用户名: 密码: 验证码:
高强度Q&P钢和Q-P-T钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得高强度高韧性材料一直是材料工作者们追求的目标。目前我国钢材年产量已逾四亿吨,但大量生产和应用的结构钢材强度一般400MPa~800MPa。为节约能源、减少环境污染、节约矿产资源,迫切需要发展高强度和超高强度钢,以实现器件的轻量化,达到节能减排的目的。为研制具有高强度(1500MPa-2000MPa),兼具一定的塑性和韧性且成本低廉的结构钢,本文根据徐祖耀等提出的高强度钢成分和组织设计思想和淬火-碳分配-回火(沉淀)(Q-P-T)热处理新工艺,结合近年来Speer等提出的淬火-碳分配(Q&P)热处理工艺,设计出1500MPa级别和2000MPa级别的Q-P-T高强度钢。利用光学金相(OM)、X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)等多种方法研究了Q-P-T钢的显微组织,揭示了其具高强度和塑性的原因;为在热处理中对Q&P钢和Q-P-T钢的组织进行控制,本文研究了淬火-碳分配过程中残余奥氏体的稳定性。本文的主要研究内容如下:
     首先,设计成分为0.2C-1.53Si-1.46Mn的Q&P钢,并籍J-Mat Pro软件和Speer等提出的约束碳平衡(CCE)模型设计其相应的热处理工艺(初始淬火温度为250℃,碳分配温度为480℃)。经不同Q&P处理工艺后其抗拉强度约1000MPa,延伸率10~20%。其中,一步法(初始淬火温度和碳分配温度相同)处理Q&P钢的强度比两步法(初始淬火温度小于碳分配温度)处理Q&P钢高约200MPa,但其塑性仅约为两步法处理Q&P钢的一半。通过OM、SEM、TEM和XRD表征了两步法处理Q&P钢微观组织随碳分配时间的变化,研究结果表明Q&P钢组织由板条马氏体基体和条间残余奥氏体复合组成,其强度主要取决于组织中马氏体含量和马氏体中的碳含量,而残余奥氏体则起着提高塑性和韧性的作用。实验表明随碳分配时间的增加,碳化物析出增多,残余奥氏体含量减少。残余奥氏体含量减少的原因主要有:1)在Q&P处理过程中马氏体/奥氏体相界面的迁移;2)在较高温度和较长时间碳分配的过程中奥氏体分解成渗碳体。通过与其他先进结构钢(如双相钢,相变诱发塑性钢,马氏体钢等)比较,Q&P钢具有高强度和良好塑性相结合的优秀综合力学性能。
     为进一步提高钢的强度,根据徐祖耀等提出的超高强度钢成分和组织设计思想,通过在原有的Q&P钢成分基础上添加Nb、Mo等碳化物形成元素,研制出强度级别为1500MPa的低碳超高强度淬火-碳分配-回火(沉淀)钢(低碳Q-P-T钢),其成分设计为:Fe-0.2C-1.5Si-1.5Mn-0.053Nb-0.13Mo;热处理工艺设计为:初始淬火温度QT=220℃,碳分配和回火温度为400℃。低碳Q-P-T钢经两步法处理后其抗拉强度可达1500MPa,延伸率大于15%。通过OM、SEM、TEM和XRD等测试手段对其微观组织进行表征,结果表明,由于Nb的合金化使低碳Q-P-T钢较类似成分的Q&P钢具有更为细小的原始奥氏体晶粒尺寸,由此淬火后获得更为细小的马氏体领域和马氏体板条,马氏体板条内含高密度位错并弥散分布着几个纳米的复杂碳化物,而且由于Si的加入使马氏体条间存在一定量的薄膜状残余奥氏体(体积分数4~6%)。上述组织结构的特征正是由徐祖耀提出的高强度钢组织设计思想所预期的。
     为了获得更高强度级别,即抗拉强度达到2000MPa的超高强度钢,根据超高强度钢组织设计原理,通过在低碳Q-P-T钢成分基础上适当增加碳含量(降低Ms温度以细化组织,同时增加碳原子的固溶强化效应)和合金元素含量(增加弥散沉淀强化效应),设计出含Nb、Ni的中碳Q-P-T钢,设计成分为: Fe-0.485C-1.2Si-1.2Mn-0.21Nb-0.98Ni;相应的热处理工艺为:初始淬火温度QT=95℃,碳分配和回火温度为400℃。实验结果表明:研制的中碳Q-P-T钢经两步法处理后其抗拉强度大于2000MPa,总延伸率大于10%。通过SEM、TEM、XRD和EDS揭示了中碳Q-P-T钢的微观组织为:高密度位错的马氏体、马氏体条间的薄膜状残余奥氏体和马氏体内的弥散分布的复杂碳化物,其中马氏体板条宽度为几十纳米,残余奥氏体厚度和复杂碳化物的尺寸均为几个纳米。XRD衍射分析测定出中碳Q-P-T钢的残余奥氏体含量为4~6%。因此,本论文研究所获得组织全部为纳米级的马氏体高强钢首次被报道。研究表明中碳Q-P-T钢的高强度取决于马氏体组织的细化和马氏体中弥散析出的复杂碳化物,塑性主要取决于残余奥氏体和马氏体基体的软化(经Q-P-T处理后马氏体中碳浓度下降,碳的固溶强化效应降低)。本文研究验证了Q-P-T工艺的可行性和体现出其比Q&P工艺可获得更高强度结构钢和更广泛的含Si钢的应用。本文研究的Q-P-T钢(低碳和中碳)是继TRIP、TWIP和Q&P钢后,成为一种新型先进结构钢。
     在淬火-碳分配过程中马氏体/奥氏体相界面的迁移直接影响奥氏体的稳定性及其含量,从而影响Q&P钢的微观组织和力学性能。本文通过实验观察到0.2C-1.45Mn-1.53Si钢在Q&P处理过程中马氏体/奥氏体相界面发生了迁动,并从理论上证明在Q&P处理过程中存在界面上铁原子扩散的热力学条件,从而否定了Speer等提出的Q&P处理的CCE热力学模型的限制条件(马氏体/奥氏体相界面不移动)。通过热力学计算出相界面迁移的速度为3.08nm/s;随后通过数值模拟方法对Q&P过程中碳分配和马氏体/奥氏体相界面迁移进行耦合模拟,结果表明马氏体/奥氏体相界面在Q&P处理过程中可以产生数十纳米的位移。
Currently in China, the annual output of steels is more than 400 million tons, but the general strengths of structural steel in production and application are between 400MPa ~ 800MPa. In order to save energy and raw materials as well as on environment protection, there is an urgent need to develop high or ultra-high strength steel. For gainning higher strength (1500MPa-2000MPa) accompanying adequate plasticity, toughness and low-cost structural steel, the principle of microstructure design of high-strength steel and a new Quenching-Partitioning-Tempering(Q-P-T ) process was proposed by Xu Zuyao(T. Y. Hsu)according to the principle of microstructure design of high-strength steel based on the recently developed Quenching and Partitioning(Q&P) treatment by Speer et al. Two strength level steels: 1500MPa level and 2000 MPa level have been designed, respectively. The microstructure of the Q-P-T steels were characterized by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy(TEM) and the origin of good combination of high strength and adequate ductility of Q-P-T steels has been revealed. Furthermore, the stability of retained austenite during the Quenching and Partitioning process has been studied in order to control the microstructure of the Q&P and Q-P-T steel.
