盐分条件下三种红树植物稳定碳同位素组成特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树植物作为一类典型的盐土植物,一直是生理生态学以及污染生态学领域研究植物适应机制、尤其是应对极端生态环境的模式植物。红树植物在盐生条件下生理生态的特性得到广泛地研究。植物的稳定碳同位素组成(以δ~(13)C表示)是植物长期生理生态的综合响应指标,然而,关于红树植物δ~(13)C与红树林特殊生境之间相关关系的研究却很少。过去的研究者通常认为盐土植物δ~(13)C对盐度的响应模式与非盐土植物相同。然而,通过对红树植物光合作用的研究结果的分析可知,大部分红树植物在盐生条件下的光合作用(Pn)和气孔导度(Gs)大于非盐生条件下的值。由于植物的Pn和Gs是决定植物δ~(13)C的主要参数,较高的Gs将引起δ~(13)C的增大。据此推测,红树植物的δ~(13)C与盐度的关系与非盐土植物不同。本文以福建省分布的主要红树树种桐花树、秋茄和白骨壤为例,研究盐分条件下三种红树植物稳定碳同位素组成特征,为红树林研究的进一步开展提供基础数据。在此基础上,进一步探讨红树植物的δ~(13)C是否可以作为不同种红树问耐盐性的指示指标。同时,结合其他分析手段和技术,分析盐分条件下红树植物δ~(13)C变化的原因,并试图探讨盐生环境下红树植物光合代谢途径是否发生转换。
     实验包括一个野外试验和三个盆栽模拟试验,得到如下主要结论:
     (1)生长于系列盐度下的桐花树和秋茄幼苗,叶片的δ~(13)C分别在15‰和20‰盐度下最低。在0~15‰盐度范围内,桐花树叶片的δ~(13)C随盐度的增加而减小;在高于15‰的盐度下,桐花树叶片的δ~(13)C随盐度的增加而增大。这种变化趋势随处理时间的延长而加剧,但是叶片δ~(13)C在各盐度之间的差异不显著。其中,在高盐度(30‰)下生长长达130天的桐花树幼苗,叶片的δ~(13)C则明显降低,与同一盐度下生长60天的叶片相比,δ~(13)C降低了1.20‰。与桐花树幼苗的变化趋势相类似,在0~20‰盐度范围内,秋茄叶片的δ~(13)C随盐度的增加而减小;在高于20‰的盐度下,桐花树叶片的δ~(13)C随盐度的增加而增大。同样,随处理时间的延长,盐度对叶片δ~(13)C的影响加剧,而且盐度之间的差异达到显著水平。综上所述,两种红树植物幼苗在最适盐度条件下,叶片的δ~(13)C最低;且这种变化趋势随着处理时间的延长而加剧。
     (2)秋茄幼苗叶片的净光合速率和气孔导度随盐度的变化与叶片δ~(13)C的变化趋势正好相反。在0~20‰的盐度下,Pn和Gs随着盐度的增加而增大。表明在适宜盐度下气孔开度大于非盐分处理的叶片,更多的CO_2进入叶片,同时气孔对C-13歧视加强,使吸收的CO_2含C-13的比例减小,从而导致叶片δ~(13)C的降低。当盐度大于20‰,随着盐度的增加,Pn和Gs减小。气孔对碳同位素的选择降低,即对C-13的分馏效应降低,因而叶片的δ~(13)C逐渐增大。由此可见,在一定盐度范围内,叶片δ~(13)C的变化主要是气孔调节的结果。
     (3)桐花树和秋茄幼苗有机酸含量或pH的昼夜差异均不显著,表明两种红树幼苗在盐分条件下,没有诱导发生CAM代谢。从两种红树的δ~(13)C变化范围来看,桐花树的δ~(13)C在-30.36~-26.55‰之间,秋茄的δ~(13)C在-31.96~-28.13‰之间,属于典型的C_3植物。可见,盐分条件下桐花树和秋茄幼苗没有发生光合代谢途径的转换。
     (4)在0~30‰盐度下,白骨壤幼苗的δ~(13)C随盐度的变化没有表现出显著的峰值,各盐度之间的差异未达显著水平。从气体交换系统测定的结果来看,Pn随盐度增加而降低,Gs却随盐度的增加而增大。这与其他红树植物不同,但是引起白骨壤Gs增大的原因不是气孔开度的增加而与气孔密度的增加有关。可见,气孔调节不是白骨壤δ~(13)C变化的主要原因。从光合参数的分析可知,羧化效率随盐度的增加而显著降低,这可能是白骨壤叶片光合降低的原因之一。另外,白骨壤叶片的光呼吸速率和CO_2补偿点随盐度的增加显著降低,这些现象表明C_4代谢有所增强。这可能是引起白骨壤δ~(13)C变化的另一个重要原因。白骨壤叶片pH的昼夜差异不显著,表明没有CAM代谢的发生。
     (5)桐花树幼苗叶和根的δ~(13)C随盐度的变化趋势一致,而盐分似乎对茎的δ~(13)C没有产生影响。叶和茎的δ~(13)C差异很小,并显著低于根的δ~(13)C。白骨壤幼苗五个部分(叶、茎的上部、茎的下部、根的上部和根的下部)的δ~(13)C依自然生长位置由叶向根依次增大,且对盐度的响应模式基本一致。同一器官不同部分之间的差异显著,而生长位置相邻的不同器官之间的差异不显著。这些现象表明,器官之间δ~(13)C的差异与物质的运输过程有关。
     (6)在系列盐度下生长的桐花树幼苗,叶片的δ~(13)C在15‰盐度下最低。秋茄幼苗的叶片δ~(13)C在20‰盐度下最低。表明15‰和20‰的盐度分别是桐花树和秋茄幼苗的最适生长盐度,显然桐花树的最适生长盐度低于秋茄。可见,红树植物叶片的δ~(13)C可以用来比较不同种红树之间的耐盐性。这为不同种盐土植物之间耐盐性的比较提供了一种可行的方法。
Mangrove plant,as a typical halophytic species,their ecological response to salinity has been widely studied.But little is know of the correlations between stable carbon isotope composition(presented by convention asδ~(13)C) and salinity,even though plantδ~(13)C have been thought to be an index of reflection of the integrated response of physiological characteristic to environmental factors.δ~(13)C in plant tissues is correlated with their intrinsic salt tolerances,leading to varied patterns ofδ~(13)C in different plants species or different parts of a certain plant.Previous studies showed that halophytic species had a similar pattem ofδ~(13)C variation as compared with nonhalophytic species.From the model of Farquhar et al.