热喷涂WC复合耐磨涂层制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用改进的电弧喷涂技术,以低碳钢为粘结剂,在45#钢表面喷涂WC-钢复合喷涂层,而后又使用氩弧重熔工艺对喷涂层重熔,制备了WC-钢复合熔覆层。
     利用金相光学显微镜、场发射扫描电镜、能谱仪、X射线衍射仪等研究手段分析研究了WC-钢复合喷涂层和WC-钢复合熔覆层的微观组织、结构以及涂层结合区的组织特征。利用显微硬度计测量了喷涂层和熔覆层的硬度分析了熔覆层显微硬度变化。
     在MM-200型滑动磨损试验机上,对WC-钢复合熔覆层进行室温下的干滑动摩擦磨损性能测试,借助于扫描电镜观察磨损试样磨面形貌,探讨其摩擦磨损机理。
     试验结果表明:本试验尝试使用的改进的电弧喷涂方法在实验室中使用是可行的,利用这套改进的设备制备了钢基-WC喷涂涂层,并且得到了不同WC含量的喷涂层;经氩弧重熔后,层片状组织消失、组织细小致密,缺陷消除,熔覆层与基体之间过渡区显微硬度梯度较为平缓;喷涂层与基体之间主要是机械结合,而熔覆层与基体之间为良好的冶金结合;适量WC的加入可以形成大量细小的硬质相颗粒,从而提高了熔覆层的硬度与耐磨性;随着WC含量的增加,熔覆层的硬度会增加,但磨损性能先变好后变差;材料的耐磨性与WC的含量存在一定的对应关系,在提高材料耐磨性时,应考虑加入适量的WC;随着WC加入量的不同,复合涂层的磨损机制也有所不同:含10%WC的熔覆层磨损机制主要以粘着磨损带有微切削,含15%WC的熔覆层磨损机制以较为严重的微切削为主,含20%WC的熔覆层磨损机制主要为微切削和轻微剥落,含25%WC的熔覆层磨损机制主要为剥落。
WC composite wear-resistant coating were coated on the surface of 45# steel by means of the improved arc spraying technology, and then remelted by argon shielded arc remelting technology.
     The microstructure of the composite coating was investigated by means of metallographic microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The microhardness of composite coatings was measured by the microhardness instrument. And changes in microhardness of the cladding layer were analyzed.
     The wear resistance of the composite was tested by an MM-200 friction wear testing machine under unlubricated condition. The friction surface morphology was observed by means of scanning electron microscopy (SEM), and the wear mechanism was investigated.
     The results show that the method of the improved arc spraying technology feasible in laboratory. Some WC composite coating samples with different WC content were prepared. The microstructures of composite coatings after argon shielded arc remelted are more homogeneous and refine than WC-steel composite coatings after arc sprayed. And in the coatings, the lamellar character of the microstructure disappeared, defects eliminated, the cladding layer and the substrate transition zone between the relatively has a gentle microhardness gradient. The composite coatings are mechanically bond after arc spraying, but metallurgical bond after argon shielded arc remelted to the base metal. The hardness and wear resistance of the WC composite wear-resistant coat can be greatly improved as a result of the generation of amounts of finer particles with appropriate WC content. As the WC content increased, the hardness of the coating will increase, but the wear properties to deteriorate after the first changed for the better. There is a best content of WC in WC-composite coating in order to improve wear resistance of materials. There are different wear mechanisms, with different WC content in composite coating. The dominant wear mechanism is adhesion and slight cutting for that with 10wt%WC content, heavy cutting for the clad with 15wt%WC content, slight cutting and spalling with 20wt%WC content, and spalling with 25wt%WC content.
引文
[1]张剑锋,周志芳,摩擦磨损与抗磨技术[M].天津:天津科技翻译出版公司,1993.
    [2]徐滨士,表面消耗与表面工程[J].表面工程资讯,2008,04: 46.
    [3]何奖爱,王玉玮,材料磨损与磨损材料[M].沈阳:东北大学出版社,2001.
    [4]孙家枢.金属的磨损[M].北京:冶金工业出版,1992.
    [5] Rabinowicz E. Friction and wear of materials[M]. New York: A Wiley- Interscience Publication, 1995.
    [6]徐滨士,朱邵华等.表面工程理论与技术[M].北京:国防工业出版社,1999.
    [7]徐滨士,刘世参等.表面工程[M].北京:机械工业出版社,2000.
    [8]徐滨士,刘世参等.表面工程新技术[M].北京:国防工业出版社,2002.
    [9]徐滨士,李仁涵,梁秀兵.绿色再造技术的进展[J].中国表面工程,2001,14(2):1-4.
    [10] Lu K, Lu J. Surface nanocrystallization of metallic material Presentation of the concept behind a new approach[J].J Mater Sci Tech,1999,15:193-197.
