碳纳米管增强高耐磨复合涂层试验及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会对机械设备、零件的耐磨性的要求越来越高,复杂的工况下材料的耐磨损性能逐渐受到重视。因此寻找一种高耐磨低摩擦系数的涂层成为了现在研究的热点。碳纳米管是一类新型碳材料,是由单层或多层石墨片卷曲而成的中空无缝管状纳米结构。由于碳纳米管的结构特性类似石墨,以及密度小、强度与硬度高的特点,因此碳纳米管将会是性能优良的润滑剂,并具有良好摩擦学性能的强化材料。本文采用碳纳米管作为增强体,对碳纳米管/钨涂层的制备工艺和涂层性能进行研究。
     在钨合金沉积液的基础上添加不同含量的碳纳米管,制备出碳纳米管/钨复合涂层,探讨了电流密度、碳纳米管的加入量对涂层组织、厚度及硬度的影响以及搅拌、温度、PH值、盐含量对电沉积此涂层的影响。
     本试验对碳纳米管采用酸处理与球磨的方法进行预处理,使得碳纳米管没有明显的团聚现象,具有较好的分散性。试验结果表明:当电流密度为4A/dm2、采用手动搅拌与空气搅拌相结合的方式,在PH值在5~6可获得组织和性能良好的涂层。
     采用QUANTA200扫描电镜对此涂层的表面形貌分析表明:复合涂层组织比较致密,几乎无微裂纹,通过金相显微镜对碳纳米管复合涂层的组织分析表明复合涂层表面晶粒细化程度明显。通过EDVX能谱分析,碳元素含量明显增高,间接说明碳纳米管被包覆在涂层中。采用MH-3型显微硬度计测定涂层硬度,结果表明:沉积液中碳纳米管加入量在2g/L,对涂层的硬度有明显的增加,但随着碳纳米管加入量的增大,涂层硬度随之下降。这些结果向我们说明适当含量的碳纳米管在复合涂层中的均匀分布对涂层起到了弥散强化。对2g/L碳纳米管复合涂层进行摩擦磨损试验,其摩擦系数明显降低,表明碳纳米管的加入能有效降低摩擦系数。
Nawdays the society request the mechanical devices have more and more high wear resistant, and the the material wear resistant performance under the complex operating mode has been paid more attention.Therefore looking for one kind of the coatings which has high wear-resisting low friction coefficient to become the hot spot in the present studies. The carbon nanometer tube is a kind of new carbon material. This nanometer structure is hollow and Seamless tubular structure, which is composed of single layer or the multilayer curling flake of graphite. Because the structure characteristic of carbon nanometer tubes similar with graphite, and which has smaller density, higher intensity and higher hardness characteristic. Therefore the carbon nanometer tubes could be the fine performance lubricant, and will be the strengthened material with good firctional performance. This article uses the carbon nanometer tubes as strengthened body, carries on studies the CNTs\CoW coating preparation craft and the coating performance.
     Added the different carbon nanometer tubes content in the cobalt tungsten alloy deposition fluid foundation, prepares CNTs\CoW compound coating, discussed the current density and the content of carbon nanometer tubes influence for the quantity of the coating organization, thickness and degree of hardness as well as the agitation, the temperature, the PH value influence to the deposit this coating performance.
     This experiment uses the acid treatment and the ball grinding method to a carbon nanometer tube carries on the pretreatment, which made the carbon nanometer tubes not have obvious reunion phenomenon and have the good dispersivity. The test result indicated that, when the current density is 4A/dm2, selects the method which the manual agitation and the air agitation unifies, PH value.in 5~7 may obtain the good organization and the performance coating
     Uses QUANTA200 SEM to analysis superficial appearance of the coating indicated that the compound coating organization relative compaction, nearly has the micro crackles, the degree of superficial crystal grain refinement is obvious. Uses EDVX energy dispersive spectrometer to analyse the coating ingredient, the carbon element content obvious got higher, which explains that carbon nanometer tubes indirectly by hosted grain in coating. Uses the MH-3 microhardness scale determination degree of hardness of the coating, which result indicated: the content of carbon nanometer tube that supplement in the bath is 2g/L, which has the obvious increase to the coating degree of hardness. But with the increasing of the carbon nanometer tubes content , hardness of the coating decreased. Simultaneously, as a result of the carbon nanometer tubes fine self lubrication ability, which plays the anti-friction role in the friction attrition process. Added 2g/L of carbon nanometer tubes in the composite coating for friction and wear testing, the friction coefficient was reduced, that the addition of carbon nanotubes can effectively reduce the coefficient of friction, wear-resistant coatings improve performance.Which resort indicated that the friction and attrited performance of CNTs/CoW compound coating is superior to ordinary cobalt tungsten coating.