(1982) expression for discrimination in leaves of C_3 plants,variation in plantδ~(13)C is mainly associated with stomatal and photosynthetic effects.However,the pattems of CO_2 exchange properties have been shown to be different between halophytic and nonhalophytic species as affected by salinity.Therefore,I hypothesized that the correlation betweenδ~(13)C and salinity for mangrove plants differ from nonhalophytic species.To test the hypothesis,δ~(13)C variation of three dominant mangrove species in Fujian province under salinity were studied.Based on the primary results,I discussed whetherδ~(13)C could be used to compare the salt tolerance between mangrove plants belonging of different species.In addition,I tried to explore the mechanism ofδ~(13)C changes of mangrove plants induced by salinity,and to determine the photosynthetic pathway of mangrove species under salinity using the stable isotope technique combined with gas exchange measurements and other relative technique.
     Following are the major conclusion:
     ⅰ) Leafδ~(13)C exhibited special patterns in A.corniculatum and K.candel as response to salinity.In A.comiculatum,an increase in salinity from 0 to 15‰induced reduction in leafδ~(13)C;while as salinity above 15‰,leafδ~(13)C increased.The similar pattern was also found in K.candel,but the maximum values of leafδ~(13)C occurred at 20‰.These changes became more pronounced for long time treated with salinity,although the differences between salt treatments were non-significant for A. corniculatum.These results indicate that the patterns of leafδ~(13)C in A.corniculatum and K.candel differ from those in nonhalophyte,these two species showed the lowestδ~(13) at the optimum salinity.In A.corniculatum,a great lower leafδ~(13)C were observed in 130-d samples relative to 60-d samples at high salinity(30‰).
     ⅱ) The patterns of photosynthetic parameters including net photosynthetic rate(Pn), stomatal conductance(Gs),transpiration rate(Tr),and intercellular CO_2 concentration(Ci) were opposite to leafδ~(13)C.As salinity increased from 0 to 20‰,Pn,Gs and Tr increased, revealing that the decrease in leafδ~(13)C was caused by stomatal opening;while as salinity higher than 20‰,these parameters decreased,which resulted in an increase in leafδ~(13)C.Therefore,it could be concluded that changes in leafδ~(13)C of these two mangrove species mainly resulted by stomatal adjustment as affected by salinity.
     ⅲ) There was no significant differences in malic acid content of A.corniculatum or pH value of K.candel between day and night,revealing that theses two species have not been induced into crassulacean acid metabolism by salinity.The values ofδ~(13)C in A.corniculatum and K.candel were-30.36~-26.55‰and -31.96~-28.13‰respectively,which were within the range of C_3 plants.Therefore,it could be concluded that these two mangrove species are typical C_3 plants.
