三倍体毛白杨速生纸浆林蒸腾耗水特性及灌溉制度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是我国重要的速生丰产用材树种,在缓解我国木材供需矛盾,保障国家木材安全,促进地方经济发展,增加农民收入,固碳增汇等方面都发挥了极为重要的作用。但目前我国杨树人工林经营管理还比较粗放,生产力较低,限制了杨树人工林生产潜力的充分发挥。
     本文以三倍体毛白杨优良无性系为对象,着眼于三倍体毛白杨速生纸浆林可持续经营管理,采用热扩散式边材液流测定技术、自动气象站、压力室等研究方法和测定手段,通过连续2年的动态监测,对三倍体毛白杨速生纸浆林树木蒸腾耗水性进行了系统综合研究。初步摸清了三倍体毛白杨蒸腾耗水特性,最终建立了基于林木生长、蒸腾耗水特性等的三倍体毛白杨速生纸浆林节水灌溉设备及优化灌溉制度,以期提高三倍体毛白杨速生纸浆林的集约化经营水平和林分生产力,促进其可持续发展。主要结论如下:
     (1)利用热扩散式边材液流探针TDP-30监测三倍体毛白杨速生纸浆林树木蒸腾耗水量比较准确,是可行的,测定误差平均为6.79%。
     三倍体毛白杨树干边材液流速率呈现“单峰型”日变化,其峰值和日均值晴天极显著高于阴天和雨天相应值(P<0.01)。树干东、南、西、北4个方位树干边材液流速率极显著正相关,晴天与阴天,各方位间边材液流速率差异不显著,雨天东向液流速率显著大于南向。
     三倍体毛白杨边材液流速率与主要环境因子如太阳有效辐射、空气相对湿度、空气温度、水汽压亏缺、风速、土壤温湿度等呈现极显著的相关性。通径分析表明,晴天,影响三倍体毛白杨树干边材液流的主要环境因子为空气相对湿度和土壤温度,阴天和雨天为空气相对湿度和水蒸汽压亏缺。调节三倍体毛白杨树干边材液流速率日变化进程的主导环境因子为空气相对湿度和水汽压亏缺。
     (2)三倍体毛白杨林分蒸腾耗水量随季节推移呈现“低-高-低”的单峰型变化规律。2008年(贫水年)生长季三倍体毛白杨林分蒸腾耗水量为340mm;2009年(丰水年)蒸腾耗水量为410mm。
     三倍体毛白杨蒸腾耗水量季节变化与叶片气孔导度、叶面积指数、太阳有效辐射、空气温度、相对湿度、土壤水分含量及土壤温度、水汽压亏缺等都呈现出正相关性,而与风速负相关。通径分析表明,影响和决定三倍体毛白杨蒸腾耗水量季节变化的主要因素为气孔导度、空气相对湿度,以及空气水汽压亏缺。
     (3)利用2008年4-10月晴天树干边材液流速率与主要环境因子进行多元线性回归,得到三倍体边材液流速率与上述环境因子的多元线性回归模型,回归模型达到极显著水平,其判定R2都大于0.8。将2009年同期环境因子带入建模型中进行边材液流速率预测,预测值为0.00176 cm·s-1,实测值为0.00161 cm·s-1,误差8.3%。通过建立多元线性回归模型来对三倍体毛白杨树干边材液流速率进行预测是比较准确的。
     (4)三倍体毛白杨速生纸浆林叶片净光合速率春季和秋季呈“单峰型”,夏季呈“双峰型”日变化。叶片蒸腾速率呈现“单峰型”日变化。三倍体毛白杨净光合速率随季节变化呈现“高-低-高”的变化趋势,与蒸腾速率季节变化相反。单叶水分利用效率春秋较高,夏末最低,一天中早上最高,傍晚次之,中午最低。生长季三倍体毛白杨净光合速率、蒸腾速率、水分利用效率分别为(6.38±1.78)μmolCO2·m-2·s-1、(3.90±0.43)mmol H2O·m-2·s-1、(1.81±0.42)μmolCO2·mmol-1H2O。
     (5)三倍体毛白杨速生纸浆林枝条及叶片绝对含水量、相对含水量、水势、水容等水分特征呈现“V”型日变化。枝叶绝对含水量呈现“低-高-低”的季节变化,相对含水量、水势、水容则随季节推移逐渐减小。整个生长季,三倍体毛白杨枝条和叶片绝对含水量、相对含水量、水势、水容平均值分别为:55.89%±1.74%和65.20%±1.64%、83.36%±2.42%和73.84%±4.21%、(-1.51±0.24)Mpa和(-1.83±0.24)Mpa、(0.46±0.11)g·cm-3.MPa-1和(0.0049±0.0010)g·cm-3·MPa-1。
     三倍体毛白杨速生纸浆林树干边材液流速率与叶片蒸腾速率日变化相似,呈极显著的正相关关系。树干边材液流速率与枝叶含水量、水势、水容呈现一定的负相关性。在调节树干边材液流速率上,水容作用更大,而相比叶片来说,枝条发挥了更重要的作用。而在对蒸腾速率的调节上,叶片比枝条的作用更为明显。
     (6)综合考虑三倍体毛白杨水分利用效率、树冠结构、根系分布特点等因素,适用于带状配置的三倍体毛白杨速生纸浆林最优地下滴灌模式为:滴头间距50cm的“2行2带”或“2行3带”式地下滴灌。
     (7)地下滴灌可明显改善林地土壤水分条件,提高三倍体毛白杨树干边材液流速率和蒸腾速率,改善树木水分状况,增加净光合速率,促进林木生长,提高林地生产力,改善木材造纸性能。灌溉处理后,各处理林地生产力分别为11.02、13.43、17.97、13.68m3·(ha-2·a-1),灌溉效应为对照的1.36倍,最高为对照的1.63倍。灌溉量达到土壤田间持水量的70%-80%时的水分条件为三倍体毛白杨速生纸浆林的最适水分条件。
     (8)根据三倍体毛白杨生长季内土壤计划湿润层的水量平衡方程、生态系统蒸散量、有效降雨量、土壤含水量等特征参数分别确定了贫水年和丰水年地下滴灌条件下三倍体毛白杨速生纸浆林优化灌溉制度:贫水年灌溉定额为213mm(约182h),分6大次(5-11月除7月外每月一次),若干小次(每月根据气象条件将各月灌溉定额细化为若干次灌水)进行灌溉;丰水年灌溉定额为97mm(约83h),分5大次(3、5、9、10、11月每月一次),若干小次进行灌溉。
As the important fast-growing and high yield plantation wood species, Popular played a most important part in relieveing the contradiction between wood supply and demand, ensuring wood safety, improveing local economic, increasing farmers income, increaseing carbon dioxide absorption and carbon sequestration, and so on. But the extensive management, low productivity of Popular plantation limited the higher productive potential of Popular plantation to a large extent.
