碳包覆铁纳米晶低维材料的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包覆纳米金属晶(Carbon-encapsulated metal nanocrystals,CEMNs)是一种新型的纳米碳/金属复合材料,其中数层石墨片层紧密围绕纳米金属晶有序排列,纳米金属粒子处于核心位置,形成核壳结构。碳包覆层的存在,可避免纳米金属的氧化和环境降解,还可以提高某些金属与生物体之间的相容性。由于其独特的结构和性能,碳包覆纳米金属晶可望在高密度磁记录材料、铁磁流体、电波屏蔽材料、氧化还原催化剂、核废料处理材料和生物医用材料等方面获得广泛应用。
     针对目前碳包覆金属纳米晶制备中存在的产物纯度低、形态结构不易控制和难以大量合成等缺点,本论文采用一种新型制备方法一共热解法,通过芳烃物质和有机金属化合物在中温下的共炭化热解制备CEMNs,该方法具有工艺路线简单、反应条件温和、产物组成均匀、结构易于控制及容易实现大量制备等特点。
     本论文主要以一种精制石油重油为碳源、以二茂铁为金属源,采用共热解法制备碳包覆纳米金属晶。在详细考察制备工艺参数对CEMNs形成、转化及其形态结构影响的基础上,利用TEM、HREM、XRD、SEM、TG/DSC、VSM等测试分析手段研究了材料的形貌、结构和性能,并与制备工艺相关联,实现材料的可控合成;阐明CEMNs的形成机理及其热转化行为。对CEMNs进行氧化和炭化处理,研究此过程中材料形貌和结构的转化行为及机制,为多形态炭纳米材料的研究开发奠定基础。
     研究结果表明,以芳烃重油为碳源、二茂铁为金属源,采用共热解法,通过调节工艺参数,可以大量制备碳包覆铁纳米颗粒和碳包覆铁纳米棒。在480℃的反应温度下,随着二茂铁添加量的增加(2wt.%至45wt.%),产物的形貌由碳包覆纳米铁颗粒,逐渐向生成碳包覆纳米铁棒的方向发展。在450℃的反应温度下,随着二茂铁添加量从30wt.%增加到120wt.%,产物的形貌又由碳包覆纳米铁棒,逐渐向生成碳包覆纳米铁颗粒的方向转变。反应温度的升高或保温时间的延长,都使产物形貌发生相同的转化。同时,随着二茂铁添加量的增加,产物中包覆在碳壳中的金属核由单质α-Fe相逐渐转变成碳化三铁,外壳碳层由无定型结构转变成湍层结构。
     通过原料组成、结构分析和合成工艺参数与产物形貌和结构的关系研究,推断共热解法形成碳包覆纳米金属晶是基于气液两相催化热缩聚的原理,铁纳米颗粒对于芳烃分子的催化作用是基于溶解析出机制。碳包覆纳米金属棒的形成需要两个必要因素:体系中有足够的铁纳米原子簇和适中的反应活性。
     经惰性气氛下1000℃炭化处理,碳包覆铁纳米晶尺寸变大,大多数纳米铁颗粒从芯部逸出,形成大量碳空心洋葱结构,碳层也在纳米铁核的催化作用下由无定型结构转化为石墨质晶化结构。在250℃氧气气氛中对碳包覆铁纳米棒进行氧化处理,发现:大量铁纳米颗粒从碳层中扩散和逸出,得到少量金属纳米颗粒填充的碳纳米棒,通过进一步的低温和高温炭化处理制备出长度在150-350 nm、直径在30-50 nm的短纳米碳管。
     磁性能研究表明,碳包覆铁纳米晶及其炭化产物都具有较高的矫顽力和较小的矩磁比值,呈现出一定的铁磁性和顺磁性的综合磁性能。
     通过原料选择、工艺参数控制和后续氧化炭化处理,由共热解法不仅可以合成出碳包覆纳米金属颗粒和碳包覆纳米金属棒,而且还可以制备出空心碳纳米洋葱和短纳米碳管等多种新型纳米炭材料,说明我们发明的共热解法是一项制备多形态纳米碳材料的平台技术。其深入研究对于碳包覆纳米金属晶的大量制备、促进其实际应用,以及合成、组装或构建碳纳米管及相关新的碳纳米结构等都具有十分重要的理论和实际意义。
Carbon-encapsulated metal nanocrystals (CEMNs) are a new kind of carbon/metal nanocomposite, in which graphite layers arrange around metal nanocrystals located in the center to form core-shell structure. The carbon layers provide the oxidation resistance of bare metal nanoparticles and prevent them from environment degradation, and can endow some metal nanoparticles with biocompatibility. CEMNs, especially the magnetic nanomaterials, possess special structures and properties, and thus might have important applications in areas such as high-density magnetic data storage, ferrofluids, microwave absorption materials, oxidation-reduction catalyst, handling materials of radioactive waste and bio-medical materials.