     ⅳ) Unlike in the case of A.corniculatum and K.candel,the changes in leafδ~(13)C of A.marina always increased as salinity increased from 0 to 35‰,but the differences between salinity were not significant.Pn decreased with increasing salinity,while Gs increased.An increase in Gs paralleled the increase of stomatal density,indicating that the increase of Gs was the result of increasing stomatal density but not of the stomatal opening.The reduction in carboxylation efficiency(CE) was also detected and which maybe one reason for Pn prohibition.In addition,the decrease of photorespiration(Rp) and CO_2 compensation point(Γ) indicated that C_4 photosynthetic metabolism increased to some extent.The differences in pH between day and night were not significant,indicating no CAM occurred.Summary,δ~(13)C variation is correlated with depression of Pn and CE,and the enhanced C_4 photosynthesis which maybe also an important factor in contribution to the tolerance of the species to high salinity.
     ⅴ) In A.corniculatum,root and leaf exhibited quite similar response patterns inδ~(13)C to salinity,butδ~(13)C in stem showed less variation.δ~(13)C in both stem and leaf were significant lower than in root.δ~(13)C in seedling parts in A.marina increased followed the order of leaf<above-stem<below-stem<above-root<below-root.The similar variation patterns inδ~(13)C were observed in various seedling parts.It is interesting noted that different parts of one seedling organ showed significant difference inδ~(13)C; while,δ~(13)C in different organs linked together showed non-significant differences.It is suggested that the differences between plant parts are correlated with the discrimination to C-13 during transport processes.
     ⅵ) The difference in optimum salinity of A.corniculatum and K.candel inferred by leafδ~(13)C provides a feasible method for comparing salt tolerance between plants of different species,and it is useful for mangrove restoration.
引文
[1] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis [J].Annual Review of Plant Physiology, 1989,40: 503-537.
    [2] Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C_3 non-halophytes [J]. Plant Physiol, 1991, 95: 628-635.
    [3] Shaheen R, Hood-Nowotny R C. Carbon isotope discrimination: potential for screening salinity tolerance in rice at the seedling stage using hydroponics [J]. Plant Breeding, 2005a, 124 (3):220-224.
    [4] Poss J A, Zeng L H, Grieve C M. Carbon isotope discrimination and salt tolerance of rice genotypes [J]. Cereal Research Communications, 2004, 32 (3): 339-346.
    [5] Hokmabadi H, Arzani K, Grierson P F. Growth, chemical composition, and carbon isotope discrimination of pistachio (Pistacia vera L.) rootstock seedlings in response to salinity [J].Australian Journal of Agricultural Research, 2005, 56 (2): 135-144.
    [6] Gibberd M R., Turner N C, Storey R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.) [J]. Annals of Botany, 2002,90(6): 715-724.
    [7] Weber E, D'Antonio C M. Germination and growth responses of hybridizing Carpobrotus species (Aizoaceae) from coastal California to soil salinity [J]. American Journal of Botany, 1999, 86 (9):1257-1263.
    [8] Shaheen R, Hood-Nowotny R C. Effect of drought and salinity on carbon isotope discrimination in wheat cultivars [J]. Plant Science, 2005b, 168 (4): 901-909.
    [9] Ouerghi Z, Cornic G, Roudani M, et al. Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress [J]. Journal of Plant Physiology, 2000, 156 (3): 335-340.
    [10] Isla R, Aragues R, Royo A. Validity of various physiological traits as screening criteria for salt tolerance in barley [J]. Field Crops Research, 1998, 58 (2): 97-107.
    [11] Jiang Q Z, Roche D, Monaco T A, et al. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity[J].Field Crops Research,2006,96(2-3):269-278.
    [12]Choi W J,Ro H M,Chang S X.Carbon isotope composition of phragmites australis in a constructed saline wetland[J].Aquatic Botany,2005,82(1):27-38.
    [13]Poss J A,Grattan S R,Suarez D L,et al.Stable carbon isotope discrimination:an indicator of cumulative salinity and boron stress in eucalyptus camaldulensis[J].Tree Physiology,2000,20(16):1121-1127.
    [14]Winter K,Holtum J A M.The effects of salinity,crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L.,a halophytic C_3-CAM species[J].Planta,2005,222(1):201-209.
    [15]Goldstein G,Drake D R,Alpha C,et al.Growth and photosynthetic responses of scaevola sericea,A Hawaiian Coastal Shrub,to substrate salinity and salt spray[J].International Journal of Plant Sciences,1996,167(2):171-179.
    [16]Kao W Y,Tsai H C,Tsai T T.Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species,Kandelia candel(L.) Druce.J[J].Plant Physiol,2001,158:841-846.