     In order to improve the intensive and sustainable management of clones Triploid Populus tomentosa fast-growing pulpwood means and ways of thermal dissipation sapflow monitoring technology, automatic weather station, and so on, were used in superior hybrid triploids clones of Chinese White Popular plantation in Gaotang county (36°58'N,116°14'E), Shandong province from May,2008 to November,2009. Water use characteristics and its affecting and regulating mechanism of clones Triploid P. tomentosa were mastered, water-saving irrigation equipments and methods were selected, and scientifical irrigation schedules under subsurface drip irrigation were made. And the main conclusions were introduced as below.
     (1) The thermal dissipation sap flow velocity probe(TDP-30) was viable to monitor clones Triploid P. tomentosa sap flow and water use with the measured error 6.79 percent. The daily variation of clones Triploid P. tomentosa sap flow velocity was of one-peak pattern whose peak and average values in sunny days were significantly higher than that in cloudy and rainy days. The sap flow velocity diurnal variation was similar at different direction east, south, west, and north. The sap flow velocity of clones Triploid P. tomentosa at four orientations was highly correlated with each other, and the regression equations of sap flow velocity at four orientations were highly significant. There was no obvious difference among the four directions Vsp in sunny and cloudy days, but in rainy day, Vsp in east was significantly higher than that in the south.
     There were highly significant correlated relationship between Vsp and environmental factors such as solar radiation(Qs), air temperature(Ta) and relative humidity(RH), water vapor pressure deficit(VPD), wind velocity(WS), soil water content(SWC) and temperature(Ts). Path analysis showed that Vsp of triploid P. tomentosa was mainly affected by RH and Ts in sunny day, and RH and VPD in cloudy, and rainy day. The main environmental factors regulated the Vsp daily variation were RH and VPD.
     (2) The average daily water use of clones Triploid P. tomentosa varied with "low-high-low" tendency from spring to summer to autumn.The water use of clones Triploid P. tomentosa were 340mm and 410mm in 2008 and 2009 respectively. The seasonal change of clones Triploid P. tomentosa water use was positively correlated with stomatal conductance(Cond), leaf area index(LAI), Qs, Ta, RH, VPD, SWC and Ts, but negatively correlated with WS. The main factors regulated seasonal change of clones Triploid P. tomentosa water use were Cond, RH, and VPD.
     (3) The multivariable linear regression models were made used the Vsp and main environmental factors in sunny days from April to October in 2008. The Vsp was calculated by the models and the environmental factors in 2009. There was no obvious difference between calculated values and measured value by TDP, and there relationship could be described by highly significant liner correlation. The average predicted by the models and measured value of clones Triploid P. tomentosa Vsp was 0.00161 cm·s-1 and 0.00176 cm·s-1 respectively, and the error was 8.3 percent.
     (4) The diurnal variation of clones Triploid P. tomentosa net photosynthetic rate(Pn) was single-peak in spring and autumn, and double-peak in summer, and the transpiration rate(Tr) was single-peak. The seasonal change of Pn was high-low-high tendency which was contrary to the Tr seasonal change. The water use efficiency(WUE) of clones Triploid P. tomentosa was higher in spring and autumn, and at early morning and nightfall in dailychange. The average Pn, Tr, and WUE of clones Triploid P. tomentosa in growth season were (6.38±1.78)μmolCO2·m-2·s-1, (3.90±0.43) mmol H2O·m-2·s-1, and (1.81±042)μmolCO2·mmol-1H2O respectively.
     (5) The diurnal variation of clones Triploid P. tomentosa twig and leaf absoluteness water content(AWC), relative water content(RWC), water potential(Ψ), water capacitance(C) was "V" shape. The seasonal change of twig and leaf AWC was low-high-low tendency, and the twig and leaf RWC,Ψ, and C was decreasing gradually from spring to summer to autumn. The average AWC, RWC,Ψ, C of clones Triploid P. tomentosa twig in growth season were 55.89%±1.74%, 83.36%±2.42%, (-1.51±0.24)Mpa, (0.46±0.11)g·cm-3·MPa-1 respectively and the values of leaf were 65.20%±1.64%,73.84%±4.21%, (-1.83±0.24)Mpa, (0.0049±0.0010)g·cm-3·MPa-1 respectively.
     The diurnal variation of clones Triploid P. tomentosa Vsp and Tr was similar, and they were highly significantly positive correlated. The relationship between Vsp and twig and leaf AWC, RWC,Ψ, C was negatively correlated. C was of more important part in regulating Vsp, especially twig water capacitance, but leaf was more important in regulating Tr than twig.
