铁共热解制备纳米Fe/C材料的研究,新型碳材料,2000,15,5-8.
    [39]陈晓红,宋怀河,周成,二茂铁加压热解的研究,新型碳材料,2002,17, 10-12.
    [40]H. H. Song and X. H. Chen, Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene, Chem. Phys. Lett.2003,374,400-404.
    [41]H. H. Song, X. H. Chen, X. G. Chen, S. Y. Zhang and H. Q. Li, Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue, Carbon 2003,41,3029-3038.
    [42]P. J. Harris and S. C. Tang, A simple technique for the synthesis of filled carbon nanoparticles, Chem. Phys. Lett.1998,293,53-58.
    [43]C. Yu and J. S. Qiu, Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch, Chem. Eng. Res. Des.2008,86, 904-908.
    [44]W. Z. Wu, Z. P. Zhu, Z. Y. Liu, Y. N. Xie, J. Zhang and T. D. Hu, Preparation of carbon-encapsulated iron carbide nanoparticles by explosion method, Carbon 2003,41,317-321.
    [45]吴卫泽,朱珍平,刘振宇,Fe/C复合纳米材料的制备研究,新型炭材料,2002, 17,4-8.
    [46]S. C. Tsang, J. S. Qiu, P. J. F. Harris, Q. J. Fu and N. Zhang, Synthesis of fullerenic nanoparticles from bio-molecule carbonization, Chem. Phys. Lett. 2000,322,553-560.
    [47]邱介山,安玉良,李杞秀,周颖,杨青,生物基碳包覆纳米材料(Mn.Co)的制备.物理化学学报,2004,20,240-246.
    [48]吕建强,纳米磁性液体制备及性能研究[学位论文],北京交通大学,2006.
    [49]K. F. Einar, F. Heinz and P. Aaron, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic application, J. Aerosol Sci.1998,29,511-535.
    [50]师昌绪,材料大辞典,化学工业出版社,1994,597.
    [51]罗宁,李晓杰,碳包覆纳米金属材料的合成及应用进展,材料开发与应用,2009,24,66-71.
    [52]G. Lalande, D. Guay and J. P. Dodelet, Electroreduction of oxygen in polymer electrolyte fuel cells by activated carbon coated cobalt nanocrystallites produced by electric arc discharge, Chem. Mater.1997,9.784-790.
    [53]T. Herricks, J. Y. Chen, and Y. N. Xia, Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate, Nano Lett.2004,4,2367-2371.
    [54]侯宗林,浅论我国稀土资源与地质科学研究,稀土信息,2003,10,7-10.
    [55]薛峰,论我国稀土产业应走可持续发展之路,稀土信息,2008,9,26-28.
    [56]洪广言,刘玉乐,稀土资源的综合利用与高值化的建议,稀土信息,2004,3,18-20.
    [57]H. A. Dvaies, and Z. W. Liu, The influence of processing, composition and temperature on the magnetic characteristics of nanophase RE-Fe-B alloys, J. Mag. Mag. Mater.2005,294,213-225.
    [58]N. Kimizuka, T. Kawasaki, K. Hirata and T. Kunitake, Tube-like nanostructures Composed of Networks of Complementary Hydrogen Bonds, J. Am. Chem. Soc. 1995,117,6360-6361.
    [59]H. Z. Zhao, M. Lei, X. L. Chen and W. H.Tang, Facile route to metal nitrides through melamine and metal oxides, J. Mater. Chem.2006,16,4407-4412.
    [60]M. Lei, H. Z. Zhao, H. Yang, B. Song and W. H. Tang, Synthesis of transition metal carbide nanoparticles through melamine and metal oxides, J. Euro. Ceram. Soc.2008,28,1671-1677.
    [1]Y. Liu, J. Ling, W. Li and X. G. Zhang, Effective synthesis of carbon-coated Co and Ni nanocrystallites with improved magnetic properties by AC arc discharge under an N2 atmosphere, Nanotechnology.2004,15,43-47.
    [2]W. S. Seo, J. H. Lee, X. M. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. McConnell, D. G. Nishimura and H. J. Dai, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater.2006,5,971-976.