引文
[1]杜君俐.润滑耐磨涂料的进展.现代涂料与涂装[M],2000.06
    [2]欧风.合理润滑技术手册.石油工业出版社[Z],1993:5.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京科学出版社,2001.
    [4]尹健,朱建培、注塑模电刷镀纳米复合涂层的耐磨性研究[J].电加工与模具,2002(3):25-27.
    [5]陈小华,李德意,李学谦等.碳纳米管增强镍基复合涂层的形貌及摩擦磨损行为研究[J].摩擦学学报,2002,22(1):6-9.
    [6]彭群家,马营生.复合电沉积的研究及进展闭[J].电沉积与环保,1998,18(6):3-7.
    [7]M.R.Kalantary etal. Trans.inst.Metal finis 1993,71(2):53-55.
    [8]李卫东,周晓荣,左正忠.电沉积复合涂层的研究现状明[J].电沉积与涂饰[J].2000,19(5):44-49.
    [9]张景双,屠振密,安茂忠等.代铬涂层的研究和应用[J].电沉积与环保,2001,21(1):4-8.
    [10]邓世均,程旭东.热喷涂材料技术手册[Z].机电部武汉材料保护研究所,1991.
    [11]赵文轸.金属材料表面新技术[M].西安交通大学出版社.1992.101-107.
    [12]李广海,江安全,张立德.添加纳米Al2O3陶瓷增韧和增强的影响[J].金属学报,1996,32(12):1286-1288.
    [13]J.W.Graydon D.W.Kirk.J.Electrochem Soc[P],1990,137(7):2061.
    [14]Y.Suzuki,O.A sai.J.Electrochem.Soc[P],1987,134(8):1905.
    [15] J.P.Celis,J.R.Roos.J.Electrochem.Soc[P],1977,124(10):1508.
    [16]N.Guglielmi.Kinetics of the deposition of inert particles from electrolytic baths[J]. J Electrochem.Soc[J],1972,119(8):1007-1009.
    [17]Celis J.P, Roos J.R, Buelens C.A. Mathematical model for the electrolytic deposition of Particles with a metallic matrix[J].JAAPPI Electrochem Soc,1987,134(6):1402-0408
    [18] Saifullin R.S, Khalilova R.G.. Caculations of the Compositions of Composite Electrochemical Coatings and Suspenstions for Preparing Them[J].JAPPI USSR 1970,43(6)1264-1266
    [19]冯立明,王明,孙华.电沉积工艺与设备[M].北京化学工业出版社,2005.
    [20]L.I.Anterlao.理论电化学[M].北京高等教育出版社.1982,493.
    [21] Hovestad A, Jansen L J. Electrochemical Co-deposition of Inert Particles in a Metallic Matrix[J].J APPI. Electrochem,1995,25(6):519-520.
    [22] Fernande J.E,Rodriguez R. Sliding Wear of a Plasma Sprayed Al2O3 Coating[J].Wear,1995,181-183(1):417-425.
    [23]王键雄.碳纳米管的制备、纯化及其复合涂层研究[D].[硕士学位论文].湖南大学,2002.
    [24]陈传盛,彭景翠.碳纳米管镍基复合涂层材料耐腐蚀性的初步研究[J].腐蚀与防护,2002,23(1):6-9.
    [25]欧忠文,徐滨士,马世宁等.纳米材料在表面工程中应用的研究进展[J].中国表面工程,2002,13(2):5-9
    [26] Ferve L.V,Normand B.Tribological Behavior of Plasma Sprayed Al2O3 Based Cermet Coatings[J].Wear,1999,230(1):70-77.
    [27]Srivastar.A,KapoorA. The Role of MoS2 in Hard Over lay Coatings of Al2O3 in Dry Sliding[J] Wear,1992,155(2):229-235.
    [28]Kitsun.H,Hok kivigawaK.Transitions of Microscopic WearMechanism For Cr2O3 Ceramic Coatings During Repeated Sliding Observed in a Scanning Electronic Microscope Tribosystem[J].Wear,1991,151(2):279-289.
    [29]吴华东,夏为民.几种陶瓷和金属等离子喷涂层铸铁副的摩擦学特性研究[J].摩擦学学报,1992,12(3):240-249.
