碳包覆纳米金属氧化物的制备及其电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源消耗的日益扩大,和全球变暖等环境问题的出现,人们对温室气体排放可控的新型的清洁能源以及更先进的储能器件的需求越来越紧迫。超级电容器作为一种新型的绿色、环保的储能器件应运而生,它集高能量密度、高功率密度、长使用寿命等特性于一身,具有十分广泛的应用领域。在超级电容器的研究中,高功率性能、高比容量的电极材料的开发具有重要的现实意义和理论价值。碳包覆纳米金属氧化物作为一种金属氧化物与碳复合的新型电极材料,兼具了碳材料的高功率性能以及金属氧化物的高比容量等优点,使其成为超级电容器电极材料的最佳选择之一。
     本文以碳包覆纳米金属颗粒(Carbon-encapsulated metal nanoparticles, CEMNP)为前躯体,采用直接氧化法和水热氧化法这两种方法来制备碳包覆纳米金属氧化物颗粒,研究了碳包覆纳米金属氧化物颗粒作为超级电容器的电极材料的电化学性能。分别用扫描电子显微镜、透射电子显微镜、高分辨透射电子显微镜、X射线衍射、傅里叶红外光谱对产物的外部形貌和内部结构进行研究,并在质量浓度为30%的KOH的电解液中,利用循环充放电、循环伏安和交流阻抗手段测试了作为超级电容器电极材料的电化学性能。
     研究表明,采用直接氧化法在300℃温渡下制备的碳包覆纳米氧化镍颗粒(NiO@C)的粒径在10~20 nm。根据氧化时间的不同,氧化10小时的反应产物呈现最高的电化学性能,在0.1 A/g的电流密度下,比容量可以达到193 F/g,且有较好的功率性能。直接氧化法在270℃高温下制备的碳包覆纳米氧化钴颗粒(Co3O4@C),粒径在30-40 nm,同时有一定量的空心结构Co3O4@C颗粒产生(Co3O4@C-HNPs)。其中氧化时间为24 h的样品电化学性能最佳,在0.1 A/g的电流密度下,比容量可以达到108F/g,且有较好的功率性能。
     水热氧化法是本文探索的制备碳包覆纳米金属氧化物颗粒的新方法,即以碳包覆纳米金属颗粒为前躯体,以30%的H202作为氧化剂,在高压水热釜中,200℃下反应不同时间。这种方法制得的碳包覆纳米金属氧化镍颗粒中,出现了一定量的空心结构。其中,氧化15小时的样品的电化学性能最好,其比容量在0.1 A/g的电流密度下高达966 F/g,即使在大电流密度2 A/g下也仍有402 F/g,表现出极好的电容性能。该结果表明:水热法制备的碳包覆纳米金属氧化镍的电化学性能远远优于直接氧化法制得的样品。究其原因,是由于该法生成的大量的空心结构为氧化镍的氧化还原反应提供了更多的反应活性点,同时碳包覆层表面被氧化形成的官能团也对赝电容做出了贡献。
The ever worsening energy depletion and global warming issues call for not only urgent development of clean alternative energies and emission control of global warming gases, but also more advanced energy storage and management devices. As a green and friendly new energy storage device, supercapacitors emerge as the times require. Supercapacitors have been applied in many fields because they possess high power density, high energy density, long cycle-life, and so on. In the research of supercapacitors, the development of electrode materials, with high-rate performance and high specific capacity, has significant realistic meaning and theoretical value. Carbon-encapsulated metal oxides is a new kind of composite electrode material, which posses the high power density of carbon and the high energy density of metal oxide. As a result, they will become one of the optimal choice of electrode material in supercapacitors.
     In this thesis, carbon-encapsulated metal oxides nanoparticles(CEMONP) were synthesized by carbon-encapsulated metal nanoparticles(CEMNP) via direct oxidation or hydrothermal oxidation methods and were applied as the electrode materials for supercapacitor. The morphologies and structures of CEMONP were characterized by Scanning Electron Microscope(SEM), Transmission Electron Microscope(TEM), high resolution TEM(HRTEM), X-ray Diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR). Electrochemical performances were investigated by constant current Galvanostatic charge/discharge test, cyclic voltammetry and alternating current impedance in 30wt.% KOH electrolyte.