    [3]V. P. David, J. J. Host, M. H. Teng, B. Elliott, J. Hwang, D. L. Johnson. T. O. Mason and J. R. Weertman, Controlled-size nanocapsules, Nature 1995,374, 602-602.
    [4]P. Ripka and G. Vertesy, Sensors based on soft magnetic materials-Panel discussion,J. Magn. Magn. Mater.2000,215-216,795-799.
    [5]R. Narayanan and M. A. El-Sayed, Carbon-supported spherical palladium nanoparticles as potential recyclable catalysts for the Suzuki reaction, J. Catal. 2005,234,348-355.
    [6]N. Lingaiah, M. A. Uddin, A. Muto and Y. Sakata. Hydrodechlorination of chlorinated hydrocarbons over metal-carbon composite catalysts prepared by a modified carbothermal reduction method, Chem. Commun.1999.1657-1658.
    [7]T. J. Goodwin, S. H. Yoo, P. Matteazzi and J. R. Groza, Cementite-iron nanocomposite, Nanostruct. Mater.1997,8,559-566.
    [8]T. Masaru and I. Takayuki, Magnetic Recording Medium. Jap. Pat. JP 6-152793, 1994.
    [9]I. Takashi and T. Kiminori, Jap. Pat. JP 5-001872.1993.
    [10]S. I. Nikitenko, Y. Koltypin, O. Palchik, I. Felner, X. N. Xu and A. Gedanken. Synthesis of Highly Magnetic, Air-Stable Iron-Iron Carbide Nanocrystalline Particles by Using Power Ultrasound, Angew. Chem. Int. Ed.2001,40, 4447-4449.
    [11]S. I. Nikitenko, Y. Koltypin, I. Felner, I. Yeshurun, A. I. Shames, J. Z. Jiang, V. Markovich, V. Markovich, G. Gorodetsky, and A. Gedanken, Tailoring the properties of Fe-Fe3C nanocrystalline particles prepared by sonochemistry, J. Phys. Chem. B 2004,108,7620-7626.
    [12]X. C. Sun and N. Nava, Microstructure and Magnetic Properties of Fe(C) and Fe(O) Nanoparticles, Nano. Lett.2002,2,765-769.
    [13]D. Zhang, S. Y. Wei, C. Kaila, X. Su, J. Wu, A. B. Karki, D. P. Young and Z. H. Guo, Carbon-stabilized iron nanoparticles for environmental remediation, Nanoscale,2010,2,917-919.
    [14]D. Zhang, R. Chung, A. B. Karki, F. Li, D. P. Young and Z. H. Guo, Magnetic and Magnetoresistance Behaviors of Solvent Extracted Particulate Iron Polyacrylonitrile Nanocomposites, J. Phys. Chem. C 2010,114,212-219.
    [15]Z. H. Guo, H. T. Hahn, H. F. Lin, A. B. Karki and D. P. Young, Magnetic and magnetoresistance behaviors of particulate iron/vinyl ester, J. Appl. Phys.,2008, 104,014314.
    [16]Z. H. Guo, S. Park, and H. T. Hahn, Giant magnetoresistance behavior of an iron/carbonized polyurethane, Appl. Phys. Lett.2007,90,053111.
    [17]J. A. Nelson and M. J. Wagner, High Surface Area Nanoparticulate Transition Metal Carbides Prepared by Alkalide Reduction, Chem. Mater.2002,14, 4460-4463.
    [18]U. Narkiewicz, N. Guskos, W. Arabczyk, J. Typek, T. Bodziony, W. Konicki, G. Gazsiorek, I. Kucharewicz and E.A. Anagnostakis, XRD, TEM and magnetic resonance studies of iron carbide nanoparticle agglomerates in a carbon matrix, Carbon,2004,42,1127-1132.
    [19]D. W. Lee, J. H. Yu, B. H. Kim and T. S. Jang, Fabrication of ferromagnetic iron carbide nanoparticles by a chemical vapor condensation process, J. Alloys. Comp.,2008,449,60-64.
    [20]N. Fan, X. C. Ma, Z.C. Ju and J. Li, Formation, characterization and magnetic properties of carbon-encapsulated iron carbide nanoparticles, Mater. Res. Bull. 2008,43,1549-1554.