    [17]Sobrado M A.Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity[J].Photosynthetica,2005,43(2):217-221.
    [18]Ish-Shalom-Gordon N,Lin G,Sternberg L D S L.Isotopic fractionation during cellulose synthesis in two mangrove species:Salinity effects[J].Phytochemistry,1992,31(8):2623-2626.
    [19]Lin G H,Sternberg L D S L.Effect of growth form,salinity,nutrient and sulfide on photosynthesis,carbon isotope discrimination and growth of Red Mangrove(Rhizophora mangle L.)[J].Australian Journal of Plant Physiology,1992,19(5):509-517.
    [20]Farquhar G D,OLeary M H,Berry J A.On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J].Australian Journal of Plant Physiology,1982,9:121-137.
    [21]林植芳,孙谷畴,李双顺 等.几种C_4和CAM植物光合亚途径的鉴别[J].植物学报,1990,32(10):766-771.
    [22]Griffths H.Application of stable isotope technology in physiological ecology[J].Func Ecol,1991,5:254-269.
    [23]Feng X B.Long term ci/ca response of trees in western north America to atmospheric CO_2concentration derived from carbon isotope chronologies[J].Oecologia,1998,117:19-25.
    [24]郑国琦,许兴,徐兆桢,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北植物学报,2002,22(6):1355-1359
    [25]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [26]Lissner J,Schierup H H,Comin F A,et al.Effect of climate on the salt tolerance of two phragmites australis populations.Part Ⅱ:diurnal CO_2 exchange and transpiration[J].Aquat.Bot.1999b,64:335-350.
    [27]Flexas J,Bota J,Loreto F,et al.Diffusive and metabolic limitations to photosynthesis under drought and salinity in C_3 plants[J].Plant Biology,2004,6:269-279.
    [28]Julian M.H,W P Quick.Characteristics of C_4 photosynthesis in stems and petioles of C_3flowering plants[J].Nature,2002,415:451-454.
    [29]Black C C,Osmond C B.Crassulacean acid metabolism photosynthesis:'working the night shif(?)[J].Photosynthesis Research,2003,76(1-3):329-341.
    [30]陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26(5):549-560.
    [31]Zotz G,Winter K.Short-term regulation of crassulacean acid metabolism activity in a tropical hemiepiphyte,Clusia uvitana[J].Plant Physiology,1993,102(3),835-841.
    [32]Winter K,Ltittge U,Winter E.John H.Troughton.Seasonal shift from C_3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment[J].Oecologia,1978,34(2):225-237.
    [33]Winter K,Ziegler H.Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress[J].Oecologia,1992,92(4):475-479.
    [34]Cushman J C,Borland A M.Induction of crassulacean acid metabolism by water limitation[J].Plant,Cell & Environment,2002,25(2):295.
    [35]Earnshaw M J,K Winter,H Ziegler et al.Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea[J].Oecologia,1987,73(4):566-572.
    [36]Hang-Kerwer A,Franco A C,Luettge U.The effect of temperature and light on gas exchange and acid accumulation in the C_3-CAM plant clusia minor L[J].Journal of Experimental Botany,1992,43(248):345-352.
    [37]Zotz G,Winter K.A one-year study on carbon,water and nutrient relationships in a tropical C_3-CAM hemi-epiphyte,Clusia uvitana Pittier[J].New Phytologist,1994,127(1):45-60.
    [38]von Willert D J,Detlef K.Ultrastructure and crassulacean acid metabolism in Mesembryanthemum crystallinum leaves during normal and NaCl -induced ageing[J].Planta,1972,107(3):227-237.
    [39]Winter K,Gademann R.Daily changes in carbon dioxide and water vapor exchange,chlorophyll fluorescence,and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high sodium chloride salinity[J].Plant Physiology,1991,95(3):768-776.
    [40]Borland A M,TeA csi L I,Leegood R C,Walker R P.Inducibility of crassulacean acid metabolism(CAM) in Clusia species;physiological/biochemical characterization and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM[J].Planta,1998,205:342-351.
    [41]Winter K,Holtum J A M.How closely do the ~(13)C values of crassulacean acid metabolism plants reflect the proportion of CO_2 fixed during day and night[J].Plant Physiol,2002,129:1843-1851.
    [42]Pierce S,Winter K,Griffiths H.Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae[J].New Phytologist,2002,156(1):75.
    [43]Griffiths H.Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants[J].Plant,Cell and Environment,1992,15(9):1051-1062.
    [44]Holtum J A M,Aranda J,Virgo A,et al.~(13)C values and crassulacean acid metabolism in Clusia species from Panama[J].Trees-structure and function,2004,18(6):658-668.