     (6) The best subsurface drip irrigation schemes for clones Triploid P. tomentosa pulpwood belt plantation were 50cm between two emitters, and 2 lines of laterals with 2 rows trees or 3 lines of laterals with 2 rows trees, according to the clones Triploid P. tomentosa water use efficiency, stand crown characteristics, distribution of water absorbing roots, and so on.
     (7) The subsurface drip irrigation system can obviously improve the stand soil and trees water conditions, increase the sap flow velocity, net photosynthetic and transpiration rate of clones Triploid P. tomentosa, and promote the trees growth, improve the paper performance of clones Triploid P. tomentosa wood. It was the best water conditions for clones Triploid P. tomentosa pulp wood plantation when the irrigation amount achieveing 70-80 percent of the soil field capacity. After subsurface drip irrigation, the stand productivity of four treatments were 11.02m3·(ha-2·a-1), 13.43m3·(ha-2·a-1),17.97m3·(ha-2·a-1), and 13.68m3·(ha-2·a-1)respectively.
     (8) Scientifical irrigation schedules under subsurface drip irrigation system for clones Triploid P. tomentosa pulp wood plantation in poor and enrich rainfall years were formulated respectively according to the water balance equation of planned humidity soil layer depth, ecosystem water use and consumption, effective rainfall, soil water content in growth seasons. The irrigation water requirement was 213mm(about 182 hours) and 97mm(about 83 hours) respectively in poor and enrich rainfall years. The irrigation times was 6 in poor rainfall years, one times every months from June to November, but 5 times in enrich rainfall years, one times every months in March, May and September to November.
     To save water and increase the irrigation water use efficiency, the best time to irrigate were before sunrise and nightfall, and the irrigation principles of "more times but fewer amount" was recommended.
引文
[1]Roger A. Sedjo.陆文明.木材纤维的供需矛盾[J].世界林业研究,1992,2:52-55.
    [2]W.E. Hillis and A.G. Brown主编,王豁然等译.桉树培育与利用[M].北京:中国林业出版社,1990:304-334
    [3]白嘉雨,甘四明,徐建民,傅精钢.亚太地区桉树发展现状[J].世界林业研究,1996,1:56-61.
    [4]白秀萍.世界木材需求未来预测(二)[J].世界林业动态,2009,18:2-5.
    [5]白秀萍.世界木材需求未来预测(一)[J].世界林业动态,2009,15:2-4.
    [6]蔡甲冰,刘钰,许迪,史宝成.基于通径分析原理的冬小麦缺水诊断指标敏感性分析[J].水利学报,2008,39(1):84-90.
    [7]曹福亮.林分密度对南方型杨树木材性质的影响[J].南京林业大学学报,1994,18(2):41-46.
    [8]陈锐,邓祥征,战金艳,汪云林,李冬,牛文元.流域尺度生态需水的估算模型与应用——以克里雅河流域为例[J].地理研究,2005,24(5):725-731.
    [9]陈少雄,罗林文.桉树纸浆材造林密度初探[J].桉树科技,1995,01:22-28.
    [10]陈少雄,王观明,项东云.尾叶桉施肥效果研究[J].林业科学研究,1996,9(6):573-578.
    [11]陈远生.短轮伐期桉树造纸用材林[J].造纸科学与技术,1984,2:17-19,14.
    [12]杜太生,康绍忠,张宝忠,等.石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系[J].应用生态学报,2008,19(2):299-305.
    [13]樊大勇,谢宗强.木质部导管空穴化研究中的几个热点问题[J].植物生态学报,2004,28(1):126-132.
    [14]高传昌,吴平.灌溉工程节水理论与技术[M].郑州:黄河水利出版社,2005:1-8.
    [15]高艳红,陈玉春,吕世华.西北干旱区绿洲不同灌溉制度的数值模拟[J].地理科学进展,2004,23(1):33-48.
    [16]高照全,张显川,王小伟.桃树冠层蒸腾动态的数学模拟[J].生态学报,2006,26(2):489-495.
    [17]郭相平,康绍忠.调亏灌溉-节水灌溉的新思路[J].西北水资源与水工程,1998,9(4):22-26.
    [18]郭祥胜.杨树造纸用材林短轮伐期栽培的适宜性[J].北京林业大学学报,1989,11(4):66-73.
    [19]何贵整,吴红英.良种桉无性系品比试验及优良品系筛选[J].桉树科技,1999,2:29-36.
    [20]何旭阳.中国的制浆造纸厂应更关注其造纸纤维战略——如何保障未来造纸纤维的供应[J]?中华纸业,2008,15:20-23.
    [21]侯培忠,赵学芹,张伟,位法清.杨树纸浆林栽培注意六点[J].北京农业,2006,2:12.
    [22]胡崇富,杨志岩,王胜东,孙运清,梁德军,侯维政.杨树纸浆林经济效益分析及评价[J].辽宁林业科技,2002,3:1-4.
    [23]胡晓丽.三倍体毛白杨纸浆材新品种产业化应用关键技术研究[D].北京:北京林业大学,2006.
    [24]黄秦军,苏晓华,马常耕,刘志新,王耀文.杨树新品系超短轮伐条材材性及其生物制浆可行性[J].林业科学研究,2008,21(1):74-78.
    [25]黄润斌.我国造纸工业现代化与木浆造纸[J].中华纸业,2001,22(12):50-53.
    [26]黄兴法,李光永.地下滴灌技术的研究现状与发展[J].农业工程学报,2002,18(2):176-181.