     For the preparation of CEMNs, the present techniques, such as the arc-discharge technique, chemical vapor deposition, liquid-impregnating carbonization of non-graphitizing carbon and etc., show some disadvantages, e.g., the morphology and the structure of the resulting nanocrystals are not easy to control, and it is difficult to produce high-purity nanocrystals in large quantities. While here we proposed a novel method for the preparation of CEMNs by co-carbonization of aromatics with metal compounds, i.e., co-pyrolysis method. It featured in simplicity, low temperature, good controllability and high yield.
     The research focused on the preparation of CEMNs by co-pyrolysis of a refined aromatic heavy oil and ferrocene. The effect of the synthesis parameters on the formation and transformation of CEMNs were investigated in detail. The morphology, structure and particular properties of the product were characterized via TEM, HREM, XRD, SEM, TG/DSC and VSM measurements, and the relationship between them and synthesis parameters were studied to realize the controllable preparation of the product. The formation mechanism and thermo-transformation behavior of CEMNs were elucidated. In addition, the oxidation and further carbonization treatments on CEMNs were carried out and some interesting phenomenon and new results were obtained, which will provide a novel strategy for the research and development of various carbon nanomaterials.
     The results show that large amount of carbon-encapsulated iron nanoparticles (CEMPs) and nanorods (CEMRs) were obtained by co-pyrolysis of an aromatic heavy oil and ferrocene. With the increase of ferrocene content from 2 wt. % to 45 wt. % under the reaction temperature of 480℃, the morphology of the product had a transformation from CEMPs towards CEMRs. While with the increase of ferrocene content from 30 wt. % to 120 wt. % at 450℃, the morphology of the product were transformed from CEMRs to CEMPs. And the same morphology transformation took place with the enhancement of reaction temperature or the elongation of soaking time. Meanwhile, with the increase of ferrocene content, the encapsulated metal core in the product were changed from singleα-Fe to iron carbides (Fe_3C), and the carbon shells were turned from amorphous into turbostratic structure.
     By the analysis of raw feedstock and the investigation of the relationship among the morphology, structure of CEMNs and the synthetic parameters, it was concluded that the formation of CEMNs by co-pyrolysis method was based on the principle of condensation and polymerization in a vapor-liquid bi-phase by the aid of catalysis under pressure, and the catalysis of iron nanoparticles was based on the dissolution-precipitation mechanism. It is assumed that two essential factors must be met for the formation of the nanorods, including the sufficient amounts of iron clusters and moderate reaction activity in the system.
     By carbonization at 1000℃under N_2 atmosphere, the size of CEMNs became larger and the carbon shells were changed from the disordered into graphitic structure under the catalysis of nano-sized iron core. At the same time a large amount of hollow onion-like carbon nanoparticles emerged due to the ejection of iron nanoparticles. After oxidation of as-grown nanorods at 250℃, large amounts of ferric nanoparticles diffused and ejected from carbon shells, leading to the formation of carbon nanotubes with several nanoparticles trapped inside, and short nanotubes with diameter of 30-50 nm and length of 150-350 nm were generated by further carbonization at low and high temperatures.