    [45]Holtum J A M,Winter K.Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns[J].Australian Journal of Plant Physiology,1999,26(8):749-757.
    [46]Borland A M,Griffiths H,Broadmeadow M S J,et al.Short-term changes in carbon-isotope discrimination in the C_3-CAM intermediate Clusia minor L.growing in Trinidad[J].Oecologia,1993,95(3):444-453.
    [47]苏文华,张光飞.铁皮石解叶片光合作用的碳代谢途径[J].植物生态学报,2003,27(5):631-637.
    [48]Cheng Z Q,Zhang W J.C_3-C_4intermediate plants[J].Plant Physiology Communication,1988,2:72-76.
    [49]牛书丽,蒋高明,李永庚.C_3与C_4植物的环境调控[J].生态学报,2004,24(2):308-314.
    [50]Hylton C M,Rawsthorne S,Smith A M,et al.Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C_3-C_4 intermediate species[J].Planta,1988,175(4):452-459.
    [51]Monson R K,Teeri J A,Ku M S B,et al.Carbon-isotope discrimination by leaves of flaveria species exhibiting different amounts of C_3-and C_4-cycle co-function[J].Planta,1988,174(2):145-151.
    [52]Niu S,Jiang G,Wan S,et al.A sand-fixing pioneer C_3 species in sandland displays characteristics of C_4 metabolism[J].Envrionmental and experimental botany,2006,57:123-130.
    [53]Hymus G J,K Maseyk,R Valentini,et al.Large daily variation in ~(13)C-enrichment of leaf-respired CO_2 in two Quercus forest canopies[J].New Phytologist,2005,167:377-384.
    [54]Cheeseman J M,Clough B F,Carter D R,et al.,The analysis of photosynthetic performance in leaves under field conditions:a case study using Bruguiera mangroves[J].Photosynthesis Research,1991,29:11-22.
    [55]Parida A K,A B Das,B Mittra.Effects of salt on growth,ion accumulation,photosynthesis and leaf anatomy of the mangrove,Bruguiera parviflora[J].Trees-Structure and Function,2004,18(2):167-174.
    [56]Khan M A,I Aziz.Salinity tolerance in some mangrove species from Pakistan[J].Wetlands Ecology and Management,2001,9(3):229-233.
    [57]Christian R.Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves[J].Trees,2005,19:596-606.
    [58]Ball M C,G D Farquhar.Photosynthetic and Stomatal Responses of Two Mangrove Species,Aegiceras corniculatum and Avicennia marina,to Long Term Salinity and Humidity Conditions [J].Plant Physiol.,1984,74:1-6.
    [59]Clough B F,Sim R G.Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit[J].Oecologia,1989,79:38-44.
    [60]SUAREZ N,MEDINA E.Influence of salinity on Na~+ and K~+ accumulation,and gas exchange in Avicennia germinans[J].Photosynthetica,2006,44(2):268-274.
    [61]Hwang Y H,Chen S C.Effects of ammonium,phosophate,and salinity on growth,gas exchange characteristics,and ionic contents of seedlings of mangrove Kandelia candel(L.)[J].Druce.Bot.Bull.Acad.Sin.2001,42:131-139.
    [62]杨盛昌,林鹏,中须贺常雄.红树林的光合作用[J].植物学通报,1996,13(增刊):33-38.
    [63]林鹏,陈德海,李钨金.两种红树叶的几种酶的生理特性和海滩盐度的相关性初探[J].植物生态学与地植物学丛刊,1984,8(3):222-227.
    [64]林栖凤,邓用川,黄薇等.红树DNA导入茄子获得耐盐性后代的研究[J].生物工程进展,2001,21(5):40-44.
    [65]黄薇,林栖凤,李冠一等.盐分对红树植物秋茄某些生理特性的影响[J].海南大学学报自然科学版,2002,20(4):328-331.
    [66]李宝才,董玉莲.秋茄和榕树叶片中正构烷烃分布和单体化合物δ~(13)C值及其光合作用[J].热带海洋学报,2003,22(1):62-69.
    [67]陈铁晗.福建漳江口红树林湿地自然保护区生态系统现状与评价[J].福建林业科技,2001,28(4):25-27.
    [68]吴敏兰.福建漳江口红树林湿地自然保护区资源及保护[J].生物学通报,2005,40(2):24-26.
    [69]李元跃,吴文林.福建漳江口红树林湿地自然保护区的生物多样性及其保护[J].生态科学,2004,23(2):134-136.
    [70]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学与技术出版社,1999.