    [27]贾黎明,邢长山,李景锐,韦艳葵.地下滴灌条件下杨树速生丰产林生产力及效益分析[J].北京林业大学学报,2005,27(6):43-49.
    [28]姜岳忠,刘盛芳,马履一,马玲,姜承平.毛白杨幼林间作效应研究[J].北京林业大学学报,2006,28(3):85-89.
    [29]姜岳忠,秦光华,乔玉玲,马玲,于连家.杨树纸浆用材林优良品种和短轮伐期定向培育[J].山东林业科技,2003,3:29-31.
    [30]姜岳忠,王桂岩,吕雷昌,袁素萍,马玲.杨树纸浆材定向培育技术研究[J].林业科学,2004,40(1):123-130.
    [31]解婷婷,张希明,单立山,梁少民,杨小.灌溉量对多枝柽柳水分生理及生长的影响[J].干旱区研究,2008,25(6):802-807.
    [32]“九五”攻关专题组.桉树纸浆用材树种良种选育及培育技术研究[J].桉树科技,2000,2:1-16.
    [33]康绍忠,梁宗锁.控制性交替灌溉:一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6.
    [34]康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11-17.
    [35]李广德,贾黎明,孔俊杰.运用热技术检测树干边材液流研究进展[J].西北林学院学报,2008,23(3):94-100.
    [36]李海奎,唐守正,李永慈,苗立新.统计分析软件FORSTAT的设计与应用[J].北京林业大学学报,2004,26(4):104-106.
    [37]李海涛,向乐,夏军,林耀明.应用热扩散技术对亚热带红壤区湿地松人工林树干边材液流的研究[J].林业科学,2006,42(10):31-38.
    [38]李怀有,王斌.苹果滴灌试验及节灌制度研究[J].干旱地区农业研究.2001,19(3):114-121.
    [39]李文明,施坰林,韩辉生,张梅花,董振堂.节水灌溉制度对板蓝根耗水特征及产量的影响[J].灌溉排水学报,2007,26(6):106-109.
    [40]李彦瑾,赵忠,孙德祥,韩刚.干旱胁迫下柠条锦鸡儿的水分生理特征[J].西北林学院学报,2008,23(3):1-4.
    [41]李秧秧,王全九.几种基于植物生理活动的节水灌溉指标研究进展[J].节水灌溉,2009,2:32-35.
    [42]李志辉,曾广正,谢耀坚,陈建华.不同密度的巨尾桉丰产示范林经济效果评价[J].中南林学院学报,2000,20(3):54-58.
    [43]李子忠,吕国华,赵炳祥,赖娜娜,井立军.颐和园园林绿地复合系统耗水规律初步研究[J].北京林业大学学报,2009,31(1):66-72.
    [44]林书蓉,李淑仪,廖观荣,蓝佩玲,廖新荣.短轮伐期桉树人工林科学施肥的研究[J].林业科学研究,1999,12(3):275-282.
    [45]刘晨峰,张志强,孙阁等.基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应[J].植物生态学报,2009,33(4):706-718.
    [46]刘奉觉,郑世锴,巨关升,Edwards WRN,吴衍德.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126.
    [47]刘琪璟,曾慧卿,马泽清.江西千烟洲湿地松人工林碳蓄积及其与水分的关系[J].生态学报,2008,28(11):5322-5330.
    [48]刘硕,贺康宁.不同土壤水分条件下山杏的蒸腾特性与影响因子[J].中国水土保持科学,2006,4(6):66-70.
    [49]刘思峰,谢乃明.灰色系统理论及其应用[M].北京:科学出版社,第4版,2008:44-71.
    [50]陆光明,孟平,马秀玲,宋兆民,张劲松,李春友,马明川.林-果-农复合系统中植物蒸腾及系统蒸散的研究[J].中国农业大学学报,1996,1(5):103-109.
    [51]陆可交,黎广森.桉树短轮伐期纸浆材的营造[J].广西林业,2005,5:26-28.
    [52]鹿振友,孙立谔.速生毛白杨杂交新品种力学性质研究[J].北京林业大学学报,1995,17(1):68-71.
    [53]吕士行,方升佐,徐锡增.杨树定向培育技术[M].北京:中国林业出版社,1997:1-9,64-72.
    [54]罗洪.史密斯桉整地修枝技术试验探讨[J].四川林勘设计,2008,3:64-66.
    [55]罗建举,曹琳,杨建林,韦善华.施肥处理对尾叶桉木材化学成分含量的影响[J].林业科学,1998,34(5):96-102.
    [56]莫晓勇.桉树人工林培育的理论与方法[M].北京:中国林业出版社,2005:17-31,174-178,236-242.
    [57]莫晓勇.桉树纸浆用材林经济效益分析[J].桉树科技,2007,24(1):8-15.
    [58]裴保华,袁玉欣,邵吉祥.沙地杨树纸浆林栽培技术研究[J].河北林果研究,1997,12(1):25-30.
    [59]蒲俊文,宋君龙,谢益民等.三倍体毛白杨木质素结构特性研究[J].北京林业大学学报,2002c,24(5/6):222-226.
    [60]蒲俊文,宋君龙,姚春丽三倍体毛白杨无性系纸浆材的选优[J].造纸科学与技术,2001,20(5):11-13.
    [61]祁述雄.中国桉树[M].北京:中国林业出版社,第2版,2002:346-366.
    [62]山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报,2002,(9):27-31.
    [63]沈国舫.森林培育学[M].北京:中国林业出版社,2001:270-277.
    [64]苏德荣.干旱地区间作种植高效节水灌溉基础问题研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2001.
