基于FORECAST模型的楠木人工林固碳量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化背景下,研究森林固碳计量方法及固碳量对减缓温室效应的影响意义重大。楠木作为亚热带常绿阔叶林的代表性树种,在固碳增汇方面有着独特的价值。目前,在楠木育苗造林及生物量和固碳量等方面的报道相对较多,但不同经营管理措施对楠木人工林固碳量的长期影响目前尚未见相关报道。本研究利用加拿大UBC大学开发的FORECAST森林生态系统管理模型,通过外业调查、查找相关文献资料等方式收集不同立地条件下楠木林分的生物量积累、林分密度、光响应曲线以及土壤养分等方面的数据,模型经过校准后,模拟不同造林密度、不同间伐强度以及不同轮伐期对楠木人工林固碳量的长期影响。主要研究结论如下:
     (1)楠木人工林以中密度(2500株/hm2左右)造林为宜,如果立地条件相对较差,可以选择高密度(4000株/hm2左右)造林以保持林地生产力的可持续性。此外,楠木人工造林还要考虑经营类型以及培育目标等多方面的因素;
     (2)楠木人工林宜采用低强度(15%)和中等强度(25%)的间伐方式,这样的方式有利于林地的养分循环,并可以达到较好的固碳效果。最合适的间伐时间和间伐强度需要在更广阔的环境背景下结合对生物栖息地的影响进一步模拟;
     (3)长轮伐期(80年)作业模式明显优于中等轮伐期(40年)和短轮伐期(20年)作业模式。从养分循环的角度来讲,在长轮伐期作业模式下楠木人工林群落结构相对比较稳定,林分内凋落物量相对也较多,加上降低了人为干扰的强度,因此对林地的保护作用效果显著,这种模式是一种可持续的经营模式;
     (4)经营楠木人工林对土壤的改良作用非常明显,特别是差的立地,由于楠木为阔叶树种,凋落物量较大,凋落物分解后能够产生较多的养分归还林地,促进楠木人工林的生长;
     (5)在生产实践中,楠木人工林经营的基本思路可以总结为:“中高密度造林、中低强度间伐、尽量延长收获周期”,在这种情况下,楠木人工林的经营不仅可以得到良好的经济效益,而且生态效益也可以达到最大化(主要指固碳能力和林地生产力的可持续性)。
Evaluation of forest carbon sequestration potentials is important for designing forest management strategies to mitigate the effects of global climate change. As one of the important subtropical evergreen broad-leaved forest tree species, Phoebe has become a popular species for plantation forests in Jinagxi and Fujiang provinces. Currently, there were many reports on silviculture, nursery and biomass of Phoebe forests, but few on the carbon sequestration potentials unde different management practices. In this study, the forest ecosystem model, FORECAST was used to simulate the effects of different management strategies on carbon sequestration in phoebe forests. Data on forest biomass, stand density, light and soil nutrients, response curve under different site conditions were collected from field surveys or from published papers. After the model calibration and validation, FOREACST was run with various management scenarios including different planting densities, thinning intensities rotation lengths. The main conclusions are as follows:
     (i) The plantation density of 2500 trees/hm2 is appropriate. If the site conditions are relatively poor, higher densities should be chosen to maintain the sustainability of forest productivity.
     (ii) The thinning methods of low (15%) and moderate (25%) intensities should be used to achieve better results. The most appropriate thinning time and intensity need further simulations in a broader context considering protection of environment and habitat;
     (iii) The rotation length of 80 years is superior to shorter rotation (e.g.,20 years or 40 years). Rotation length is important for influencing forest carbon sequestration with a longer and higher carbon sequestration.
     (iv) Phoebe plantations has obvious role on soil improvement, especially on the poor site. As a hardwood species, Phoebe produces a large amount of decomposition litter and nutrients, which is important for maintaining high carbon sequestration.