     The results show that the particle size of carbon-encapsulated nickel oxide nanoparticles(NiO@C) synthesized from direct oxidation at 300℃is 10~20 nm. According to the different time of oxidation, the product oxidized at 300℃for 10 hours showed the best electrochemical performance with a high specific capacitance of 193 F/g under the current density of 0.1 A/g and good power performance. Besides, carbon-encapsulated cobalt oxide nanoparticles synthesized by this method at 270℃possessed uniform particle size of 30~40nm and hollow structure (Co3O4@C-HNPs), and the sample oxidized 24 hours at 270℃showed the best electrochemical performance, which exhibited the specific capacitance of 108 F/g under the current density of 0.1 A/g.
     In this thesis, we also founded a new approach called hydrothermal oxidation method to synthesize CEMONP, in which CEMNP was used as the starting material,30% H2O2 as the oxidant and oxidation took place in a Teflon-lined autoclave at the tempreture of 200℃for different time. By this way, carbon-encapsulated NiO hollow nanoparticles were obtained and the product oxidized 15 hours showed the specific capacitance as high as 966 F/g under the current density of 0.1 A/g and still keeping 402 F/g even under the higher current density of 2 A/g. Obviously, the electrochemical performance of NiO@C synthesized by this method was better than the former method. The reasons should be attributed to the hollow structure which provide more active sites for the redox reaction of nickel oxide. At the same time, the functional groups formed at the surface of carbon shell improved the pseudocapacitance.
引文
[1]R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta,2000,45:2483-2498
    [2]Conway B E. Transtion from supercapacitor to "battery" behavior in electrochemical energy storage[J]. Electrochemical Society,138 (6):153921548
    [3]胡毅,陈轩恕,杜砚等.超级电容器的应用与发展[J]电力设备,2008,19(1):19-22
    [4]Nomoto H, Nakata K, Yoshioka. Advanced capacitors and their application [J]. Power Sources, 2001,97-98:807-811.
    [5]Green K, Wilson J C. Future power sources for mobile communications[J]. Electronics & Communication Engineering,2001,13(1):43247
    [6]陈英放,李媛媛,邓梅根.超级电容器的原理及应用[J]电子元件与材料,2008,27(4):6-9
    [7]Xing W, Li F, Yan Z F. Synthesis and electrochemical properties of mesoporous nickel oxide[J] Power Sources,2004,134:324-330
    [8]邢伟,李丽,阎子峰,等.介孔氧化镍的合成、表征和在电化学电容器中的应用[J].化学学报,2005,63(19):1775-1781
    [9]Zheng Y Z, Ding H Y, Zhang M L. Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material[J] Materials Research Bulletin,2009,44:403-407
    [10]S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande. Preparation of cobalt oxide thin films and its use in supercapacitor application[J] Applied Surface Science,2008,254:5540-5544
    [11]Nelson P A, Owen J R. A High-Performance Supercapacitor/Battery Hybrid Incorporating Templated Mesoporous Electrodes[J]. J. Electrochem. Soc.,2003,150(10):1313-1317
    [12]Chuan Lin, James A, Ritter, et al. Characterization of Sol-Gel-Derived cobalt oxide xerogels as electrochemical capacitors[J]. J. Electrochem. Soc.,1998,145(12):4097-4103
    [13]Mengqiang Wu, Jiahui Gao, Shuren Zhang. Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors[J] Power Sources,2006,159:365-369
    [14]Venkat Srinivasan, John W. Weidner. Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. Power. Sources.,2002,108(1-2):15-20
    [15]U.M. Patil, R.R. Salunkhe, K.V. Gurav. Chemically deposited nanocrystalline NiO thin films for supercapacitor application[J] Applied Surface Science,2008,255:2603-2607