    [65]苏晓华,李义良,黄秦军,张冰玉,张香华,何庆庚,刘志新.节水高产优质杨树纸浆材品种综合选育研究[J].林业科学研究,2007,20(5):630-637.
    [66]粟宗嵩.灌溉原理与应用[M].北京:科学普及出版社,1990:150-162.
    [67]孙鹏森,马履一,王小平,翟明普.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    [68]孙鹏森.京北水源保护林格局及不同尺度树种耗水特性的研究[D].北京:北京林业大学,2000.
    [69]孙守家,古润泽,丛日晨,车少臣,高俊平.银杏树干茎流变化及其对抑制蒸腾措施的响应[J].林业科学,2006,42(5):22-28.
    [70]涂洁,刘琪璟,林耀明,李海涛.亚热带红壤区湿地松生长与耗水耦合关系研究[J].自然资源学报,2008,23(4):685-693.
    [71]王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报,2004,28(5):637-643.
    [72]王华田,赵文飞,马履一.侧柏树干边材液流的空间变化规律及其相关因子[J].林业科
    学,2006,42(7):21-27.
    [73]王华田.北京市水源保护林区主要树种耗水性研究[D].北京:北京林业大学,2002.
    [74]王琦,魏绣枝.国外桉树栽培与其纸浆工业的发展[J].桉树科技,1993,1:66-74.
    [75]王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究[D].北京:北京林业大学,2006.
    [76]王瑞辉,马履一,奚如春,樊敏,李丽萍.北京4种常见园林植物的水分分级管理[J].林业科学,2007,43(9):18-21.
    [77]王沙生,高孚荣,吴贾明.植物生理学[M].第二版.北京:中国林业出版社.1991:1-32,192.
    [78]韦艳葵.地下滴灌下沙地杨树速生丰产机制与灌溉制度研究[D].北京:北京林业大学,2003.
    [79]韦艳葵,贾黎明,邢长山.滴灌在林业上应用的研究与进展[J].世界林业研究,2003,16(4):38-43.
    [80]魏娟,谢福春,王华田,陈才业,于文胜,宋黎,姜成平.水分胁迫对海州常山抗逆生理特性的影响[J].山东农业大学学报(自然科学版),2009,40(3):371-376.
    [81]吴楚,王政权.植物管状细胞栓塞后的重新充注研究进展[J].植物学通报,2002,19(5):575-583.
    [82]吴际友,童方平,龙应忠,艾文胜.火炬松纸浆材优良家系人工林修枝效应[J].林业科技开发,2006,20(2):36-38.
    [83]吴金坤,苏杨,林庆余,何三中,李立明.巴西桉树人工林集约经营概况[J].林业科学研究,1994,7(3):351-352.
    [84]吴丽萍,王学东,尉全恩等.樟子松树干液流的时空变异性研究.水土保持研究[J].2003,10(4):66-68.
    [85]吴琦.张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79-84.
    [86]奚如春,马履一,樊敏,李丽萍,孔俊杰,王瑞辉.油松枝干水容特征及其对蒸腾耗水的影响[J].北京林业大学学报,2007,29(1):160-165.
    [87]奚如春,马履一,王瑞辉,徐军亮.林木耗水调控机理研究进展[J].生态学杂志,2006,25(6):692-697.
    [88]项东云,兰保国.广西桉树无性系选育与栽培调查[J].广西林业科学,1997,26(4):170-178.
    [89]肖洪浪.中国水情[M].北京:开明出版社,2000.
    [90]肖娟,雷廷武,李光永,于颖多.西瓜和蜜瓜咸水滴灌的作物系数和耗水规律[J].水利学报,2004,6:119-124.
    [91]谢贤群.我国北方地区农业生态系统水分运行及区域分异规律研究的内涵和研究进展[J].地球科学进展,2003,18(3):440-446.
    [92]徐大平,张宁南.桉树人工林生态效应研究进展[J].广西林业科学,2006,35(4):179-187,201.
    [93]徐大平.桉树速生丰产林——我国林浆纸一体化的必然选择[J].中华纸业,2006,27(4):14,-25.
    [94]许一飞.对节水农业的新认识[J].节水灌溉,2000,2:13-15.
    [95]尹志芳,欧阳华,徐兴良,张宪洲.基于SHAW模型对拉萨河谷冬小麦农田生态系统水分传输特征的模拟研究[J].生态学报,2009,29(4):2010-2019.
    [96]尹忠东,朱清科,毕华兴,张建军.黄土高原植被耗水特征研究进展[J].人民黄
    河,2005,27(6):35-37,64.
    [97]余光英,龙秀琴,曾范安,周赞.杨树短轮伐期纸浆林培育技术研究[J].贵州林业科技,1999,27(4):1-13.
    [98]余雪标,李维国.桉树人工林的若干生态问题及其研究进展[J].热带农业科学,1997,04:60-68.
    [99]翟洪波,李吉跃,李保华,吴文强.Darcy定律在测定油松木质部导水特征中的应用[J].北京林业大学学报,2001,23(4):6-9.
    [100]张剑斌,温宝阳,戴玉玮,李文艳,司海忠.银中杨短轮伐期纸浆林定向培育技术研究[J].防护林科技,2007,1:4-6,10.
    [101]张劲松,孟平,刘尉,施生锦,王鹤松,高峻,任庆福.热扩散式树木液流国产化传感器性能分析[J].林业科学研究.2007.20(3):370-374.
    [102]张宁南,徐大平,Jim Morris,周光益,白嘉雨,周涛.雷州半岛尾叶桉人工林耗水量研究[J].林业科学研究,2007,20(1):1-5.