    [11]徐滨士,张伟,刘世参等.现代制备智能自修复技术[J].中国表面工程,2004,17(2):1-7.
    [12] Lu K, Lu J. Nanostructured Surfacelayes on metallic materials induced by surface mechanical attrition treatment[J].Materials science and Engineering A,2004,37-3775:38-45.
    [13]李金桂,肖定全.现代表面工程设计手册[M].北京:国防工业出版社,2000.
    [14]徐滨士等.表面工程的应用与展望[M].北京:高等教育出版社,2000.
    [15]师昌绪,徐滨士等.21世纪表面工程发展的趋势[J].中国表面工程,2001, 14(1):2-7.
    [16]易春龙.电弧喷涂技术[M].北京:化学工业出版社,2006.
    [17]王海军.热喷涂材料及应用[M].北京:国防工业出版社,2008.
    [18]吴子健等.热喷涂技术及应用[M].北京:机械工业出版社,2006.
    [19] Sampson E R, Zwetsloot M P. Arc spray process for the aircraft and stationary of turbine industry[J]. Journal of Thermal Spray Technology,1997(2):254-259.
    [20]朱子新.高速电弧喷涂Fe-Al/WC涂层形成机理及高温磨损特性[D].天津大学,2002.
    [21]徐滨士,梁秀兵,马世宁.新型高速电弧喷涂枪的开发研究[J].中国表面工程,1998,11(3):16-19.
    [22]田保红.高速电弧喷涂Fe3Al/WC复合涂层高温冲蚀行为研究[D].中国科学院金属研究所,2000.
    [23] Steffens H D, Nassenstein K, Keller S, Barbezet G. Thesonarcprocess : Combining the advantages of arc and HVOF spraying[J].Journal of Thermal Spray Technology.1994,3(4):398-403.
    [24] Sobolev V V, Guilemany J M.Dynamic processes during high velocity oxyfuel spraying[J].International Materials Reviews,1996(1):13-32.
    [25] Sharma G, Ramanujan R V, Kutty T R G, et al. Hot hardness and indentation creep studies of a Fe-28Al-3Cr-0.2C alloy [J]. Materials Science and Engineering. 2000,A278:106-112.
    [26]孙景荣等.氩弧焊技术入门与提高[M].北京:化学工业出版社,2008.
    [27]胡绳荪等.现代弧焊电源及其控制[M].北京:机械工业出版社,2007.
    [28]刘文今.稀土金属氧化物涂层对铸铁激光强化区组织和性能的影响[J].中国激光,1992,19(10):513-617.
    [29]王铀.CeO2M80S20激光合金化层的组织和耐腐性的影响[J].中国激光,1992,19(10):777-780.
    [30]苏梅,陈赤因,王铀等.CeO2对M80S20激光合金化层抗腐蚀性的影响[J].中国稀土学报,1995,13(3):277-279.
    [31]吴逸贵,李炎,于宗汉等.CeO2对FeBSi激光重熔合金化层组织与性能的影响[J].金属学报,1993,29(3):122-124.
    [32]李全安,于宗汉,王长生等.CeO2对M2+4B激光合金化层显微组织和耐磨性的影响[J].中国稀土学报,1995,13(3):280-282.
    [33]徐万仁,孟庆休,邹宇超等.高温合金激光表面熔掺Y2O3质点的研究[J].中国激光,1993,20(7):525-529.
    [34]王昆林,张庆松,朱允明等.La2O3对镍基合金激光熔覆层耐蚀性的影响[J].中国腐蚀与防护学报,1998,18(3):237-240.
    [35]张松,颜永根,朱荆璞等.钆对激光熔覆基合金组织和高温腐蚀性能的影响[J].中国稀土学报,1992,10(4):344-350.
    [36]谭业发,王耀华.硬质WC粒子增强镍基合金喷熔层耐磨粒磨损性能的研究[J].摩擦学报,1996,19(3):202-207.
    [37] Stachowiak G. Wear- Materials, Mechanisms and Practice[M]. West Sussex: John Wiley & Sons Ltd, 2005.
    [38] A.C.扎依莫夫斯基,M.Л.别尔恩什杰因.《特殊钢》第二分册[M].北京编译社等译校.北京:中国工业出版社,1965.
    [39] Burakowski T, et al. Surface Engineering of Metals. Principles, Epuipment,Technologies, Bora Raton[M]. Florida: CRC Press LLC, 1999.
    [40]刘江龙等.高能束热处理[M].北京:机械工业出版社,1997.
    [41] Hutchings R, etal. Plasma immersion ion implantation at elevated temperatures[M]. Lancaster: Techhomic Publishing Co. inc. Lancaster, Basel, 1995.
    [42]中国机械工程学会.焊接手册第1卷焊接方法及设备[M].北京:机械工业出版社,2008.