     Both as-grown CEMNs and the carbonized product had a high coercivity and a small ratio of remanent magnetization (Mr) to saturation magnetization (Ms). It is implied that CEMNs show a combined magnetic characteristic of ferromagnetic and paramagnetic materials.
     The above research afforded a novel and effective method for the preparation of various carbon nanomaterials. It can be seen that, via the selectivity of raw materials, the controllability of synthesis parameters and the post-oxidation and carbonization treatments, not only CEMNs including nanoparticles and nanorods but also empty carbon onions and short carbon nanotubes were obtained by co-pyrolysis method. Moreover, it had a great significance for the promotion of the practical applications of CEMNs and for the synthesis, assembly and construction of carbon nanotubes and related nanostructures.
引文
[1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58
    [2] Iijima S, Ichihashi T, Ando Y. Pentagons heptagons and negative curvature in graphite microtubule growth[J]. Nature, 1992, 356:776-778
    [3] Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes[J]. Nature, 1993, 361:333-334
    [4] Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubules with oxigen and implication for filling[J], Nature, 1993, 362:522-525
    [5] Ruoff R, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles[J]. Science, 1993, 259:346-348
    [6] Saito Y, Oikuda M, Yoshikawa T, et al. Correlation between volatility of rare -earth -metals and encapsulation of their carbides in carbon nanocapsules[J]. J. Phys. Chem., 1994, 98:6696-6698
    [7] Dravid V P, Host J J, Teng M H, et al. Controlled-size nanocapsules[J]. Nature, 1995, 374: 602-602
    [8] Johnson R D, Vries M S, Salem J, et al. Electron paramagnetic resonance studies of lanthanum-containing C_(80)[J]. Nature, 1992, 355:239-240
    [9] Saito Y, Yoshikawa T, Inagakim M, et al. Growth and structure of graphitic tubes and polyhedral particles in arc-discharge[J]. Chem. Phys. Lett., 1993,204:277-282
    [10] Yannoni C S, Hoinkis M, Vries M S, et al. Scandium clusters in fullerene cages[J]. Science, 1992, 256:1191-1192
    [11] Pradeep T, Kulkarni G U, Kannan K R, et al. A novel Fe C_(60) adduct in the solid state[J]. J. Am. Chem. Soc., 1992, 114:2272-2273
    [12] Chai Y, Guo T, Jin C M, et al. Fulleren with metals inside[J]. J. Phys. Chem., 1991, 95: 7564-75678
    [13] Saito Y, Yoshikawa T, Oikuda M, et al. Iron particles nesting in carbon cages grown by arc discharge[J]. Chem. Phys. Lett., 1993, 212:379-383
    [14] Harris P J F, Tsang S C. Encapsulating uranium in carbon nanoparticles using a new technique[J]. Carbon, 1998, 36:1859-1861
    [15] Pascual J I, Mendez J, Gomez-Herrero J, et al. properties of metallic nanowires-from conductance quantization to localization[J]. Science, 1995, 267:1793-1795
    [16] Collins P G, Zettl A, Bando H, et al. Nanotube nanodevice[J]. Science, 1997, 278:100-103
    [17] Bubkle K, Gnewuch H, Hempstead M, et al. Optical anisotropy of dispersed carbon naotubes induced by an electric-field[J]. Appl. Phys. Lett., 1997, 71: 1906-1908
    [18] Don X L, Zhang Z D, Jin S R, et al. Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane[J]. J. Mater. Res., 1999, 14:1782-1790
    [19] Tomita M, Saito Y. and Hayashi T. LaC_2 encapsulated in graphite nanoparticle[J]. Jap, J. Appl. Phys., 1993, 32:L280-282
    [20] Satio Y. In Carbon nanotubes: preparation and properties[M], ed. T. W. Ebbesen, CRC Press: Boca Raton, 1997. 249-251