    [103]张宁南,徐大平JimMorris,周光益,周国逸,吴仲民.雷州半岛尾叶桉人工林树液茎流特征的研究[J].林业科学研究,2003,16(6):661-667.
    [104]张硕新,申卫军,张迎远,周新霞.几个抗旱树种木质部栓塞脆弱性的研究[J].西北林学院学报,1997,12(2):1-6.
    [105]张岁歧,山仑.有限供水对春小麦产量及水分利用效率的影响华北农学报[J].1990,5(A12):69-75.
    [106]张小由,龚家栋,周茅先,司建华.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489-492.
    [107]张小由,康尔泗,司建华,周茅先.黑河下游胡杨林耗水规律研究[J].干旱区资源与环境,2006,20(1):195-197.
    [108]张小由,康尔泗,司建华,周茅先.额济纳绿洲中柽柳耗水规律的研究[J].干旱区资源与环境,2006,20(3):159-162.
    [109]张彦群,王传宽.北方和温带森林生态系统的蒸腾耗水[J].应用与环境生物学报,2008,14(6):838-845.
    [110]张自坤,刘作新,张颖,舒乔生.日光温室黄瓜地下滴灌灌溉制度的试验研究[J].干旱地区农业研究,2008,26(6):76-81.
    [111]赵平,饶兴权,马玲,蔡锡安,曾小平.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报,2006,30(4):655-665.
    [112]赵平,饶兴权,马玲,蔡锡安,曾小平.马占相思林冠层气孔导度对环境驱动因子的响应[J].应用生态学报,2006,17(7):1149-1156.
    [113]赵德庆,王鹤飞.浅论节水灌溉技术及其发展[J].中国高新技术企业,2008,19:125-126.
    [114]郑世锴.杨树丰产栽培[M].北京:金盾出版社,2007:115-119,122-125.
    [115]智信,王九龄,辛学兵.杨树造纸用材林超短轮伐期栽培技术的研究[J].北京林业大学学报,1997,19(2):42-49.
    [116]中国造纸协会.中国造纸工业2007年度报告[J].造纸信息,2008,6:4-14.
    [117]中国造纸协会.中国造纸工业2008年度报告[J].中华纸业,2009,30(9):6-17.
    [118]周亮,张建国,舒德友,刘盛全.不同施肥条件下1-69杨木材纤维形态和化学成分的比较研究[J].安徽农业大学学报,2005,32(3):354-359.
    [119]周晓峰.中国的森林和生态环境[M].北京:中国林业出版社.1999:95-99.
    [120]朱艳艳,贺康宁,唐道锋,巩玉霞.青海大通几种主要灌木适宜土壤水分条件研究[J].干旱地区农业研究,25(4):119-123.
    [121]朱之悌.我国造纸国情的若干特点及解决对策[J].中华纸业,2001,22(12):17-20.
    [122]朱之悌,康向阳,张志毅.毛白杨天然三倍体选种研究[J].林业科学,1998,14(4):24-33.
    [123]朱之悌,林惠斌,康向阳.毛白杨异源三倍体B301等无性系选育的研究[J].林业科学,1995,31(6):499-505.
    [124]Alessandro F, and Alessandro C. Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies[J]. Tree Physiology.2008,28:1317-1323.
    [125]Amthor J S. Scaling CO2-photosynthesis relationship s from the leaf to the canopy[J]. Photosynthesis Research,1994,39:321-350.
    [126]Baker, J B, and Broadfoot W M.1979. A practical field method of site evaluation for commercially important southern hardwoods. USDA Forest Service, General Technical Report SO-26. Southern Forest Experiment Station, New Orleans, LA.51 p.
    [127]Baldocchi D D, Harley P C. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II.Model testing and app lication[J]. Plant, Cell and Environment,1995,18(10):1157-1173.
    [128]Baldocchi D D. Scaling water vapor and carbon dioxide exchange from leaves to a canopy: rules and tools. In:Ehleringer JR, Field CB. Scaling Physiological Processes:Leaf to Globe. San Diego:Academic Press,1993.77-108.
    [129]Bucci, S J, Goldstein G, Meinzer F C, et al. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees[J]. Trees,2005,19:296-304.
    [130]Cabibel B, and Do F. Mesures thermiques des flux de seve dans les troncs et les racines et fonctionnement hydrique desarbres:I. Analyse theorique des erreurs sur la mesure des flux et validation des mesures en presence de gradients thermiques exterieurs[J]. Agronomie,1991,11:669-678.
    [131]Campbell G S, Norman J M. An introduction to environmental biophysics[M].2nd ed. New York:Springer-Verlag Press,1998:40-51.
    [132]Caspari H W, Green S R, Edwards W R N. Transpiration of well-watered and water stressed Asian Pear Trees as determined by lysimetry,heat-pulse,and estimated by a Penman-Monteith model[J]Agri.For.Meteorol.,1993,67:13-27.
    [133]Cienciala E, Kucera J, Lindroth A. Long-term measurements of stand water uptake in Swedish boreal forest[J]. Agric For Meteorol,1999,98:547-554.
    [134]Cowan I R, and Farquhar G D. Stomatal function in relation to leaf metabolism and enviroment. In Integration of Activity in Higher Plants. Ed. D. H. Jennings. Cambridge University Press, Cambridge, U.K.,1977:471-505.
    [135]Davi H, Dufrene E, Granier A, LeDantec V, Barbaroux C, Fran(?)ois C,Breda N. Modelling carbon and water cycles in a beech forest Part Ⅱ:Validation of the main processes from organ to stand scale[J]. Eco Model,2005,185:387-405.
    [136]Dawson T E, Burdess S S O, Kevin P T U, Oliveira R S, Santiago L, Fisher J B, Simonin K A and Ambrose A R. Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiol,2007,27:561-575.