     (v) Sustainable Phoebe plantation management can be significant not only to provide economic benefits, but also to maximize ecological services (eg., carbon sequestration capacity and the sustainability of forest productivity)
引文
[1]Keeling C D, et al. Atmospheric carbon dioxide variations at Mauna Loa Obervatory, Hawaii[J]. Tellus,1976(28):538~551
    [2]Houghton RA, et al. Change in carbon content of terrestrial biota and soil between 1860 and 1981:A net release of CO2 to the atmosphere [J]. Eclolgical Monography,1983(52):235~262
    [3]Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth's ecosystems [J]. Science,1997(227):494~499
    [4]Rodhe H. A comparison of the contribution of various gases to the greenhouse effect [J]. Science, 1990(248):1217~1219
    [5]IPCC. Climate Change 1995:The Science of Climate Change [J]. Houghton J T, et al. eds. Cambridge:Cambridge University Press.1996
    [6]Keeling C D and T P W horf. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends:A Compendium of Data on Global Change[M]. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA.1999
    [7]王绍式,叶瑾林.近百年全球气候变暖的分析[J].大气科学,1995(2):10-15
    [8]任振球.当代气候变化若干问题的商榷[J].地球科学进展,1996,11(5):504-507
    [9]IPCC. Climate Change 2001, scientific Bases[M].Cambridge, Cambridge University Press,2001
    [10]Watson R T, H Rodhe, H Oeschgeretal. Greenhouse gases and aerosols.The IPCC Scientific Assessment. Cambridge University Press,1990
    [11]Houghton J T, B A Callander and K Vamey S (eds). Climate Change 1992.Supplementary Report to the IPCC Scientific Assessment for the Framework Convention On Climate Chang.1992
    [12]IGBP. A study of global change. The International Geosphere-Biosphere Programme; The initial core projects. Report 12 Stockholm,1990
    [13]IPCC.Land Use, Land Use Change and Forestry[M]. New York:Cambridge University Press,2000
    [14]钟秀丽,林理达.气候变化对我国自然生态系统影响的研究综述[J].生态学杂志,2000,39(5):62-66
    [15]贺庆棠.全球性环境污染和资源破坏的现状与对策[J].北京林业大学学报,1989,11(4):126-127
    [16]Lobell D B, et al. Climate and management contributions to recent trends in U.S. agricultural yields [J]. Science,2003(299):1032~1033
    [17]Nemani R R, et al. Climate driven increases in global terrestrial Net primary production from 1982 to 1999 [J]. Science,2003(300):1560~1563
    [18]Korner C, et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2 [J].Science,2005(309):1711~1713
    [19]于贵瑞,全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.43-88
    [20]汪业勖,赵士洞.陆地碳循环研究中的模型方法[J].应用生态学报,1998,4(6):578-584
    [21]Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget [J]. Science,1990(247):1431~1438
    [22]Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements [J]. Nature,1996(382):146~149
    [23]Warring R H, Running S W. Forest Ecology, Analysis at Multiple Scale (2nd edition)[M]. San Diego:Academic Press,1998.286~320
    [24]聂道平,徐德应,王兵.全球碳循环与森林关系的研究——问题与进展[J].世界林业研究,1997(5):33-40
    [25]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16
    [26]董文福,管东生.森林生态系统在碳循环中的作用[J].重庆环境科学,2001,24(3):25-27
    [27]IPCC.Intergovernmental Panel on Climate Change Scientific Assessment of Climate Change[M].UNEP, UN, New York.1992
    [28]巴特尔.巴克,张旭东,彭镇华,等.森林生态系统碳循环研究的模型方法[J].世界林业研究,2008,21(1):9-13
    [29]Dixon R K, Brown S, et al. Carbon pools and flux of global forest ecosystem [J]. Science,1994, 1263:185~190
    [30]周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-552
    [31]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54
    [32]Winjum J K, Dixon, R K, Paule S. Forest management and carbon storage:an analysis of key forest nations [J]. Water,Air,and Soil Pollution,1993(70):239~257
    [33]Peng C H, Apps J M. Contribution of China to the Global Carbon Cycle since the last Glacial Maximum Reconstruction from Palaeovegetation Maps and an Empirical Biosphere Model [J]. Tellus, 1997(49):393~408
    [34]Ni J, Sykes M T, Prentice I C, et al. Modeling the vegetation of China using process based equilibrium terrestrial biosphere model BIOME3 [J]. Global Ecology &Biogeography,2009:463~479