     The Q&P steel with composition of 0.2C-1.53Si-1.46Mn has been designed and developed, and the heat treatment process parameters have been proposed as following: the initial quenching temperature is calculated as 250℃and the carbon partitioning temperature is calculated as 480℃in Constrain Paraequelibrium (CCE) conditions by using the J-Mat Pro software. Tensile strengths of the 0.2C-1.53Si-1.46Mn steel developed are about 1000MPa, elongation of 10 ~ 20% after the different Q&P treatments. The tensile strength of one-step (the initial quenching temperature and the carbon partitioning temperature are the same) treated Q&P steel is higher than that treated by two-step process(the initial quenching temperature is lower than carbon partitioning temperature), but the elongation of one-step Q&P steel is only about half of two-step’s. The microstructure of Q&P steel has been characterized by OM, SEM, TEM and XRD, and the results show that the Q&P steel consists of martensite and retained austenite, and its tensile strength depends primarily on the volume fraction and the carbon content of martensite, the retained austenite plays an important role in plasticity and toughness. The experimental result indicates that the volume fraction of cementite and transition carbides (unstable) precipitated in martensite matrix increase, while the volume fraction of the retained austenite decreases with increasing partitioning time. The main reasons are: 1) the migration of martensite / austenite interface during the Q&P process; 2) the decomposition of austenite into cementite at relatively high temperature and longer period during the Q&P process. By comparing with other advanced structural steels (such as dual-phase steel, TRIP steel, martensitic steel, etc.), Q&P steel has a better combination of high strength and good plasticity.
     In order to further raise the strength of steels, based upon modifying the recently developed Q&P treatment, a Quenching-Partitioning-Tempering process is proposed for ultra-high strength steels containing certain amount of carbide forming elements such as Nb and Mo. A designed and developed steel with composition Fe-0.2C-1.5Si-1.5Mn-0.053Nb-0.13Mo shows tensile strength about 1500MPa and total elongation 15% after subjected to Q-P-T treatment(the initial quenching temperature is designed to be 220℃and the partitioning/tempering temperature is designed to be 400℃) . The microstructure characterization shows the parent austenite grains are much finer than that of Q&P steel with similar composition. The addition of Nb results in the existence of finer martensitic packets and thinner laths in the Q-P-T steel after quenching and fine complex carbide dispersively distributed in martensite matrix with high density dislocation and the existence of a certain amount (about 4~6% volume fraction as XRD measured) of retained austenite between martensite lath due to the addition of Si. The above microstructural features are expected by Hsu’ideal of microstructure design for good combined mechanical properties.