    [137]Edwards W R N, Becker P. A unified nomenclature for sap flow measurements[J].Tree Physiology,1996,17:65-67.
    [138]Edwards W R N, Warwick N W M. Transpiration from a kiwifruit vine as estimated by the heal-pulse technique and the Penman-Monteith equation[J]. New Zealand Journal of Agricultural Research,1984,27:537-543.
    [139]Fernandez J E, Palomo M J, et al. Heat-pulse measurements of sap flow in olives for automating irrigation:tests,root flow and diagnostics of water stress[J].Agricultural Water Management,2001,51:99-123.
    [140]Field T S and Holbrook N M. Xylem sap flow and stem hydraulics of the vesselness angiosperm Drymis granadensis(Winteraceae) in a Costa Rican elfin forest[J]. Plant, Cell and Environment,2000,23:1067-1077.
    [141]Fisher J B, Baldocchi D D, Misson L, et al. What towers don't see at night:nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology,2007, 27:597-610.
    [142]Ford C R, Goranson C E, Mitchell R E, et al. Diurnal and seasonal variability in the radial distribution of sap flow:predicting total stem flow in Pinus taeda trees[J]. Tree Physiology,2004a,24:941-950.
    [143]Ford C R, McGuire M A, Mitchell R J, et al. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use[J]. Tree Physiology.2004b, 24:241-249.
    [144]Georgianne W M and James R. Cleverly and M. Keith Owens. Nocturnal transpiration in riparian Tamarix thichets authenticated by sap flux, eddy covariance and leaf gas exchange measurements[J]. Tree Physiology,2008,28:521-528.
    [145]GrainierA, Huc R, Barigah S T. Transpiration of natural rain forest and its dependence on climatic factors[J]. Agricultural and Forest Meteorology,1996,78:19-29.
    [146]Granier A, Biron P, Breda N, Pontailler J Y, Saugier B. Transpiration of trees and forest stands:short and long-term monitoring using sapflowmethods[J]. Glob Change Biol,1996,2: 265-274.
    [147]Green S R, McNaughton K G. Modelling effective stomatal resistance for calculating transpiration from an apple tree[J].Agric. For. Meteorol,1997,83:1-26.
    [148]Hamlyn G. Jones. Plants and microclimate[M].2nd ed. New York:Cambridge,1992:110.
    [149]Hatton T J, Wu H I. Scaling theory to extrapolate individual tree water use to stand water use[J]. Hydrological Processes,1995,9:527-540.
    [150]Hatton T J, Vertessy R A. Transpiration of plantation pines radiata estimated by the heat pulse method and the Bowen Ratio[J]. Hydrological Processes,1990,4:289-298.
    [151]Hatton T J, Moore S J and Reece P H. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:Measurement errors and sampling strategies[J].Tree Physiol,1995,15:219-227.
    [152]Heath J. Stomata of trees growing in CO2-enriched air show reduced sensitivity to vapour pressure deficit and drought[J]. Plant Cell Environ,1998,21:1077-1088.
    [153]Janvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J].Phil. Trans. Roy. Soc. Lond. Set. B,1976,273(927):593-610.
    [154]Jimenez M S, Nadezhdina N, Cermak J, et al. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands[J].Tree Physiology,2000,20:1149-1156.
    [155]Gon(?)alvesl J L M, Stapel J L, Laclau J P, Bouillet J P and Ranger J.Assessing the effects of early silviculrural management on long-term site productivity of fast-growing eucalypt plantations:the Brazilian experience[J].Southern Forests.2008,70(2):1-14.
    [156]Juan M I, Mauchamp A, ROCIO E A, Richard J and Rambal S. Within-tree variation in transpiration in isolated evergreen oak trees:evidence in support of the pipe model theory[J]. Tree Physiology,2001,21:409-414.
    [157]Zhu J Y. and Myers G C.Effect of plantation density on kraft pulp production from Red Pine(Pinus resinosa Ait.)[J]. JOURNAL OF PULP AND PAPER SCIENCE,2006,32(3):1-7.
    [158]Kellomaki S, Wang K Y. Photosynthetic responses to needle waterpotentials in Scots pine after a four-year exposure to elevated CO2 and temperature[J]. Tree Physiol,1996,16: 765-772.
    [159]Ken W, Karuss P, Young J, Jim L.Chambers, et al. Sap flow characteristics of neotropical mangroves in flooded and drained soils[J]. Tree Physiology,,2007,27,775-783.
    [160]Knight D H, Fahey T J, Running S W, et al.Transpiration from 100-yr-old lodgepole pine forests estimated with whole-tree potometers[J].Ecology,1981,62(3):717-726.
    [161]Kostner B, Granier A, Cermak J.Sap flow measurements in forest stand:methods and uncertainties[J].Ann. Sci. For.1998,55:13-27.
    [162]Kramer P J, Kozlowski T T.1979.Physiology of woody plants.New York:Academic Press.
    [163]Kruss K W,Young P J,Chambers J L,Doyle C T,Twiliey R R.Sap flow characteristics of neotropical mangroves in flooded and drained soils[J]. Tree Physiol.,2007,27:775-783.
    [164]Kuchment L S,DemidovV N, Startseva Z P. Coup led modeling of the hydrological and carbon cycles in the soil-vegetation-atmosphere system[J]. Journal of Hydrology,2006, 323:4-21.
    [165]Ladefoged K. A method for measuring the water consumption of large intact tree[J]. Physiologia Plantarum,1960,13:648-658.
    [166]Landsberg J J, Johnson K H, Albaugh T J, et al. App lying 3-PG, a simple process-based model designed to produce practi-cal results, to data from loblolly pine experiments [J]. Forest Science,2000,47:43-51.