    [21]S. V. Levchik and E. D. Weil, Flame retardancy of thermoplastic polyesters-a review of the recent literature, Polym. Int.2005,54,11-35.
    [22]Z. Wirpsza, Achievements in the use of melamine as a chemical raw material Part I. General review and melamine-based coating resins and coatings, Polimery,1996,41,265-276.
    [23]M. Lei, H. Z. Zhao, H. Yang, B. Song and W. H. Tang, Synthesis of transition metal carbide nanoparticles through melamine and metal oxides, J. Euro. Ceram. Soc.2008,28,1671-1677.
    [24]H. Z. Zhao, M. Lei, X. L. Chen and W. H Tang, Facile route to metal nitrides through melamine and metal oxides, J. Mater. Chem.2006,16,4407-4412.
    [25]J. Qiu, Y. F. Li, Y. P. Wang, Y. L. An, Z. B. Zhao, Y Zhou and W. Li, Preparation of carbon-coated magnetic iron nanoparticles from composite rods made from coal and iron powders, Fuel Process. Technol.2004,86,267-274.
    [26]V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon,2008,46,833-840.
    [27]E. B. Barrosl, N. S. Demir, A. G. Souza Filho, J. Mendes Filho, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy of graphitic foams, Phys. Rev. B 2005,71,165422.
    [28]K. Shen, S. Curran, H. F. Xu. S. Rogelj, Y. B. Jiang, J. Dewald and T. Pietrass. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion:a combined TEM and resonant micro-raman spectroscopy study. J. Phys, Chem. B,2005,109,4455-4463.
    [29]A. M. Nartowski, I. P. Parkin, A. J. Craven and M. MacKenzie, Rapid, Solid-State Metathesis Routes to Metal Carbides, Adv. Mater.1998,10,805-808.
    [30]A. M. Nartowski, I. P. Parkin, M. MacKenzie and A. J. Craven, Solid state metathesis:synthesis of metal carbides from metal oxides, J. Mater. Chem.2001, 11,3116-3119.
    [31]J. B. Wiley and R. B. Kaner, Rapid Solid-State Precursor Synthesis of Materials, Science,1992,225,1093-1097.
    [32]E. G. Gillan and R. B. Kaner, Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors. Chem. Mater.1996,8, 333-343.
    [33]B. Jurgens, E. Irran, J. Senker, H. Muller and W. Schnick, Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies,J. Am. Chem. Soc.2003,125,10288-10300.
    [34]V. N. Khabashesku, J. L. Zimmerman and J. L. Margrave, Powder Synthesis and Characterization of Amorphous Carbon Nitride, Chem. Mater.2000,12. 3264-3270.
    [35]E. G. Gillan, Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor, Chem. Mater.2000,12,3906-3912.
    [36]B. V. Lotsch and W. Schnick, Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CNx Precursors, Chem. Mater.,2005, 17.3976-3982.
    [37]H. Z. Zhao, M. Lei, X. A. Yang, J. K. Jian and X. L. Chen, Route to GaN and VN Assisted by Carbothermal Reduction Process, J. Am. Chem. Soc.2005,127, 15722-15723.
    [38]T. Gressmann, M. Nikolussi, A. Leineweber and E. J. Mittemeijer, Formation of massive cementite layers on iron by ferritic carburising in the additional presence of ammonia, Scr. Mater.2006,55,723-726.
    [39]M. Aceta, B. Gehrmannb, E. F. Wassermanna, H. Bachc and W. Pepperhoff, Relevance of magnetic instabilities to the properties of interstitial solid solutions and compounds of Fe, J. Magn. Magn. Mater,2001,232,221-230.
    [40]A. G. Ramirez, T. Itoh and R. Sinclair, Crystallization of amorphous carbon thin films in the presence of magnetic media, J. Appl. Phys.1999,85,1508-1513.
    [41]N. Luo, X. J. Li, X. H. Wang, H. T. Yan, F. Mo and W. Sun, Preparation and magnetic behavior of carbon-encapsulated iron nanoparticles by detonation method, Comp. Sci. Technol.,2009,69,2554-2558.
    [42]J. P. Huo, H. H. Song and X. H. Chen, Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene, Carbon, 2004,42,3177-3182.