    [16]S.G. Kandalkara, D.S. Dhawaleb, Chang-Koo Kim, et al. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J]. Synthetic Metals,2010,1-4
    [17]霍俊平,宋怀河,陈晓红,等.碳包覆纳米金属颗粒的合成研究进展[J].化学通报,2005,1:23-29
    [18]Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect[J]. Science,2004,304:711-714
    [19]Zhou J S, Song H H, Chen X H. Oxidation conversion of carbon-encapsulated metal nanoparticles to hollow nanoparticles[J]. Chem. Mater,2009,21:3730-3737
    [20]Zhou H S, Zhu S M, Hibino M, et al. Metallic ruthenium incorporation in the porous structure of SBA-15 using a sonochemical method[J]. J. Mater. Chem.,2003,13:1115-1118
    [21]Becker H I. Electric double layer capacitor [P]. USA:2800616.1957-07-23
    [22]Qu D Y, Shi H. Studies capacitors of activated carbon used in double-layer[J]. Power Sources, 1998,74:99-107
    [23]朱修锋,景晓燕,张密林.金属氧化物超级电容器及其应用研究进展[J].功能材料与器件学报,2002,8(3):325-33
    [24]Xue Y, Chen Y, Zhang M L. A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes[J] Materials Letters,2008,62:3884-3886
    [25]Sunil G Kandalkar, C.D. Lokhande, R.S. Mane. A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application[J] Applied Surface Science, 2007,253:3952-3956
    [26]Byung Chul Kima, Gordon GWallacea, Y.I. Yoon. Capacitive properties of RuO2 and Ru-Co mixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors[J] Synthetic Metals,2009,159:1389-1392
    [27]Patake V.D, Lokhande C.D. Chemical synthesis of nano-porous ruthenium oxide (RuO2) zthin films for supercapacitor application[J] Applied Surface Science,2008,254:2820-2824
    [28]Su L H, Zhang X G. Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performances[J] Power Sources,2007,172:999-1006
    [29]Ftitts D H. An analysisof electrochemical capacitors[J]. Electrochemical Society,1997,144(6): 2233-2241
    [30]张步涵,王云玲,曾杰.超级电容器储能技术及其应用[J]水电能源科学,2006,24(5):50-52
    [31]Yong G W, Liang C, Yong Y X. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution[J] Power Sources, 2006,153:191-196
    [32]Qu D Y, Shi H. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources,1998,74(1):99-107
    [33]Gryglewicz G, Machnikowski J, Grabowska E L, et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance[J]. Electrochimica Acta,2005,50: 1197-1206
    [34]Li W, Reichenauer G, Fficke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors[J]. Carbon,2002,40:2955-2959
    [35]Vivekchand S R C, Rout C S, Subrahmanyam K S, GovindarajA, et al. Graphene-based electrochemical supercapacitors[J]. Chemical. Sciences.,2008,120:9-13
    [36]Fuertesb A B, Lota q Centeno T A, Frackowiak E. Templated mesoporous carbons for supercapacitor application[J]. Electrochimica Acta.2005,50:2799-2805
    [37]Frackowiak E, Metenier K, Bertagna V,et al. Supercapacitor electrodes from multiwalled carbon nanorubes[J]. Applied Physics Letters,2000,77:2421-2423
    [38]Pekala R W. Organic aerogels from the polycondensation of resoreinol with formaldehyde[J]. Journal of Materials Science,1989,24:3221-3227
    [39]Iijima S. Helical microtubules of graphic carbon[J]. Nature,1991,354:56-58
    [40]Zheng J P, Cygan P J, Zow T R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors[J]. J. Electrochem. Soc.,1995,142(8):2699-2703
    [41]Pang S C, Anderson M A, Chapman T W. Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide[J]. J. Electrochem. Soc.,2000,147(2):444-450
    [42]Chin S F, Pang S C, Anderson M A. Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors [J]. J. Electrochem. Soc.,2002,149(4):379-384