    [35]肖乾广,陈维英,盛永伟,等.用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J].植物生态学报,1996,38(1):35-39
    [36]陈利军,刘高焕,冯险峰.遥感在植被净第一性生产力研究中的应用[J].生态学杂志,2002,21(2):53-57
    [37]刘国华,傅伯杰,方精云.中国森林的碳动态及对全球碳平衡的贡献[J].植物生态学报,2000,20(5):733-740
    [38]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and1998 [J]. Science,2001(291):2320~2322
    [39]陈国南.用迈阿密模型测算我国生物生产量的初步尝试[J].自然资源学报,1987,2(3):270-278
    [40]李克让,王绍强,曹明奎.中国森林植被和土壤的碳储量[J].中国科学D辑,2003,33(1):72-80
    [41]李意德,曾庆波,吴仲民,等.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,12(2):56-162
    [42]桑卫国,马克平,陈灵芝.暖温带落叶林碳循环的初步估算[J].植物生态学报,2002,26(5):543-548
    [43]曹军,张意锉,刘燕华.近20年海南岛森林生态系统碳储量变化[J].地理研究,2002,9(5):551-559
    [44]丁圣彦,梁国付.近20年来洛宁县森林植被碳储量及动态变化[J].资源科学,2004,26(3):105-108
    [45]赵海珍.雾灵山自然保护区森林的碳汇功能评价[J].河北农业大学学报,2001,24(4):43-47
    [46]刘华,雷瑞德.中国森林生态系统碳储量和碳平衡的研究方法及进展[J].西北植物学报,2005,25(4):835-843
    [47]王春林,周国逸,于贵瑞,等.鼎湖山南亚热带常绿针阔叶混交林C通量估算[J].中国科学D辑,2004,34(增刊):48-52
    [49]刘其霞,常杰,江波,等.浙江省常绿阔叶生态公益林生物量[J].生态学报,2005,25(9):2140-2144
    [50]袁正科,田大伦,吴春英,等.森林碳固定量计算方法及长株潭区域碳年固定量估算[J].湖南林业科技,2004,31(4):1-5
    [51]杨存建,刘纪远,张增祥.热带森林植被生物量遥感估算探讨[J].地理与地理信息系统,2004,20(6):22-25
    [52]张娜,于贵瑞,赵士洞.基于景观尺度过程模型的长白山净初级生产力空间分布影响因素分析[J].应用生态学报,2003,14(5):659-664
    [53]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517
    [54]Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon [J]. Nature,2000(403):301~304
    [55]赵士洞,汪业歇,于振良,等.中国森林生态系统碳循环研究[A].中国生态学会通讯特刊,2000,50-52
    [56]Costa P M王效科,译.能够固定碳的热带林业实践——综述和东南亚案例研究[J].Ambio,1996,25(4):279~283
    [57]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物,2002,22(4):305-310
    [58]马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100
    [59]康冰,刘世荣,张广军,等.广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征[J].生态学报,2006,26(5):1320-1329
    [60]李杨,孔令春,单忠臣.长白山红松云冷杉林碳库研究[J].吉林林业科技,2002,31(3):7-12.
    [61]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24
    [62]马明东,江洪,刘跃建,等.楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J].林业科学,2008,44(3):34-39
    [63]项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,22(3):57-62
    [64]丁增发.安徽肖坑森林植物群落与生物量及生产力研究[D].合肥:安徽农业人学,2005
    [65]Satoo T. Physical basis of growth of forest trees. Recent Advance in Silviculture [J]. Sciences, 1995.116~141
    [66]Remezon N P. Method studying the biological cycles of elements in forest [J]. Soviet soil Sci, 1959(1):59~67
    [67]Rennie P J. The uptake of nutrients by mature forest growth [J]. Plant Soil,1955(7):49~95
    [68]Ovington J D. The form weight sand productivity of tree species growth of tree species grown incloses tands [J]. New Phytology,1956(55):289~304
    [69]冯宗炜,张家武,邓仕坚.杉木大工林生物产量的研究[M].开封:河南科学技术出版社,1980.
    [70]李文华,邓坤枚,李飞.长白山主要森林生态系统生物量的研究[J].森林生态系统研究,1981,34-50
    [71]Brown S, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J]. Biotropica,1982,14(5):161~187
    [72]Brown S, Iverson L R. Biomass estimates for tropical forest[J].World Tesource Rev,1992(4): 366~384
    [73]Fang J Y,Wang G G, Liu G, et al. Forest biomass of China:an estimate based on the biomass volume relationship[J]. Ecology Application,1998(8):1084~1091
    [74]Brown S, Lugo A E. Biomass of tropical forest:A New Estimate Based on forest Volumes[J]. Science,1984,223(6):1290~1293
    [75]方精云.中国森林生产力及其对全球气候变化的响应[J].植物生态学报,2000,24(5):513-517
    [76]赵十洞,罗天祥.区域水平上陆地生态系统的生物生产力的研究方法[J].资源科学,1998,20(1):24-34
    [77]Spencer R D, Green M A, Blggs P H. Integrating Eucalypt Forest Inventory and GIS in Western Australia[J]. Photogrammetric Engineering and Remote Sensing,1997,63(12):1345~1351
    [78]张佳华,符涂斌.生物量估测模型中遥感信息与植被光合参数的关系研究[J].测绘学报,1999,28(2):128-129
    [79]郭起荣FORCYTE森林生态系统经营模拟模型[J].江西林业科技,2000(6):43-46
    [80]接程月,辛赞红,信晓颖,等FORECAST模型的原理、方法和应用[J].浙江林学院学报,2009,26(6):909-915
    [81]潘攀.基于FORECAST模型的落叶松人工林间伐长期效果与优化模式研究[D].哈尔滨:东北林业大学,2007
    [82]田晓,胡靖宇,刘苑秋,等.森林生态系统经营的新模式:FORECAST模型[J].林业调查规划,2010,35(6):18-25.