    [21] Satio Y. Nanoparticles and filled nanocapsules[J]. Carbon, 1995, 33:979-988
    [22] Seraphin S., Zhou D., Jiao J., Fillling the carbon nanocages[J]. J. Appl. phys., 1996, 80: 2097-2104
    [23] Murakami Y, Shibata T, Okuyama K, et al. Structural magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds[J]. J. Phys. Chem. Solid., 1993, 54:1861-1870
    [24] Satio Y, Yoshikawa T, Okuda M, et al. Synthesis and electron-beam incision of carbon nanocapsules encaging YC_2[J]. Chem. Phys. Lett., 1993, 209:72-76
    [25] Satio Y, Yoshikawa T, Okuda M, et al. Carbon nanobapsules encaging metals and carbides[J]. J. Phys. Chem. Solid., 1993, 54:1849-1860
    [26] Satio Y. In Recent advances in the chemistry and physics of fullerenes and related materials[M]. Vol. 1, ed. Kadish K M and Ruoff R S, Elctrochemical Society: Pennington, New Jersey, 1994. 1419-1432
    [27] Satio Y, Nishikubo K, Kawabata K, et al. Carbon nanocapsules and single-layered nanognbes produced with platinum-group metals(Ru, RH, Pd, Os, Ir, Pt) by arc-discharge[J]. J. Appl. Phys., 1996, 80:3062-3067
    [28] Seraphin S, Zhou D, Jiao J, et al. Yttrium carbide in nanotubes[J]. Nature, 1993, 362: 503-503
    [29] Jiao J, Seraphin S, Wang X, et al. Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles[J]. J. Appl. Phys., 1996, 80:103-108
    [30] Majetich S A, Artman J O, McHenry M E, et al. Preparation and properties of carbon-coated Cnanocrstallites[J]. Phys. Rev. B., 1993, 48:16845-16848
    [31] McHenry M E, Majetich S A, Artman J O, et al. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process[J]. Phys. Rev .B., 1994, 49: 11358-11363
    [32] Scott J H and Majetich S A. Morphology, structure, and growth of nanopaticles produced in a carbon arc[J]. Phys. Rev. B., 1995, 52:12564-12571
    [33] Guerret-Piecourt C, Le Bouar Y, Loiseau A, et al. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes[J]. Nature, 1994, 372:761-765
    [34] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminster Fullerene[J]. Nature, 1985, 318:162-163
    [35] Zhang Q L, O'Brien S C, Heath J R, et al. Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot[J]. J. Phys. Chem., 1986, 90:525-528
    [36] Kroto H W, McKay K. The formation ofquasi-icosahedral spiral shell carbon particles[J]. Nature, 1988, 331:328-331
    [37] 许并社,闫小琴,王晓敏,等.电弧放电中纳米洋葱状富勒烯生成机理的研究[J].材料热处理学报,2001,22:9-12
    [38] Hayashi T, Hirono S, Tomita M, et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon[J]. Nature, 1996, 381:772-4
    [39] Chen H, Huang R B, Tang Z C, et al. Single titanium crystals encapsulated in carbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor[J]. Appl. Phys. Lett., 2000, 77:91-93
    [40] Nolan P E, Lynch D C, Cutler A H. Cataytic disproportionation of CO in the absence of hydrogen: encapsulating shell formation[J]. Carbon, 1994, 32:477-483
    [41] Nolan P E, Schabel M J, Lynch D C, et al. Hydrogen control of carbon deposit morphology[J]. Carbon, 1995, 33:79-85
    [42] Liu B H, Ding J, Zhong Z Y et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method[J]. Chem. Phys. Lett., 2002, 358 : 96-102
    [43] Wang Z H, Choi C J, Kim B K, et al. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor condensation process[J]. Carbon, 2003, 41:1751-1758
    [44] Ioannis P, Valerie C, Shik C T. Syntheses of carbon encapsulated magnetic FeNi nanoparticle via decompositions of methane and benzene[J]. Carbon, 2006, 44:820-823