    [43]Cheng J, Cao G P, Yang Y S. Characterization of sol-gel-derived NiO xerogels as supercapacitors[J]. Journal of Power Sources,2006,159(1):734-741
    [44]高博,张校刚,原长洲,等.类普鲁士蓝为前驱体制备纳米NiO及其电化学电容行为[J].无机化学学报,2006,22(7):1289-1292
    [45]王晓峰,土大志,梁吉.氧化镍/碳纳米竹复合型超级电容器的研制[J].无机化学学报,2003,19(2):137-141
    [46]Lee J Y, Liang K, An K. H, et al. Nickel oxide/carbon nanotubes nanocomposite forelectrochemical capacitance[J]. Synthetic Metals,2005,150:153-157
    [47]Wang Y, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. Electrochemical Acta,2006,51(16):3223-3227
    [48]Zheng Y Z, Zhang M L. Preparation and electrochemical properties of nickel oxide by molten-salt synthesis[J]. Materials Letters,2007,61(18):3967-3969
    [49]Yuan C Z, Zhang X G, Wu Q F, et al. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer electrolyte[J]. Solid State Ionics,2006, 177(13-14):1237-1242
    [50]张密林,刘志祥.沉淀转化法制备的Co(OH)2的超级电容特性[J].无机化学学报,2002,18(5):513-517
    [51]Liu T C, Pell W G, Conway B E. Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance.[J] Electrochim Acta,1999, 44:282-284
    [52]Lin C., Ritter J.A., Popov B.N.. Characterization of sol-gel derived cobalt xergels as eletrochemical capacitor. J. Electrochem. Soc.,1998,145 (12):4097-r4101
    [53]王晓峰,尤政,阮殿波.纳米氧化钴-氧化钌复合型超级电容器的研究[J].中国化学,2006,24(9):1126-1132
    [54]Kandalkar S G, Gunjakar J L, Lokhande C D. Preparation of cobalt oxide thin films and its use in supercapacitor application[J]. Applied Surface Science,2008,254:5540-5544
    [55]葛鑫,陈野,张春霞,等.C0304的制备及电容性能的研究[J].电池,2007,37(2):141-142
    [56]王兴磊,何宽新,张校刚.层状C0304的制备及其电化学电容行为[J].无机化学学报,2006,22(6):1019-1022
    [57]Patakea V D, Joshi S S, Lokhandea C D. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor[J]. Materials science communication,2009,114(1):6-9
    [58]Lee H Y. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution[J]. J Solid State Chem istry,1999,148:81-84
    [59]Sarangapani S. Materialsfor electrochemicalcapacitors[J]. Electrochemical Society,1996, 143(11):3791-3799
    [60]Gurunathan K, Vadivel A M, Marimuth R. Electrochemically synthesized conducting polymericmaterials for applications towards technology in electronics optoelectronics and energystorage devices[J]. Materials Chemistry and Physics,1999,61(3):173-191
    [61]梁迷.碳纳米竹及氧化镍超级离了电容器的研究[D].成都:电子科技大学,2002
    [62]Ruoff R, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles[J]. Science,1993,259:346-348
    [63]Tomita M, Saito Y, Hayashi T. LaC2 encapsulated in graphite nanoparticle[J]. Jap, J. Appl. Phys., 1993,32:280-282
    [64]霍俊平.碳包覆铁纳米晶低维材料的合成、结构及性能研究[D].北京:北京化工大学,2007
    [65]Huo J P, Song H H, Chen X H. Formation and transformation of carbon-encapsulated iron carbide/iron nanorods[J]. Carbon,2006,44:2849-2867
    [66]Zhao M, Song H H, Chen X H, et al. Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin[J]. Acta Mater,2007,55(18):6144-6150
    [67]Yin Y D, Erdonmez C K, Cabot A, et al. Colloidal synthesis of hollow cobalt sulfide nanocrystals[J]. Adv Funct Mater,2006,16(11):1389-1399
    [68]Tracy J B, Weiss D N, Dinega D P, et al. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles[J]. Phys Rev B,2005,72:064404
    [69]Nakamura R, Matsubayashi G, Tsuchiya H, et al. (?)Formation of oxide nanotubes via oxidation of Fe, Cu, and Ni nanowires and their structural stability:difference in formation and shrinkage behavior of interior pores[J]. Acta Mater,2009,57(17):5046-5052