    [83](加)金明仕著,曹福亮编译.森林生态学[M].北京:中国林业出版社,2005
    [84]Seely.B, Hawkins.C, Blanco.J.A, et al. Evaluation of a mechanistic approach to mixedwood modelling[J]. THE FORESTRY CHRONICLE,2008(84):181~193
    [85]Wang.J.R,Comeau.P, Kimmins.J.P. Simulation of mixdewood management of aspen and white spruce in northeastern british columbia[J]. Water, Air and Soil Pollution,1995(82):171~178
    [86]Kimmins.J.P. Predicting sustainability of forest bioenergy production in the face of changing paradigms[J]. Biomass and Bioenergy,1997(13):201~212
    [87]Dave.M.Morris, Kimmins.J.P, Dan.R.Duckert. The use of soil organic matter as a criterion of the relative sustainability of forest management alternatives:a modelling approach using FORECAST.[J] Forest Ecology and Management,1997(94):61~78
    [88]Kimmins.J.P, Mailly.D,Seely.B. Modelling forest ecosystem net primary production:the hybrid simulation approach used in FORECAST[J].Ecological Modelling,1999(122):195~224
    [89]Seely.B, Welham.C,Kimmins.J.P.Carbon sequestration in a boreal forest ecosystem:results from the ecosystem simulation model,FORECAST[J].Forest Ecology and Management,2002(169):123~135
    [90]Welham.C,Seely.B,Kimmins.J.P.The utility of the two-pass harvesting system:an analysis using the ecosystem simulation model FORECAST[J]. Can.J.For.Res,2002(32):1071~1079
    [91]Wei Xiaohua.Long-term soil productivity study in lodgepolepine forests in the MSxv and SBPSxc subzones. Final Annual Report to BC Forestry Innovation Investment,2003
    [92]Wei Xiaohua, Kimmins.J.P, Zhou G. Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia-an ecosystem modeling approach [J]. Ecological Modelling,2003(164):239~256
    [93]Seely.B.The application of a hierarchical, decision-support system to evaluate multi-objective forest management strategies:a case study in northeastern British Columbia, Canada[J].Forest Ecology and Management,2004(199):283~305
    [94]Cuevas.S, Vazquez.F.M, Torres.E, et al. Optimizing cork oak dehesa forest management using FORECAST ecosystem model[J].SUBERWOOD,2005,20~22
    [95]McIntire.E.J.B, Duchesneau.R, Kimmins.J.P. Seed and bud legacies interact with varying fire regimes to drive long-term dynamics of boreal forest communities[J].Can.J.For.Res,2005(35):765~773
    [96]Seely.B, Welham.C, Kimmins.J.P. Criterion 2:Ecosystem productivity[J].BC Journal of Ecosystems and Management,2006(7):85~91
    [97]Bi.J, Blanco.J.A, Kimmins.J.P. Yield decline in Chinese fir plantations:a simulation investigation with implications for model complexity[J]. Can.J.For.Res,2007(37):1615~1630
    [98]Blanco.J.A.The representation of allelopathy in ecosystem-level forest models[J].Ecological Modelling,2007(209):65~77
    [99]Blanco.J.A, Seely.B, Welham.C,et al. Testing the performance of forest ecosystem model (FORECAST) against 29 years of field data in a Pseudotsuga menziesii plantation[J]. Can.J.For.Res, 2007(37):1808~1820