    [71]Lin Z F,Peng C L,Lin G Z.Photooxidation in Leaves of Facultative CAM Plant Sedum spectabile at C_3 and CAM Mode[J].Acta Botanica Sinica,2003,45(3):301-306.
    [72]蔡时青,许大全.大豆叶片CO_2补偿点和光呼吸的关系[J].植物生理学报,2000,26(6):545-550.
    [73]冯兆忠,王效科,郑启伟等.油菜叶片气体交换对O_3浓度和熏蒸方式的响应[J].生态学报,2006,26(3):823-829.
    [74]Zimmerman J K,Ehleringer J R.Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum[J].Oecologia,1990,83:247-249.
    [75]Buchmann N,Brooks J R,Ehleringer J R.Predicting daytime carbon isotope ratios of atmospheric CO_2 within forest canopies[J].Functional Ecology,2002,16:49-57.
    [76]Ball M C.Salinity Tolerance in the Mangroves Aegiceras corniculatum and Avicennia marina.I.Water Use in Relation to Growth,Carbon Partitioning,and Salt Balance[J].Australian Journal of Plant Physiology,1988,15:447-464.
    [77]Neales T F,M S Fraser and Z Roksandic.Carbon Isotope Composition of the Halophyte Disphyma clavellatum(Haw.) Chinnock(Aizoaceae),as Affected by Salinity[J].Australian Journal of Plant Physiology,1983,10(5) 437-444.
    [78]Guy R D,Reid D M,Krouse H R.Shifts in carbon isotope ratios of two C_3 halophytes under natural and artificial conditions[J].Oecologia,1980,44:241-247.
    [79]Terwilliger V J,Kitajima K,Roux-Swarthout D J L et al.Intrinsic water-use efficiency and heterotrophic investment in tropical leaf growth of two Neotropical pioneer tree species as estimated from δ ~(13)C values[J].New Phytologist,2001,152(2),267-281.
    [80]Naidool G,von Willertm D J.Diurnal gas exchange characteristics and water use efficiency of three salt-secreting mangroves at low and high salinities[J].Hydrobiologia,1995,295:3-22.
    [81]王文卿,林鹏.不同盐胁迫时间下秋茄幼功叶片膜脂过氧化作用的研究.海洋学报,2000,22(3):49-54.
    [82]张宜辉,王文卿,林鹏.短时间和长时间盐度对木榄幼苗生长及叶片膜脂过氧化作用的研究[J].水生生物学报,2004,28(2):186-190.
    [83]Merah O.,Deleens E.,Teulat B.,et al.Association between yield and carbon isotope discrimination value in different organs of durum wheat under drought[J].Journal of Agronomy & Crop Science,2002,188:426-434.
    [84]Monti A,Amaducci M T,Pritoni G,Venturi G.Variation in carbon isotope discrimination during growth and at different organs in sugar beet(Beta vulgaris L.)[J].Field Crops Research,2006,98:157-163.
    [85]Peuke A D,Gessler A,Rennenber G H.The effect of drought on C and N stable isotopes in different fractions of leaves,stems and roots of sensitive and tolerant beech ecotypes[J].Plant,Cell and Environment,2006,29(5):823-835.
    [86]Saranga Y,Flash I,Paterson A H,et al.Carbon isotope ratio in cotton varies with growth stage and plant Organ.Plant Science,1999,142:47-56.
    [87]Badeck F W,Tcherkez G,Nogues S,et al.Ghashghaie.Post-photosynthetic fractionation of stable carbon isotopes between plant organs-a widespread phenomenon[J].Rapid Communications in Mass Spectrometery,2005,19:1381-1391.
    [88]郑永飞,陈江峰.稳定同位素地球化学.科学出版社,2000.
    [89]Hubick K T,Farquhar G D.Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars[J].Plant Cell and Environment,1989,12:795-804.
    [90]Condon A G,Richards R A,Broad sense heritability and genotype environment interaction for carbon isotope discrimination in field-grown wheat[J]Aust.J.Agr.Res.,1992,43:921-934.
    [91]Hall A E,Mutters R G,Hubick K T,Farquhar G D.Genotypic differences in carbon isotope discrimination by cowpea under wet and dry field conditions[J].Crop Sci.,1990,30:300-305.
    [92]Matus A,Slinkaed A E,van Kessel C,Carbon-13 isotope discrimination at several growth stages in lentil,spring wheat and canola.Plant Sci.1995,75:577-581.
    [93]Y Saranga,Flash I,Paterson A H,Yakir D.Carbon isotope ratio in cotton varies with growth stage and plant Organ[J].Plant Science,1999,142:47-56.