    [45] Young J Y, Hong K B. Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition [J]. Diam. Relat. Mater., 2001, 10:1214-1217
    [46] Nolan P E, Lynch D C, Cutler A H. Graphite Encapsulation of Catalytic Metal Nanoparticles[J]. Carbon, 1996, 34:817-819
    [47] Baker R T K, Chludzinski Jr J J, Dudash N S, et al. The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum[J]. Carbon, 1983, 21: 463-468
    [48] Liu Z J, Yuan Z Y, Zhou W Z, et al. Controlled synthesis of carbon-encapsulated Co nanoparticles by CVD[J]. Chem. Vap. Deposition, 2001, 7:248-251
    [49] Yogo T, Suzuki H, Iwaham H, et al. Synthesis and properties of platinum-dispersed carbon by pressure pyrolysis of organoplatinum copolymer[J]. J. Mater. Sci., 1991, 26:1363-1367
    [50] Yogo T, Naka S, Hirano S, Synthesis and properties of carbons dispersed with α-iron particles from divinyl benzene-vinylferrocene[J]. J. Mater. Sci., 1989, 24:2071-2075
    [51] 陈学刚,宋怀河,陈晓红等.萘和二茂铁共炭化制纳米Fe/C材料的研究[J].新型炭材料,2000,15:5-8
    [52] 陈学刚,宋怀河,陈晓红等.纳米Fe/C复合材料的原位合成[J].材料研究学报,2002,16:146-150
    [53] Song H H, Chen X H. Large-scale Synthesis of Carbon-encapsulated Iron Carbide Nanoparticles by Co-carbonization of Durene with Ferrocene[J]. Chem. Phys. Lett., 2003, 374:400-404
    [54] Song H H, Chen X H, Chen X G, Zhang S Y, Li H Q. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue[J]. Carbon, 2003, 41: 3029-3038
    [55] Yogo T, Naka S, Hirano S I. Synthesis and properties of magnetite-dispersed carbon by pressure pyrolysis of divinylbenzene-vinylferrocene with water[J]. J. Mater. Sci., 1989, 24:2115-2119
    [56] Yogo T, Naka S, Hirano S I. Cementite dispersed in carbons from ferrocene, vinylferrocene, divinylbenzene systems[J]. J. Mater. Sci. Lett., 1987, 22:985-988
    [57] Beruhauer M, Braun M, Huttinger K J. Kinetics of mesophase formation in a stirred tank reactor and properties of the products. V: Catalysis by ferrocene[J]. Carbon, 1994, 32: 1073-1085
    [58] Harris P J F, Tsang S C. A simple technique for the synthesis of filled carbon nanoparticles[J]. Chem. Phys. Lett., 1998, 293:53-58
    [59] Harris P J F, Tsang S C. Encapsulating uranium in carbon nanoparticles using a new technique[J]. Carbon, 1998, 36:1859-61
    [60] Wu W, Zhu Z, Liu Z. Preparation of carbon-encasulated iron carbide nanoparticles by an explosion method[J]. Carbon, 2003, 41:317-321
    [61] 吴卫泽,朱珍平,刘振宇.Fe/C复合纳米材料的制备研究[J].新型炭材料,2002,17:4-8
    [62] 邱介山,安玉良,等.生物基碳包覆纳米材料(Mn,Co)的制备[J].物理化学学报,2004,20:260-264
    [63] Ugarte U, Chatelain A, Heer W A. Nanocapillarity and chemistry in carbon nanotubes[J]. Science, 1996, 274:1897-9
    [64] Tsang S C, Chert Y K, Harris P J F. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372:159-62
    [65] Liu M, Cowley J M. Encapsulation of lanthanum carbides within carbon nanotubes and nanoparticles[J]. Carbon, 1995, 33:225-32
    [66] Hayashi Y, Tokunaga T, Toh S, et al. Synthesis and characterization of metal-filled carbon nanotubes by microwave plasma chemical vapor deposition[J]. Diam. Relat. Mater., 2005, 14:790-3
    [67] Gao X P, Zhang Y, Chen X, et al. Carbon nanotubes filled with metallic nanowires[J]. Carbon, 2004, 42:47-52
    [68] Zhi L J, Gorelik T, Friedlein R, et al. Solid-State Pyrolyses of Metal Phthalocyanines: A Simple Approach towards Nitrogen-Doped CNTs and Metal/Carbon Nanocables[J]. Small, 2005, 1:798-801
    [69] Yosida Y. Synthesis of CeC_2 crystals encapsulated within gigantic super fullerenes[J]. Appl. Phys. Lett., 1993, 62:3447-3448