    [43]V. S. Zaitsev, D. S. Filimonov, I. A. Presnyakov, R. J. Gambino and B. Chu, Physical and Chemical Properties of Magnetite and Magnetite-Polymer Nanoparticles and Their Colloidal Dispersions, J. Colliod Interf. Sci.1999,212, 49-57.
    [44]Y. Leconte, S. Veintemillas-Verdaguer, M. P. Morales, R. Costo, I. Rodriguez, P. Bonville, B. Bouchet-Fabre and N. Herlin-Boime, Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis:Application as MRI contrasts, J. Colliod Interf. Sci.2007,313,511-518.
    [45]K. Tagawa, E. Kita and A. Tasaki, Synthesis of Fine Fe4N Powder and Its Magnetic Characteristics, Jpn. J. Appl. Phys.,1982,21,1596-1598.
    [46]L. Hofer and E. M. Cohn, Oxidation of Hindered Phenols. Ⅶ. Solvent Effects on the Disproportionation of Certain Phenoxy Radicals, J. Am. Chem. Soc.1959, 81,1176-1180.
    [1]R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater.1999,200, 359-372.
    [2]A. Fert and L. Piraux, Magnetic nanowires, J. Magn. Magn. Mater.1999,200, 338-358.
    [3]C.B. Duke, J. Noolandi and T. Thieret, The surface science of xerography, Surf. Sci.2002,500,1005-1023.
    [4]T. J. Senden, K. H. Moock, J. F. Gerald, W. M. Burch, R. J. Browitt, Ch. D. Ling and G. A. Heath, The physical and chemical nature of technegas, J. Nucl. Med. 1997,38,1327-1333.
    [5]A. J. Almeida, S. Runge and R. H. Muller, Peptide-loaded solid lipid nanoparticles (SLN):influence of production parameters, Int. J. Pharm.1997, 149,255-265.
    [6]U.O. Hafeli, Magnetically modulated therapeutic systems, Int. J. Pharm.2004, 277,19-24.
    [7]X. M. Wang, B. S. Xu, H. S. Jia, X. G. Liu and I. Hideki, HRTEM and Raman study of onion-like fullerenes encapsulated Fe, J. Phys. Chem. Solids 2006,67, 871-874.
    [8]J.-H. Hwang, V. P. Draid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson and T. O. Mason, Magnetic properties of graphically encapsulated nickel nanocrystals, J. Mater. Res.1997,12,1076-1082.
    [9]J. J. Host, J. A. Block. K. Parvin, V. P. Dravid, J. L. Alpers, T. Sezen and R. LaDuca, Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals, J. Appl. Phys.1998,83,793.
    [10]G. Cui, Y.-S. Hu, L. Zhi, D. Wu. I. Lieberwirth, J. Maier and K. M€ullen, A one-step approach Towards Carbon-encapsulated Hollow Tin Nanoparticles and Their Application in Lithium Batteries, Small 2007,3,2066-2069.
    [11]Y. W. Ma, Z. Hu, L. S. Yu, Y. M. Hu, B. Yue, X. Z. Wang and Y. Chen. Chemical functionalization of magnetic carbon-encapsulated nanoparticles based on acid oxidation, J. Phys. Chem. B 2006,110,20118-20122.
    [12]P. Gould, Nanoparticles probe biosystems, Mater. Today 2004,2,36-41.
    [13]J. H. Scott and S. A. Majetich, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev. B 1995,52,12564-12571.
    [14]M. E. McHenry, S. A. Majetich, J. O. Artman and M. DeGraef, Phys. Rev. B 1994,49,11358-11363.
    [15]A. A. Bogdanov, C. Martin and R. Weissleder, Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid:preparation of ferrosomes, Biochim. Biophys. Acta 1994,1193,212-218.
    [16]S. Pauser, R. Reszka and S. Wagner, Anti-Cancer Drug Des.112 (1997) 125.
    [17]J. J. Host, M. H. Teng, B. R. Elliott, J.-H. Hwang, T. O. Mason, J. R. Weertman, D. L. Johnson and V.P. Dravid, Graphite encapsulated nanocrystals produced using a low carbon:metal ratio, J. Mater. Res.1997,12,1268-1273.