    [167]Landsberg J J,Waring R H. A generalized model of forest p roductivity using simp lified concepts of radiation-use efficiency,carbon balance and partitioning[J]. Forest Ecology and Management,1997,95:209-228.
    [168]Levin S A. Concepts of scale at the local level. In:Ehleringer JR, Field CB. Scaling Physiological Processes:Leaf to Globe. San Diego:AcademicPress,1993:7-18.
    [169]Lisa J, Samuelson T A, Stokes and Mark D C. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoids[J]. Tree Physiology,2007, 27:765-774.
    [170]Lu P, Muller W J, Chacko E. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions[J]. Tree Physiology, 2000,20:683-692.
    [171]Mark W R. and Crews D L. Heat-pulse velocity and boardered pit condition in living Engelmann spruce and Lodgepole pine trees(Picea engelmannii, Pinus contorta) [J]. Forest Science,1973,19(4):291-296.
    [172]Marks C O and Lechowicz M J. The ecological and functional correlates of nocturnal transpiration[J]. Tree Physiol.,2007,27:577-584.
    [173]Meinzer F C. Co-ordination of vapour and liquid phase water transport properties in plants[J]. Plant Cell Environ,2002,25:265-274.
    [174]Milbum J A. Sap ascent in vascular plants:challengers to the cohesion theory ignore the significance of immature xylem and the recycling of munch water[J].Annals of Botany, 1996,78(4):399-407.
    [175]Moren A S, Lindroth A, Grelle A. Water-use efficiency as a means of modelling net assimilation in boreal forests[J]. Trees,2001,15:67-74.
    [176]Nadezhdina N and Cermak R J. Instrumental methods for studies of structure and function of root systems of large trees[J]. Journal of Experiment Botany.2003,54:1511-1521.
    [177]O'Grady A P, Worledge D, Battaglia M. Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia[J]. Agric For Meteorol,2008,148:453-465.
    [178]Oren R, Pataki D E. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests[J]. Oecologia,2001,127:549-559.
    [179]Pasquale G, Giovanni G. Sap flow of several olive trees estimated with heat-pulse technique by continuous monitoring of a single gauge[J].Environmental and Experimental Botany,2003,49:9-20.
    [180]Philips N, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse-and ring-porous trees species[J]. Plant Cell and Environment,1996,19:983-990.
    [181]Proceedings:Symposium on Eastern Cottonwood and Related Species. Sept.28-Oct.2,1976, Greenville, MS. Bart A. Thielges and Samuel B. Land, Jr., eds. Southern Forest Experiment Station, New Orleans, LA.
    [182]Rafael P, Cermak J and Pilar L. Variation in the radial patterns of sap flux density in pubescent oak(Qurecus pubescens) and its implication for tree and stand transpiration measurements[J]. Tree Physiology,2007,27:537-548.
    [183]Rao N H, Sarma P B S, Subhash C. Real time adaptive irrigation scheduling under a limited water supply [J].Agricultural Water Management,1992,20:267-279.
    [184]Rao N H, Sarmaa P B S, Subhash C. Irrigation scheduling under a limited water supply [J].Agricultural Water Management,1988,15(2):165-175.
    [185]Ren C Y, Yu G R, Wang Q F, Guan D X. The research of the ecosystem photosynthesis-transpiration coupledmodel at canopy scale[J]. Sci China Ser D,2004,34 (Suppl.Ⅱ):141-151.
    [186]Roberts J. The use of tree-cutting technique in the study of water relation of mature Pinus sylvestris L[J]. J. Exp.Bot.1977,28:751-767.
    [187]Samuelson L J, Stokes T A, Coleman M D. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides[J]. Tree Physiol., 2007,27:765-774.
    [188]Singh G, Singh P N and Bhushan L S.Water use and wheat yield in northern India under different irrigation regimes[J].Agricultural Water Management,1980,3(2):107-114.
    [189]Singh P N, Joshi B P. and Gurmel S.Water use and yield response of wheat to irrigation and nitrogen on an alluvial soil in North India[J].Agricultural Water Management,1987,12(4):311-321.
    [190]Snyder K A, Richards J H and Donovan L A. Night-time conductance in C-3 and C-4 species:do plant lose water at night[J]. Journal of Experiment Botany.2003,54:861-865.
    [191]Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery[J]. Environ. Exp. Bot,2004,51:45-56.
    [192]Stewart B A, Musick J T and Dusek D A. Yield and water use efficiency of grain sorghum in a limited irrigation-dryland farming system[J]. Agron. J.,1983,75:629-634.
    [193]Swanson R H. Significant historical developments in thermal methods for measuring sap flow in trees[J]. Agric. Forest Meteorol,1994,72:113-132.
    [194]Wayne P M, Reekie E G, Bazzaz F A. Elevated CO2 ameliorates birch response to high temperature and frost stress:implications for modelingclimate-induced geographic range shifts[J]. Oecologia,1998,114:335-342.
    [195]Whitehead D. Regulaton of stomatal conductance and transpiration in forest canopies[J]. Tree Physiol,1998,18:633-644.
    [196]Yu G R, Song X, Wang Q F, Liu Y F, Guan D X, Yan J H, Sun X M, Zhang L M, Wen X F. Water use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. New Phytologist,2008,177:927-937.
    [197]Zhao P, Lu P, Ma L, Sun G C, Rao X Q, Cai X, Zeng X P. Combining sap flow measurement-based canopy stomatal conductance and 13C discrimination to estimate forest carbon assimilation[J]. Chin Sci Bull,2005,50(18):2021-2027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700