    [94]Peuke A D,Gessler A,Rennenber G H.The effect of drought on C and N stable isotopes in different fractions of leaves,stems and roots of sensitive and tolerant beech ecotypes[J].Plant,Cell and Environment,2006,29:823-835.
    [95]Kenyon W H,Kringstad R,Black C C.Diurnal changes in the malic acid content of vacuoles isolated from leaves of the Crassulacean acid metabolism plant,Sedum telephium[J].FEBS Lett,1978,94:281-283.
    [96]Black C C,Osmond C B.Crassulacean acid metabolism photosynthesis:working the night shift [J].Photosynthesis Research,2003,76:329-341.
    [97]L(u|¨)ttge U.Photosynthetic flexibility and ecophysiological plasticity:questions and lessons from Clusia,the only CAM tree,in the neotropics[J].New Phytologist,2006,171:7-25.
    [98]Borland A M,Taybi T.Synchronization of metabolic processes in plants with Crassulacean acid metabolism[J].Journal of Experimental Botany,2004,55:1255-1265.
    [99]Holtum J A M,Aranda J,Virgo A.et al.,δ13C values and crassulacean acid metabolism in Clusia species from Panama[J].Trees,2004,18:658-668.
    [100]Londers E,Ceusters J,Vervaeke I et al.Organic acid analysis and plant water status of two Aechmea cultivars grown under greenhouse conditions:implications on leaf quality[J].Scientia Horticulturae,2005,105:249-262.
    [101]董园园,董彩霞,卢颖林,等.植物组织中有机酸的提取方法比较[J].南京农业大学学报,2005,28(4):140-143.
    [102]Bloom A J,Troughton J H.High productivity and photosynthetic flexibility in a CAM plant [J].Oecologia,1979,38(1):35-43.
    [103]Cushman J C,Borland A M.Induction of Crassulacean acid metabolism by water limitation [J].Plant,Cell & Environment,2002,25:295-310.
    [104]Herppich W,Margaretha H,Von Willert D J.The irreversible C_3 to CAM shift in well-watered and salt-stressed plants of Mesembryanthemum crystallinum is under strict ontogenetic control[J].Botanica Acta,1992,105(1):34-40.
    [105]Neales T F,Fraser M S,Roksandic Z.Carbon isotope composition of the halophyte Disphyma clavellatum(Haw.) Chinnock(Aizoaceae),as affected by salinity[J].Australian Journal of Plant Physiology,1983,10(4-5):437-444.
    [106]Jones M B.The effect of leafage on leaf resistance and CO_2 exchange of the CAM plant Bryophyllum fedtschenkoi[J].Planta,1975,123(1):91-96.
    [107]Earnshaw M J,Carver K A,Charlton W A.Leaf anatomy,water relations and crassulacean acid metabolism in the chlorenchyma and colourless intenal water-storage tissue of Carpobrotus edulis and Senecio mandraliscae[J].Planta,1987,170(3):421-432.
    [108]Bowman W D.Effect of Salinity on Leaf Gas Exchange in Two Populations of a C4Nonhalophytel[J].Plant Physiol,1987,85:1055-1058.
    [109]Seemann J R,Critchley C.Effects of salt stress on the growth,ion content,stomatal behavior and photosynthetic capacity of a salt-sensitive species,Phaseolus vulgaris(L.)[J].Planta,1985,164:151-162.
    [110]Sobrado M A.Leaf photosynthesis of the mangrove A vicennia germinans as affected by NaCl[J].Photosynthetica,1999,36:547-555.
    [111]Parida A K,Das A B,Mittra B.Effects of salt on growth,ion accumulation,photosynthesis and leaf anatomy of the mangrove,Bruguiera parviflora[J].Trees,2004,18:167-174.
    [112]许大全.气孔不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    [113]Hwang Y H,Chen S C.Anatomical responses in Kandelia candel(L.) Druce seedlings growing in the presence of different concentrations of NaCl[J].Bot.Bull.Acad.Sin.1995,36:181-188.
    [114]郑文教,林鹏.盐度对秋茄幼苗的生长和水分代谢的效应[J].厦门大学学报(自然科学版),1990,29(5):575-679.
    [115]Popp M,Janett H P,L(u|¨)ttge U,et al.Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C_3 bromeliads[J].New Phytologist,2003,157:649-656.
    [116]Endo M,Ikusima I.Diurnal Rhythm and Characteristics of Photosynthesis and Respiration in the Leaf and Root of a Phalaenopsis Plant[J].Plant and Cell Physiology,1989,30,(1):43-47.
    [117]Kubota S,Hisamatsu T,Koshioka M.Estimation of malic acid metabolism by measuring pH of hot water extracts of Phalaenopsis leaves[J].Scientia Horticulturae 1997,71:251-255.