    [70] Harris P J F. Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century[M]. Cambridge University Press: Cambridge, 2000. 164
    [71] Awadalla Salah A. Magnetic Study of Nickel Particles Encapsulated in Carbon Nanoparticles[D], UMI Number: 1382547, UMI Company, 1997
    [72] Jiao J, Seraphin S, Wang X, et al. Preparation and properties of ferromagnetic carboncoated Fe, Co, and Ni nanoparticles[J]. J. Appl. Phys., 1996, 80:103-108
    [73] McHenry M E, Nakamura Y, Kirkpatriek S, et al. In Fullerenes: Physics, Chemistry, New Directions[M]. ed. R S Ruoff and K M Kadish, PV 94-24, The Electrochemical Society Proceedings Series: Pennington, N J, 1994. 1463
    [74] Bonard J M, Seraphin S, Wegrowe J E, et al. Varying the size and magnetic properties of carbon-encapsulated cobalt particles[J]. Chem. Phys. Lett., 2001,343:251-257
    [75] Subramoney S, RuoffR S, Lorents D C, et al. Magnetic separation of GdC2 encapsulated in carbon nanoparticles[J]. Carbon, 1994, 32:507-513
    [76] Seshadri R, Sen R, Subbanna G N, et al. Iron, cobalt and nickel nanoparticles encapsulated in carbon obtained by the arc evaporation of graphite with the metals[J]. Chem. Phys. Lett., 1994, 231:308-313
    [77] Hihara T, Onodera H, Sumiyama K, et al. Magnetic properties of iron in nanocapsules[J]. Jpn. J. Appl. Phys., 1994, 33(1A): L24-25
    [78] Sun X C, Antonio Toledo J. Magnetic and microstructural properties of the assembly of Ni(C) nanoparticles[J]. Curr. Appl. Phys., 2002, 2:113-116
    [79] Panyam J, Sahoo S K, Prabha S, et al. Fluorescence and electron microscopy probes for cellular and tissue uptake ofpoly(d,llactide-co-glycolide) nanoparticles[J]. Int. J. Pharm, 2003,262: 1-12
    [80] Michat B, Andrzej H, Hubert L. Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications [J]. Sensors and Actuators, 2005, 109: 81-85
    [81] Fiorito S, Serafino A, Andreola F, et al. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages[J]. Carbon, 2006,44: 1100-1109
    [82] Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers[J]. Biomaterials, 2002, 23: 3279-3287
    [83] Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulations containing carbon nanofibers[J]. Biomaterials, 2003, 24: 1877-1887
    [84] Webster T J, Ergun C, Doremus R H, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics[J]. J. Biomed. Mater., Res., 2000, 51: 475-483
    [85] Dobson J. Magnetic Nanoparticles for Drug Delivery[J]. Drug Develop. Res., 2006, 67: 55-64
    [86] Che R, Chen Q, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv. Mater., 2004,16: 401-405
    [87] Burch W M, Sullivan P J, McLaren C J. Technegas-a new ventilation agent for lung scanning [J]. Nucl. Med. Commun., 1986, 7: 865-871
    [88] Senden T J, Moock K H, FitzGerald J, et al. The physical and chemical nature of Technegas[J]. J. Nucl. Med., 1997, 38: 1327-1333
    [89] Guo T, Diener M D, Chai Y, et al. Uranium stabilization of C_(28): a tetravalent fullerene[J]. Science, 1992,257: 1661-1664
    [90] Kikuchi K, Kobayashi K, Sueki K, et al. Encapsulation of radioactive ~(159)Gd and ~(161)Tb in fullerene cages[J]. J. Amer. Chem. Soc, 1994, 116: 9775-9776
    [91] Funasaka H, Sugiyama K, Yamamoto K, et al. Synthesis of actinide carbides encapsulated within carbon nanoparticles[J]. J. Appl. Phys., 1995, 78: 5320-5324
    [92] Pasqualini E, Adelfang P, Regueiro M N. Carbon nanoencapsulation of uranium dicarbide[J]. J. Nucl. Mat., 1996,231: 173-177
    [93] Powder Diffraction File, Inorganic Volume. JCPDS International Centre for Diffraction Data; 1983.