    [18]B. R. Elliott, J. J. Host, V. P. Dravid, M. H. Teng and J.-H. Hwang, A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters, J. Mater. Res.1997, 12,3328-3344.
    [19]JH. J. Scott and S. A. Majetich, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev. B 1995,52,12564-12571.
    [20]D. S. Jacob, I. Genish, L. Klein and A. Gedanken, Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid, J. Phys. Chem. B 2006,110,17711-17714.
    [21]M. Bystrzejewski, A. Huczko, H. Lange, P. Baranowski, G. Cota-Sanchez and G. Soucy, Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles, Nanotechnology 2007,18,145608-145617.
    [22]W. Z. Wu, Z. P. Zhu, Z. Y. Liu, Y. N. Xie, J. Zhang and T. D. Hu, Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method, Carbon 2003,41,317-321.
    [23]Z. H. Wang, Z. D. Zhang, C. J. Choi and B. K. Kim, Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation, J. Alloys Compd.2003,361,289-293.
    [24]Z. F. Wang, P. F. Xiao and N. Y. He, Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction, Carbon 2006,44,3277-3284.
    [25]N. Kimizuka, T. Kawasaki, K. Hirata and T. Kunitake, Tube-like nanostructures Composed of Networks of Complementary Hydrogen Bonds, J. Am. Chem. Soc. 1995,117,6360-6361.
    [26]H. Z. Zhao, M. Lei, X. L. Chen and W. H.Tang, Facile route to metal nitrides through melamine and metal oxides, J. Mater. Chem.2006,16,4407-4412.
    [27]M. Lei, H. Z. Zhao, H. Yang, B. Song and W. H. Tang, Synthesis of transition metal carbide nanoparticles through melamine and metal oxides, J. Euro. Ceram. Soc.2008,28,1671-1677.
    [28]H. P. Li, N. Q. Zhao, C. N. He, C. S. Shi, X. W. Du and J. J. Li, Fabrication of carbon-coated cobalt nanoparticles by the catalytic method, J. Alloys Compd. 2008,458,130-133.
    [29]Z. Zheng, B. Xu, L. Huang, L. He and X. M. Ni, Novel composite of Co/carbon nanotubes:Synthesis, magnetism and microwave absorption properties, Solid State Sci.2008,10.316-320.
    [30]J. M. Feng, Y. L. Li, F. Hou and X. H. Zhong, Controlled growth of high quality bamboo carbon nanotube arrays by the double injection chemical vapor deposition process, Mater. Sci. Eng. A 2008,473,238-243.
    [31]S. V. Pol, V. G. Pol, G. Seisenbaeva, V. G. Kessler and A. Gedanken, Stabilization of Metastable Face-Centered Cubic Cobalt and the Tetragonal Phase of Zirconia by a Carbon Shell:Reaction under Autogenic Pressure at Elevated Temperature of CoZr2(acac)2(O1Pr)8, Chem. Mater.2004,16,1793-1798.
    [32]J. H. Byeon, J. H. Park, K. Y. Yoon, and J. Hwang, Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner. Nanoscale 2009,1,339-343.
    [33]马晨,瞬间热解法制备碳包覆纳米金属颗粒的研究,北京化工大学硕士学位论文,2009.
    [34]O. P. Krivoruchko and V. I. Zaikovskii, A new phenomenon involving the formation of liquid mobile metal-carbon particles in the low-temperature catalytic graphitisation of amorphous carbon by metallic Fe, Co and Ni, Mendeleev Communications Electronic Version,1998,83-128.
    [35]S. Nagakura, Study of Metallic Carbides by Electron Diffraction Part Ⅰ. Formation and Decomposition of Nickel Carbide, J. Phys. Soc. Jpn.1957,12, 482-494.
    [36]S. Nagakura, Study of Metallic Carbides by Electron Diffraction Part Ⅳ. Cobalt Carbides, J. Phys. Soc. Jpn.1961,16,1213-1219.
    [37]E. P. Sajitha. V. Prasad, S. V. Subramanyam, S. Eto, Kazuyuki Takai and T. Enoki, Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon 2004,42, 2815-2820.