    [100]Brad Seely, Clive Welham, Juan A. Blanco. Towards the application of soil organic matter as an indicator of forest ecosystem productivity:Deriving thresholds, developing monitoring systems,and evaluating practices[J]. Ecological Indicators,2010(10):999~1008
    [101]Welham.C, Rees.K.V, Seely.B, et al. Projected long-term productivity in Saskatchewan hybrid poplar plantations:weed competition and fertilizer effects[J].Can.J.For.Res,2007(37):356-370
    [102]Kimmins.J.P. From science to stewardship:Harnessing forest ecology in the service of society[J].Ecology and Management,2008(258):1625~1635
    [103]Kimmins.J.P, Blanco.J.A, Seely. B, et al. Complexity in modelling forest ecosystems:How much is enough?[J]. Forest Ecology and Management,2008(258):1648~1658
    [104]Welham.C, Blanco.J.A, Kimmins.J.P. FORCEE helps to manage mixedwoods[J].Forest Research Extension Partnership,2008
    [105]孙志虎.长白落叶松人工用材林长期生产力维持的研究[D].哈尔滨:东北林业大学,2005
    [106]彭龙福.35年生楠木人工林生物量及生产力的研究[J].福建林学院学报,2003,23(2):128-131
    [107]彭龙福.不同林分密度楠木人工林生物量初步研究[J].福建林业科技,2008,35(4):15-18,23
    [108]吕明.密度与立地异质空间条件下楠木人工林生物量与养分研究[D].厦门:福建农林大学,2006
    [109]江香梅,肖复明,叶金山,等.闽楠天然林与人工林生长特性研究[J].江西农业大学学报,2009,31(6):1049-1054
    [110]卢昌泰.楠木二元立木材积表试编[J].四川林勘设计,1999(1):53-56
    [111]吴旺民.楠木人工近熟林林分结构与生长规律[J].林业科技开发,2009,23(5):75-78
    [112]杜娟,卢昌泰.楠木人工林生长规律的研究[J].浙江林业科技,2009,29(5):9-12
    [113]陈辉,任承辉,郑丽萍,等.楠木人工林生物产量模型的研究[J].福建林学院学报,1989,9(4):411-417
    [114]卢学琴,卢昌泰.楠木胸径——材积相关方程初步研究[J].绵阳经济技术高等专科学校学报,2001,18(1):14-16
    [115]廖涵宗,张春能,陈德叶.人工楠木林的生物量[J].福建林学院学报,1988,8(3):252-257
    [116]宋金聪.人工楠木林分结构及生长状况分析[J].福建农业科技,2006(4):73-75
    [117]马明东,江洪,杨俊义.四川盆地西缘楠木人工林分生物量的研究[J].四川林业科技,1989,10(3):6-14
    [118]程煜.闽楠叶凋落物分解动态及其养分释放规律研究[D].厦门:福建农林大学,2003
    [119]郭玉硕.楠木叶凋落物的分解及其养分动态[J].福建林学院学报,2007,27(3):199-202
    [120]林开敏,章志琴,叶发茂,等.杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析[J].植物资源与环境学报,2010,19(2):34-39
    [121]林开敏,章志琴,曹光球,等.杉木与楠木叶凋落物混合分解及其养分动态[J].生态学报,2006,26(8):2732-2738
    [122]郑金兴,杨智杰,凌华,等.楠木人工林凋落物的产量与月动态[J].福建师范大学学报(自然科学版),2011,27(1):88-92
    [123]彭龙福.不同立地条件楠木人工林养分研究[J].福建林业科技,2008,35(2):10-14
    [124]陈淑容.不同立地因子对楠木生长的影响[J].福建林学院学报,2010,30(2):157-160
    [125]福建林学院林学系.楠木的营养诊断[J].福建林业科技,1978(5):45-54
    [126]刘其文.楠木人工林土壤肥力研究[J].江两林业科技,2009(1):31-32,41
    [127]黄辉,杨玉盛,高人,等.杉木林与楠木林土壤呼吸昼夜变化及与土温变化的关系[J].福建师范大学学报(自然科学版),2009,25(2):113-118
    [128]孙祥水.间伐对楠木杉木混交林生长影响的研究[J].亚热带农业研究,2008,4(3):184-187
    [129]张戊英,吴载璋.楠木人工林不同抚育措施试验研究[J].闽两职业技术学院学报,2007,9(2):1-4
    [130]廖涵宗,邸道生,张春能,等.樟树、楠木人工林密度管理[J].福建林学院学报,1989,9(4):80-84
    [131]刘宝.珍贵树种闽楠栽培特性与人工林经营效果研究[D].厦门:福建农林大学,2005
    [132]胡婧楠,刘桂华.2种楠木幼树光合生理特性的初步研究[J].安徽农业大学学报,2010,37(3):541-546
    [133]吴载璋,陈绍栓.光照条件对楠木人工林生长的影响[J].福建林学院学报,2004,24(4):371-373
    [134]杜娟,范志霞,叶顶英,等.楠木人工林树冠体积与叶面积指数预估模型的研究[J].浙江林业科技,2010,30(4):37-41
    [135]任承辉,陈辉,周丽华.尤溪县楠木林分叶面积指数的研究[J].福建林学院学报,1990,10(1):67-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700