    [43]杨辉其.新编金属硬度试验[M].北京:中国计量出版社,2005.
    [44]田乃良,杜荣建,周昌炽.激光熔覆添加碳化钨的镍基合金应力状况研究[J].中国激光,2004,31(4):505-508.
    [45] Przybylowica J,Kusinski L.Structure of laser cladded tungsten carbide composite coatings [J].J.Materials Processing Tecnology,2001,109(1-2):154-160.
    [46] Mateos J , Cuetos J M, Fernandez E,et al.Tribological behaviour of plasma-sprayed WC coating with and wityout laser remelting [J].Wear,2000,239(2):274-281.
    [47]张黔.表面强化技术基础[M].武汉:华中理工大学出版社,1996.
    [48]向兴华,穆晓灯等.Ni基自熔合金涂层与钢基材的界面形态及其作用[J].焊接学报,2002,23(3):45-48.
    [49]周振丰.焊接冶金学原理[M].北京:机械工业出版社,1997.
    [50]陈铮,周飞,王国凡.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [51]徐滨士,刘世参主编.中国材料工程大典第16卷表面工程(上)[M].北京:化学工业出版社,2005.
    [52]李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1995.
    [53]何昕,王俊,孙宝德.热喷涂工艺对涂层摩擦磨损性能的影响[J].表面技术,2003,13(4):974-978.
    [54] Guilemany J M, de Paco J M, Nutting J, et al.Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC+12Pct Co powder [J]. Metall. Trans. 1999, 30A: 1913-1921.
    [55]林晓燕,谢国治等.等离子喷涂Ni包WC陶瓷层激光重熔研究[J].陶瓷学报,2005,26(4):254-260.
    [56]卢光熙,侯增寿.金属学原理[M].上海:上海科学技术出版社,1984.
    [57]黄新波,贾建援,林化春等.基合金-碳化钨复合涂层材料耐磨性能的研究[J].机械工程学报,2004,6:42-45.
    [58]丁厚福.WC溶解对钢结硬质合金组织的影响[J].材料科学与工艺,1997,5(1):86-88.
    [59]胡军志,陈学荣,马世宁等.高速电弧喷涂复合材料涂层工艺优化与性能研究[J].表面技术,2003,32(4):18-21.
    [60]杨瑞成,王军民,王夏冰等.颗粒复合材料中硬质相(WC)与钢基体的交互作用及其影响[J].金属热处理,1998,(12):7-9.
    [61]邓刚,宋延沛,王文焱.WC颗粒增强铁基梯度功能复合耐磨材料研究[J].热加工工艺,2005,(5):14-16.
    [62]游兴河.WC在WC/钢复合材料中的溶解行为[J].复合材料学报,1994,11(1):29-35.
    [63]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    [64] Suh N P. Tribophysics[M].New Jersey: Prentice-Hall,1986.
    [65] Skopp A, Woydt M, Habig K H. Unlubricated sliding Friction and wear of various Si3N4 pairs between 22~1000℃[J]. Tribology International. 1980,12(3):153-158.
    [66]周霞,鲍志勇.磨煤机用硬质颗粒复合合金材料的耐磨性[J].铸造,2002,51(10):605.
    [67] Childs T H C, Mimaroglu A. Sliding friction and wear up to 600℃of high speed steels and silicon nitrides for gas turbine bearings[J]. Wear, 1993,162-164.
    [68]李强.激光熔覆不同碳化物颗粒Ni-Cr-B-Si-C复合涂层的微观组织[D].哈尔滨工业大学,1998.
    [69]朱子新,徐滨士,马世宁等.高速电弧喷涂Fe-Al/WC复合涂层的摩擦学特性[J].摩擦学学报,2003,23(3):174-178.
    [70]庞佑霞,陆由南WC喷焊层对Ni60自熔合金冲蚀磨损机制的影响[J].润滑与密封,2005,(12):108-109.
    [71]许大庆,选择性颗粒增强铁基复合材料V-EPC制备技术的研究[D].华中理工大学,1999.
    [72]梁作俭,碳化钨颗粒增强铁基复合材料磨损性能研究[D],西安交通大学,2000.
    [73] Marinescu I D ,Rowe W B, etal. Tribology of Abrasive Machining Processes [M]. Norwich:William Andrew, 2004.
    [74]李祖来,蒋业华,周荣.WC颗粒增强铁基表面复合材料的三体磨料磨损性能研究[J].中国机械工程,2006,17(18):1967-1971.
    [75]成小乐,高义民,邢建东等.WC/45钢复合材料的温压烧结工艺及其磨损性能[J].2005,39(1):53-56.
    [76] Van Acker K, Vanhoyweghen D, Persoons R,et al.Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J].wear,2005,258(1-4):194-202.
    [77] R.Zhou,Y.H.Jiang,D.H.Lu.The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites[J].wear,2005,255(1-6):134-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700