    [38]C. W. Kim, H. G. Cha, Y. H. Kim, A. P. Jadhav, E. S. Ji, D. I. Kang, and Y. S. Kang, Surface Investigation and Magnetic Behavior of Co Nanoparticles Prepared via a Surfactant-Mediated Polyol Process, J. Phys. Chem. C 2009,113, 5081-5086.
    [39]E. P. Wohlfarth, Ferromagnetic materials, Amsterdam:North-Holland,1980, 1-20.
    [1]H. Moumeni, S. Alleg and J. M. Greneche, Structural properties of nanostructured powder prepared by mechanical, J. Alloys Compd.2005,386. 12-19.
    [2]M. Sorescu and A. Grabias, Structural and magnetic properties of Fe50Co50 system, Intermetallics 2002,10,317-321.
    [3]A. Zelenakova, D. Oleksakova, J. Degmova, J. Kovac, P.Kollar, M. Kusy and P. Sovak, Structural and magnetic properties of mechanically alloyed FeCo powders, J. Magn. Magn. Mater.2007,316, e519-e512.
    [4]R. Elkalkouli, M. Grosbras and J. F. Dinhut, Mechanical and magnetic properties of nanocrystalline FeCo alloys produced by mechanical alloying, Nanostruct. Mater.1995,5,733-743.
    [5]E. P. George, A. N. Gubbi, I. Bake and L. Robertson, Mechanical properties of soft magnetic FeCo alloys, Mater. Sci. Eng. A 2002.329,331-325.
    [6]T. Sourmail, Near equiatomic FeCo alloys:Constitution, mechanical and magnetic properties, Prog. Mater Sci.2005,50,816-880.
    [7]K. J. Kim, S. J. Lee and D. W. Lynch, Study of optical properties and electronic structure of ferromagnetic FeCo, Solid State Commun.2000,114,457-460.
    [8]P. S.Yuan, H. Q. Wu, H. Y. Xu, D. M. Xu, Y. J. Cao and X. W. Wei, Synthesis, characterization and electrocatalytic properties of FeCo alloy nanoparticles supported on carbon nanotubes, Mater. Chem. Phys.2007,105,391-394.
    [9]C. Jo, J. Lee and Y. Jang, Electronic and Magnetic Properties of Ultrathin Fe-Co Alloy Nanowires, Chem. Mater.2005,17,2667-2671.
    [10]C.E. Guillaume, C.R. Hebd, Seances Acad. Sci.125 (1897) 235.
    [11]E. Gonzalez, P. Jasen, G. Gonzalez, L. Moro and A. Juan, Hydrogen and carbon interaction in a FeNi alloy with a vacancy, Phys. Status Solidi B 2009,246, 1275-1285.
    [12]Kh. Gheisari, S. Javadpour, J. T. Oh and M. Ghaffari, The effect of milling speed on the structural properties of mechanically alloyed Fe-45% Ni powders, J. Alloys Compd.2009,472,416-420.
    [13]H. P. Li, N. Q. Zhao, C. N. He, C. S. Shi, X. W. Du and J. J. Li, Fabrication of carbon-coated cobalt nanoparticles by the catalytic method, J. Alloys Compd. 2008,458,130-133.
    [14]H. Terrones, F. Lopez-Urias, E.Munoz-Sandoval, J.A. Rodriguez-Manzo, A.Zamudio, A.L. Elias and M. Terrones, Magnetism in Fe-based and carbon nanostructures:Theory and applications. Solid State Sci.2006,8,303-320.
    [15]Z. J. Liu, Z. D. Xu, Z. Y. Yuan, W. X. Chen, W. Z. Zhou and L. M. Peng, A simple method for coating carbon nanotubes with Co-B amorphous alloy, Mater. Lett.2003,57,1339-1344.
    [16]H. Q. Wu, D. M. Xu, Q. Wang, Q. Y. Wang, G. Q. Su and X. W. Wei, Composition-controlled synthesis, structure and magnetic properties of ternary FexCoyNi100-x-y alloys attached on carbon nanotubes, J. Alloys Compd.2008,463, 78-83.
    [17]E. S. Steigerwalt, G. A. Deluga and C. M. Lukehart, Pt-Ru/Carbon Fiber Nanocomposites:Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance, J. Phys. Chem.B 2002,106,760-766.