    [94] Braun M, Huttinger K J. Sintering of powders of polyaromatic mesophase to high-strength isotropic carbons: II. Powders based on an iron-catalyzed mesophase synthesis[J]. Carbon, 1996, 34: 1473-1491
    [95] Satishkumar B C, Thomas P J, Govindaraj A, et al. Y-junction carbon nanotubes[J]. Appl. Phys. Lett., 2000,77: 2530-2
    [96] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys. Lett., 1998,72: 3282-4
    [97] Ago H, Ohshima S, Uchida K, et al. Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles[J]. J. Phys. Chem. B, 2001,105: 10453-6
    [98] Katsuki H, Matsunaga K, Egashira M, Kawasumi S. Formation of carbon-fibers from naphthalene on some sulfur-containing substrates[J]. Carbon, 1981, 19: 148-50
    [99] Tibbetts G G, Bernardo C A, Gorkiewicz D W, et al. Role of sulfur in the production of carbon-fibers in the vapor-phase[J]. Carbon, 1994, 32: 569-76
    [100] Demoncy N, Stephan O, Brun N, et al. Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur[J]. Eur. Phys. J. B, 1998,4: 147-57
    [101] Liu S, Zhu J, Mastai Y, et al. Preparation and characteristics of carbon nanotubes filled with cobalt[J]. Chem. Mater., 2000,12: 2205-11
    [102] Sinha A K, Hwang D W, Hwang L P. A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method[J]. Chem. Phys. Lett., 2000, 332: 455-60
    [103] Marsh H, Grawford D, Taylor D W. Catalytic graphitization by iron of isotropic carbon from polyfurfural alcohol, 725-1090K. A high resolution electron microscope study[J]. Carbon, 1983,21:81-87
    [104] Mochida I, Ito I, Korai Y, et al. Catalytic graphitization of fibrous and particulate carbons[J]. Carbon, 1981, 19: 457-65
    [105] Oya A, Marsh H. Phenomena of catalytic graphitization[J]. J. Mater. Sci., 1982, 17: 309-322.
    
    [106] Fischbach D B. Chemistry and physics of carbon[M]. Vol. 7, P. L. Walker, Jr., Editor, Marcel Dekker: New York, 1971. 83.