    [70]Nakamura R, Tokozakura D, Nakajima H,et al. Hollow oxide formation by oxidation of Al and Cu nanoparticles[J]. Appl. Phys.,2007,101:074303
    [71]Nakamura R, Lee J G, Mori H, et al. Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO[J]. Philos. Mag.,2008,88(2):257-264
    [72]Fan H J, G□sele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on kirkendall and diffusion processes:a review[J]. Small,2007,3(10):1660-1671
    [73]Gao J H, Zhang B, Zhang X X, et al. Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide[J]. Angew. Chem., Int. Ed.,2006,118(8): 1242-1245
    [74]Cabot A, Puntes V F, Shevchenko E, Yin Y, et al. Vacancy coalescence during oxidation of iron nanoparticles[J]. Am.Chem. Soc.,2007,129(34):10358-10360
    [75]Henkes A E, Schaak R E. Trioctylphosphine:a general phosphorus source for the low-temperature conversion of metals into metal phosphides [J]. Chem. Mater.,2007,19(17):4234-4242
    [76]Hou H W, Peng Q, Zhang S Y, et al. A "User-Friendly" chemical approach towards paramagnetic cobalt phosphide hollow structures:preparation, characterization, and formation mechanism of Co2P hollow spheres and tubes[J]. Eur.J. Inorg. Chem.,2005,2005(13):2625-2630
    [77]Zhou J S, Song H H, Chen X H. Carbon-Encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles:a general synthesis strategy and Its application to lithium-ion batteries[J]. Chem. Mater,2009,21:2935-2940
    [78]Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[J]. Am. Chem. Soc.,2002,124,7642-7643
    [79]Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Nil-xPtx (x=0-0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorg[J]. Chem,2007,46,788-794
    [80]Keng, P. Y.; Kim, B. Y.; Shim, I. B.; Sahoo, R.; Veneman, P. E.;Armstrong, N. R.; Yoo, H.; Pemberton, J. E.; Bull, M. M.;Griebel, J. J.; et al. Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires.[J] ACS Nano 2009,3,3143-3157
    [81]Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow Micro-/Nanostructures:Synthesis and Applications.[J]Adv.Mater.2008,20,3987-4019
    [82]Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A.Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Adv. Mater.2006,18,2325-2329.
    [83]Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.;Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D.; et al., Gold nanocages:bioconjugation and their potential use as optical imaging contrast agents.[J] Nano Lett.2005,5,473-477
    [84]Cai, Y. R.; Pan, H. H.; Xu, X. R.; Hu, Q. H.; Li, L.; Tang, R. K. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres:a smart and biocompatible drug release system. [J] Chem. Mater.2007,19,3081-3083
    [85]Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogue's, J. Beating the superparamagnetic limit with exchange bias.[J] Nature 2003,423,850-853
    [86]Ong, Q. K.; Wei, A.; Lin, X.-M. Exchange bias in Fe/Fe3O4 core shell magnetic nanoparticles mediated by frozen interfacial spins.[J] Phys. Rev. B 2009,80,134418
    [87]Xing W, Li F, Yan Z F, et al. Synthesis and electrochemical properties of mesoporous nickel oxide[J]. J. Power Sources,2004,134:324-330
    [88]□vegl F, Orel B, Hutchins M G, et al. Structural and spectroelectrochemical investigations of Sol-Gel derived electrochromic spinel Co3O4 films[J]. J. Electrochem. Soc.,1996,143(5): 1532-1539
    [89]Marek W, Artur P T, Yoshiyuki H, et al. Hydrothermal opening of multiwall carbon nanotube with H2O2 solution[J]. Chemical Physics Letters,2009,482(4-6):316-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700