    [18]G. L. Che, B. B. Lakshmi, C. R. Martin and E. R. Fisher, Metal-Nanocluster-Filled Carbon Nanotubes:Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir 1999, 15,750-758.
    [19]H. Y. Wu, Y. Zhao and Q. Z. Jiao, Nanotube arrays of Zn/Co/Fe composite oxides assembled in porous anodic alumina and their magnetic properties, J. Alloys Compd.2009,487,591-594.
    [20]R. C. Che, L. M. Peng, X. F. Duan, Q. Chen and X.L. Liang. Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes, Adv. Mater.2004,16,401-405.
    [21]A. Winkler, T. Muhl, S. Menzel, R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt and B. Buchner, Magnetic force microscopy sensors using iron-filled carbon nanotubes, J. Appl. Phys.2006,99,104905-1-104905-5.
    [22]I. Monch, A. Meye, A. Leonhardt, K. Kamer, R. Kozhuharova, T. Gemming, M.P. Wirth and B. Buchner, Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells, J. Magn. Magn. Mater. 2005,290,276-278.
    [23]G. Korneva, H. H. Ye, Y. Gogotsi, D. Halverson. G. Friedman, J. C. Bradley and K. G. Kornev, Carbon Nanotubes Loaded with Magnetic Particles, Nano Lett. 2005,5,879-884.
    [24]X. L. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun, X. G. Zhao, Z. J. Lia and Y. C. Chuang, Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane, J. Mater. Res.1999,14,1782-1790.
    [25]X. L. Dong, Z. D. Zhang, S. R. Jin and B. K. Kim, Characterization of Fe-Ni(C) nanocapsules prepared by arc discharge in methane, J. Appl. Phys.1999,86, 6701-6706.
    [26]Z. D. Zhang, J. G. Zheng,I. Skorvanek, G. H. Wen, J. Kovac, F. W. Wang, J. L. Yu, Z. J. Li, X. L. Dong, S. R. Jin, W. Liu and X. X. Zhang, Shell/core structure and magnetic properties of carbon-coated Fe-Co(C) nanocapsules, J. Phys.: Condens. Matter 2001,13,1921-1929.
    [27]W. S. Seo, J. H. Lee, X. M. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. McConnell, D. G. Nishimura and H. J. Dai, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater.2006,5,971-976.
    [28]E. Holodelshikov, E. Perelshtein and A. Gedanken, Synthesis of Air Stable FeCo/C Alloy Nanoparticles by Decomposing a Mixture of the Corresponding Metal-Acetyl Acetonates under Their Autogenic Pressure, Inorg. Chem.2011,50, 1288-1294.
    [29]W. Teunissen, MF de Groot, J. Geus, O. Stephan, M. Tence, C. Colliex, The Structure of Carbon Encapsulated NiFe Nanoparticles, J. Catal.2001,204, 169-174.
    [30]A. Kellou, H. I. Feraoun, T. Grosdidier, C. Coddet, H. Aourag, Energetics and electronic properties of vacancies, anti-sites, and atomic defects (B, C, and N) in B2-FeAl alloys, Acta Mater.2004,52,3263-3271.
    [31]X. R. WANG and M. F. YAN, EFFECT OF COBALT AND NICKEL ON THE STRUCTURAL STABILITY FOR FE3C FIRST-PRINCIPLES CALCULATIONS, Int. J. Mod. Phs.2009,23,1135-1140.
    [32]G. S. Chaubey, C. Barcena, N. Poudyal, C. B. Rong, J. M. Gao, S. H. Sun, J. P. Liu, Synthesis and Stabilization of FeCo Nanoparticles, J. Am. Chem. Soc.2007, 129,7214-7215.
    [33]D. Jiles, Introduction to magnetism and magnetic materials, New York:Taylor &Francis,1998.
    [34]M. Kogachi, N. Tadachi, H. Ishibashi, Magnetism and point defect in B2-type CoFe alloys, Intermetallics,2005,13,535-542.
    [35]H. H. Hamdeh, J. Okamoto, B. Fultz, Temperature dependence of hyperfine magnetic fields in Fe-Co alloys, Phys. Rev. B 1990,42,6694-6696.
    [36]R. N. Panda, N. S. Gajbhiye, Magnetic Properties of nano-crystalline γ-Fe-Ni-N nitride systems,J. Appl. Phys.1999,6,3295-3302.