    [107] Oberlin A, Rouchy J P. Transformation des carbones non graphitables par traitement thermique en presence de fer[J]. Carbon, 1971, 9: 39-42
    [108] Weisweiler W, Subramamian N, Terwiesch B. Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon[J]. Carbon, 1971, 9: 755-61
    [109] Inagaki M, Fujita K, Takeuchi Y, et al. Formation of graphite crystals at 1000-1200 °C from mixtures of vinyl polymers with metal oxides[J]. Carbon, 2001, 39: 921-929
    [110] Huo J P, Song H H, Chen X H. Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene[J]. Carbon, 2004,42: 3177-82
    [111] Oya A, Otani S. Influences of particle size of metal on catalytic graphitization of non-graphitizing carbons[J]. Carbon, 1981, 19: 391-400
    [112] Banhart F. Formation and transformation of carbon nanoparticles under electron irradiation[J]. Phil. Trans. R. Soc. Lond. A, 2004, 362: 2205-22
    [113] Marsh H, Taylor D W, Lander J R. Kinetic study of gasification by oxygen and carbon dioxide of pure and doped graphitizable carbons of increasing heat treatment temperatures[J]. Carbon, 1981, 19: 375-8119
    [114] Inagaki M, Okada Y, Vignal V, et al. Graphite formation from a mixture of Fe_3O_4 and polyvinylehloride at 1000°C[J]. Carbon, 1998, 36: 1706-08
    [115] Oya A, Otani S. Catalytic graphitization of carbons by various metals[J]. Carbon, 1979, 17:131-137
    [116] Bokhonov B, Korchagin M. The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel [J]. J. allo. and comp., 2002, 333: 308-20
    [117] Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route towards applications[J]. Science, 2002, 297: 787-92
    [118] Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their emission properties[J]. Science, 1999, 283: 512-4
    [119] Che G, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393: 346-9
    [120] Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science, 1998, 282:1105-7
    [121] Dujardin E, Ebbesen T W, Hiura H, et al. Capillarity and Wetting of Carbon Nanotubes[J]. Science, 1994, 265:1850-2
    [122] Okuyama F, Hayashi T, Fujimoto Y. Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes[J]. J. Appl. Phys., 1998, 84:1626-31
    [123] Metenier K, Bo.nnamy S, Btguin F, et al. Coalescence of single-walled carbon nanotubes and formation of multi-walled carbon nanotubes under high-temperature treatments[J]. Carbon, 2002, 40:1765-73
    [124] Bouchet-Fabre B, Pinault M, Pichot V, et al. NEXAFS and X-ray scattering study of structure changes after post-annealing treatments of aligned MWNTs[J]. Diam. Relat. Mater., 2005, 14:881-6
    [125] Kichambare P D, Chen L C, Wang C T, et al. Laser irradiation of carbon nanotubes[J]. Mater. Chem. Phys., 2001, 72:218-22
    [126] Kiang C-H. Electron irradiation induced dimensional change in bismuth filled carbon nanotubes[J]. Carbon, 2000, 38:1699-1701
    [127] Che R, Peng L-M, Chen Q, et al. Controlled synthesis and phase transformation of ferrous nanowires inside carbon nanotubes[J]. Chem. Phys. Lett., 2003, 375:59-64
    [128] Moisala A, Nasibulin A G, Kauppinen E I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes-a review[J]. J. Phys.: Condens. Matter, 2003, 15:S3011-35
    [129] Ding J, Miao W F, McCormick P G, et al. Mechanochemical synthesis ofultrafine Fe powder[J]. Appl. Phys. Lett., 1995, 67:3804-6
    [130] Subramoney S. Novel nanocarbons-structure, properties, and potential applications[J]. Adv. Mater., 1998, 10:1157-71
    [131] Host J J, Block J A, Parvin K, et al. Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals[J]. J. Appl. Phys., 1998, 83:793-801
    [132] Anno E, Yamaguchi T. Optical absorption of Ni and Pd particles: enhanced correlation interaction between conduction electrons[J]. Surf. Sci., 1993,286:168-75
    [133] Satishkumar B C, Govindaraj A, Vanitha P V, et al. Barkhausen jumps and related magnetic properties of iron nanowires encapsulated in aligned carbon nanotube bundles[J]. Chem. Phys. Lett., 2002, 362:301-306
    [134] Grobert N, Hsu W K, Zhu Y Q, et al. Enhanced magnetic coercivities in Fe nanowires[J]. App. Phys. Lett., 1999, 75:3363-3365
    [135] 邓惠勇.雷达用隐身吸波材料研究进展[M].北京:化学工业出版社,2003.4-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700