    [30]马仁志,朱艳秋,魏秉庆等.铁-巴基管复合材料的研究[J].复合材料学报,1997,14(2):92-96
    [31]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56—58.
    [32]Treacy M J,Ebesen T W,Gibom J M,etal.Exceptionally high Young’s modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680
    [33]曹茂盛,丘成军,朱静,等.碳纳米管表面修饰的研究进展[J].航空材料学报.2003,23(4):78-81
    [34]江琳沁,高濂.碳纳米管拉曼光谱研究新进展[J].无机材料学报,2003,5:50-59
    [35]张雄伟,徐世伟,庄绘祥,等.多壁碳纳米管的改性及其储氢性能研究[J].高等学校化学学报,2005,26(3):493-496
    [36]陈小华,李德意,李学谦等.碳纳米管增强镍基复合涂层的形貌及摩擦磨损行为研究[J].摩擦学学报,2002,22(1):6-9
    [37]汤齐华.碳纳米管/锌基复合材料的磨损性能研究[J].江西理工大学学报,2004,26(5):56-59
    [38]周银生,李亚均,顾大强,等.巴基管粒度对其复合涂层摩擦学性能影响的研究[J].材料工程.2005,34(8):78-79
    [39]王淼,李振华,鲁阳,等.纳米材料应用技术的新发展[J].材料科学与工程,2000,18(6):103-105
    [40]梁志杰.现代表面镀覆技术[M].北京:国防工业出版社,2005.
    [41]相英伟.化学复合镀纳米金刚石粉的研究[J].材料工程.2000,22-23
    [42]徐滨士,朱绍华.表面工程的理论与技术[M].北京国防工业出版社,1999.
    [43]李深涛,王贞申.电沉积含钨、钛合金的新工艺研究[J].电沉积与精饰,1993,15(5):14-18.
    [44]屠振密.电沉积合金原理与工艺[M].北京国防工业出版社,1993
    [45]蔡积庆.钨合金电沉积[J].腐蚀与防护,2002,23(10):463-467.
    [46]李勇.电沉积W-Co合金工艺研究[J].电沉积与环保,2006,3:25-28
    [47]成会明,纳米碳管制备结构物性及应用[M].北京化学工业出版社,2002
    [48]魏秉庆.碳纳米管复合材料的研究[J].复合材料学报,1997,2:37-42.
    [49]钟蓉,从洪涛,成会明,等.单壁纳米碳管增强纳米铝基复合材料的制备[J].材料研究学报,2002,16(4):344-348.
    [50]杨冬青,张华堂,朱少峰等.巴基管增强镍基白熔合金喷涂层在油润滑条件下的摩擦磨损特性[J].摩擦学学报,2002.22(6):430
    [51]许龙山,吴玉荣,潘伟英,等.碳纳米管铜基复合材料的制备[J].中国有色金属学报,2006,12(3):53-58
    [52]谭洪波,吴希俊,李玉波,等.碳纳米管复合纳米碳化钨粉体的热稳定性[J].中国有色金属学报,2003,15(6):49-52
    [53]沈广霞,董华,林耿杰,等.铜/碳纳米管复合材料的制备与表征[J].功能材料,2005,11(2):23-26
    [54]黄伟,李道火.纳米碳管增强纯铝基复合材料的制备及性能[J].新技术新工艺.2004. 2:9-11
    [55]王静.碳纳米管陶瓷基复合材料研究进展[J].材料科学与工程.2004.8:11-14
    [56]张华堂,魏秉庆,张继红,等.钢表面激光处理碳纳米管涂层组织与耐磨性研究[J].清华大学学报.1998.38(10):20-22
    [57]夏军宝,陈卫祥,李飞,等.碳纳米管/PTFE基复合材料摩擦学性能的研究[J].浙江大学学报工学版.2003.37(4):471-472
    [58]周仲荣,谢友柏主编.摩擦学设计[M].西南交通大学出版社,2000.
    [59] Johnson,et a1.Tungsten alloy bath[P].US pat:No.5415763, 1995-05 11.
    [60]戴雄杰.摩擦学基础.上海:上海科学技术出版社,1984.
    [61]温诗铸,黎明主编.机械学发展战略研究[M].北京:清华大学出版社,2003.
    [62]温诗铸.世纪回顾与展望—摩擦学研究的发展趋势[J].机械工程学报,2004,36(6):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700