    [37]X. G. Li, A. Chiba, S. Takahashi, Preparation and magnetic properties of ultrafine particles of Fe---Ni alloys, J. Magn. Magn. Mater.1997,170,339-345.
    [1]C. Jo, J. Lee and Y. Jang. Electronic and Magnetic Properties of Ultra thin Fe-Co Alloy Nanowires, Chem. Mater.2005,17,2667-2671.
    [2]W. S. Seo, J. H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. Mcconnell, D. G. Nishimura and H. J. Dai, FeCo/Graphitic-Shell Nanocrystals As Advanced Magnetic-Resonance-Imaging and Near-Infrared Agents Nat. Mater.2006,5,971-976.
    [3]C. W. Kim, Y. H. Kim, H. G. Cha, H. W. Kwon and Y. S. Kang, Synthesis and Characterization of Highly Magnetized Nanocrystal Line Co3oFe7o Alloy by Chemical Reduction, J. Phys.Chem. B 2006,110,24418-24423.
    [4]Y. Sasaki, S. Tsuboi. N. Kasajima, S. Kitahara and M. Kishimoto, Magnetic and Structural Properties of Nano-Sized Sm-FeCo-B Particles, IEEE Trans. Magn. 2001.37,2204-2206.
    [5]M. Yamada, S. Okumura, K. Takahashi, Synthesis and Film Formation of Magnetic FeCo Nanoparticles with Graphitic Carbon Shells, J. Phys. Chem. Lett. 2010,1.2042-2045.
    [6]J. X. Li, H. Lai, B. Q. Fan, B. Zhuang, L. H. Guan and Z. G. Huang, Electrodeposition of RE-TM (RE=La, Sm, Gd; TM= Fe, Co, Ni) films and magnetic properties in urea melt, J. Alloys Compd.2009,477,547-551.
    [7]J. Russat, G. Suran, H. Ouahmane, M. Rivoire, and J. Sztern, A study of complex permeability in rare earth-substituted cobalt/nonmagnetic transition metal amorphous thin films, J. Appl. Phys.1993,73,5592-5594.
    [8]G. Suran, H. Ouahmane, M. Rivoire and J. Sztem, Static and dynamic magnetic properties of (CoZr)100-x(RE)x amorphous thin films, J. Appl. Phys.1993,73, 5721-5723.
    [9]G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, IEEE Trans. Magn.1990.26,1397-1402.
    [10]席力,周军军,孙青锦,卢建敏,张喆,李发伸,稀土Nd掺杂FeCo内米磁性薄膜的结构和磁性,功能材料,2010年第8期(41)卷,1364-1366。
    [11]M. Q. Huang, W. E. Wallace, and M. E. McHenry. Q. Chen and B. M. Ma, Soft magnetic properties of LaCo13 and La(Co. Fe)13 alloys, J. Appl. Phys.1998,83, 6471-6473.
    [12]X. W. Wei, G. X. Zhu, Y. J. Liu, Y. H. Ni, Y. Song and Z. Xu, Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet Chemistry, Chem. Mater.2008,20,6248-6253.
    [13]S. S. Yan, J. Du, J. L. Weston, G. Zangari and J. A. Barnard, Modulated magnetic properties of hard/soft exchange-coupled SmFe/NiFe multilayers, J. Magn. Magn. Mater.2001,231,241-245.
    [14]王迎,王尔德,纳米复相稀土永磁材料研究进展,粉末冶金技术,2007年第25卷第5期,378-381。
    [15]M. Lei, H. Z. Zhao, H. Yang, B. Song, L. Z. Cao, P. G. Li, W. H. Tang, Syntheses of metal nitrides, metal carbides and rare-earth metal dioxymonocarbodiimides from metal oxides and dicyandiamide, J. Alloys Compd.2008,460,130-137.
    [16]Y. Hashimoto, M. Takahashi,. S. Kikkawa, F. Fukanawa, Syntheses and Crystal Structures of Trigonal Rare-Earth Dioxymonocyanamides, Ln2O2CN2 (Ln=Ce, Pr, Nd, Sm, Eu, Gd), J. Solid. State Chem.1996,125,37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700