    [118]Stewart J D,Zine A,Abidine E L,Bernier P Y.Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought[J].Tree Physiology,1994,15:57-64.
    [119]Jones H G.Plants and microclimate.A quantitative approach to environmental plant physiology[M].Cambridge University Press,Cambridge,U.K.,1983.
    [120]Lambers H,Chapin F S,Pons T H.Plant physiological ecology[M].New York:Springer-Verlag,1998.
    [121]Dias-Filho M B.Photosynthetic light response of the C_4 grasses Brachiaria brizantha and B.humidicola under shade[J].Scientia Agricola,2002,59:65-68.
    [122]Prado C H B A,De Moraes J A P V.Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions[J].Photosynthetica,1997,33:103-112.
    [123]Bassman J,Zwier J C.Gas exchange characteristics of Populus trichocarpa,Papulus deltoids and Populus trichocarpa×P.deltoids clone[J].Tree physiol.,1991,8:145-149.
    [124]Potvin C,Lechowicz M J,Tardif S.The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures[J].Ecology,1990(71):1389-1400.
    [125]Peek M S,Russek-Cohen E,Wait D A,et al.Physiological response curve analysis using nonlinear mixed models[J].Oecologia,2002,132:175-180.
    [126]Rascher U,Liebig M,L(u|¨)ttge U.Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field[J].Plant,Cell and Environment,2000,23(12):1397-1405.
    [127]Christian R.Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves[J].Trees-Structure and Function,2005,19(5):596-606.
    [128]郑海雷,林鹏.红树植物白骨壤对盐度的某些生理反应[J].厦门大学学报(自然科学版), 1997,36(1):135-139.
    [129]Tuffers A,Naidoo G,von Willert D J.Low salinities adversely affect photosynthetic performance of the mangrove,Avicennia marina[J].Wetlands Ecology and Management 2001,9:225-232.
    [130]Khan M A,Aziz I.Salinity tolerance in some mangrove species from Pakistan[J].Wetlands Ecology and Management,2001,9(3):229-233.
    [131]叶庆华,吴韩志,彭兴跃 等.用流式细胞仪研究秋茄叶肉细胞大小和叶绿素含量与海水盐度的关系[J].海洋科学,2003,27(8):66-71.
    [132]叶庆华,陈海鹏,吴韩志 等.用流式细胞仪探讨桐花树叶肉细胞大小和叶绿素含量与海水盐度的关系[J].厦门大学学报(自然科学版),2004,43(5):714-717.
    [133]杨盛昌,谢潮添,陈文列.红树植物白骨壤叶片衰老过程中叶肉细胞Ca~(2+)水平的变化[J].台湾海峡,2003,22(2):145-150.
    [134]Takemura T,Hanagata N,Sugihara K,et al.Physiological and biochemical responses to salt stress in the mangrove,Bruguiera gymnorrhiza[J].Aquatic Botany,2000,68:15-28.
    [135]Pearcy R W,Ustin S L.Effects of salinity on growth and photosynthesis of three California tidal marsh species[J].Oecologia,1984,62(11):68-73.
    [136]Arslan A,Zapata F,Kumarasinghe K S.Carbon isotope discrimination as indicator of water-use efficiency of spring wheat as affected by salinity and gypsum addition[J].Communications in soil science and plant analysis,1999,30:2681-2693.
    [137]Qian Y L,Follett R F,Wilhelm S,et al.Carbon isotop discrimination of three Kentucky bluegrass cultivars with contrasting salinity tolerance[J].Agronomy journal,2004,96(2):571-575.
    [138]Wakushima S,Kuraishi S,Sakurai N.Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions[J].1994,107:39-46.
    [139]马建华,郑海雷,张春光等.盐度对秋茄和桐花树幼苗蛋白质、H_2O_2及脂质过氧化作用的影响[J].厦门大学学报(自然科学版),2002,41(3):354-358.
    [140]林鹏,陈德海,肖向明 等.海滩盐度对两种红树叶的碳水化合物和含氮化合物含量的影响[J].海洋学报,1984,6(6):851-855.
    [141]赵中秋,郑海雷,张春光等.盐度对白骨壤和秋茄幼苗叶细胞质膜硝酸还原酶活性的影响[J].厦门大学学报(自然科学版),2001,40(6):1350-1356.
    [142]叶勇,卢昌义,胡宏友 等.三种泌盐红树植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2444-2450.
    [143]Ye Y,Tamb N F Y,Chang Y L,et al.Effects of salinity on germination,seedling growth and physiology of three salt-secreting mangrove species[J].Aquatic Botany,2005(83):193-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700