     In order to attain ultra-high strength steel with the tensile strength level of 2000MPa accompanying the elongation of 10% for the steel containing less than 0.5wt%C , and a medium-carbon Q-P-T steel is designed and developed according to the principle of design of composition and structure of high-strength steel. The corresponding process is designed as: the initial quenching temperature is 95℃and the partitioning/tempering temperature is 400℃. The medium carbon Q-P-T steel exhibits tensile strength as high as over 2000MPa and total elongation over 10%. The microstructure in the Q-P-T steel is determined as follows. The average width of martensite laths are several tens nanometers, and the width of film-like retained austenite around martensite as well as the average size of stable carbides dispercively distributed in martensite matrix are both several nanometers, such an ultra-high strength fully nano-scaled martensitic steel had never been reported before. The present work shows that the tensile strength of medium carbon Q-P-T steel depends on the refinement of packets and laths of martensite and the stable carbide precipitates in the martensite matrix, and the plasticity depends primarily on content of the retained austenite and the softening of martensite matrix (the carbon concentration decreased in matrix and the effect of solid solution strengthening of carbon decreased after Q-P-T process). The investigation of this work verifies the feasibility of Q-P-T process (including both low-carbon and medium-carbon Q-P-T steels) in stead of Q&P process and demonstrates its more extensive application for Si-alloying structural steels than Q&P process. As a results, Q-P-T steels studied in the work is a new family of advanced structural steels whose comprehensive mechanical properties are overwhelming to dual-phase (DP), transformation induced plasticity (TRIP), twinning induced plasticity(TWIP) and Q&P steels.
     Migration of interface between martensite and austenite directly affects volume fraction of retained-austenite during Q&P process, in turn does the microstructure and mechanical properties of steels. The migration of martensite/austenite interface is observed in this work and the thermodynamic condition allowing iron atom diffusion across the interface is theoretically verified, which argues the constrained condition of interface between martensite and austenite proposed in the“Constrained Carbon Paraequilibrium”(CCE) model by Speer et al. The migration velocity of martensite/austenite interface is thermodynamically calculated as 3.08nm/s, and the migration distance of interface is high up to tens of nanometers during the Q&P process as the numerical calculation.
引文
[1]. Birat, J. P., Alternative ways of making steel: Retrospective and prospective[J]. Revue de Metallurgie. Cahiers D'Informations Techniques 2004, 101 (11).
    [2]. Chabanier, J., Energy and global warming - Challenges for steel: The Arcelor case[J]. Steel Times International 2005, 29 (1), 24-26.
    [3]. Huang, T. D.; Conrardy, C.; Dong, P., et al., Engineering and production technology for lightweight ship structures, Part II: Distortion mitigation technique and implementation[J]. Journal of Ship Production 2007, 23 (2), 82-93.
    [4]. Peter, J.; Peaslee, K. D.; Robertson, D. G. C., Review of progress in developing continuous steelmaking[J]. Iron and Steel Technology 2005, 2 (2), 53-60.
    [5]. Weng, Y. Q., Progress of theory and controlled technology of ultrafine grained steel[J]. Kang T'ieh/Iron and Steel (Peking) 2005, 40 (3), 1-8.
    [6]. Xiao, G. Z.; Zhu, F. X.; Di, H. S., Development and application progress of high strength steel plate for large oil storage tank[J]. Dongbei Daxue Xuebao/Journal of Northeastern University 2007, 28 (SUPPL. 2), 154-157.
    [7]. Yu, Q., Review and prospect of weathering steel[J]. Journal of Iron and Steel Research 2007, 19 (11), 1-4.
    [8].徐祖耀.钢热处理的新工艺[D]. 2007.
    [9].徐祖耀,钢热处理的新工艺[J].热处理2007, (01).
    [10].徐祖耀,钢的组织控制与设计(一)[J].上海金属2007, (01).
    [11].徐祖耀,钢的组织控制与设计(二)[J].上海金属2007, (02).
    [12].徐祖耀,用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺[J].热处理2008, (02).
    [13].陆匠心, 700MPa级高强度微合金钢生产技术研究[J]. 2004.
    [14].黄儒荣;唐晓明;管强,汽车用特钢供需状况调研[J].特钢技术2004, 2, 61-66.
    [15].马鸣图,汽车用合金结构钢的现状和研究进展[J].汽车工艺与材料2004, 1, 1-5.
    [16]. Willian, F.; Powers, Automotive materials in the 21st century[J]. Advanced Materials& Processes 2000, 5, 38-41.
    [17].王利;朱晓东;张丕军,汽车轻量化与先进的高强度钢板[J].宝钢技术2003, 5, 53-60.
    [18]. Buchholz, K., More details on precept, GM’s PNGV[J]. Automotive Eng. Int 2000, 1, 36-41.
    [19]. Pickering, F. B., Physical Metallurgy and the Design of Steels[J]. Applied Science Publishers London 1978.
    [20]. Sessler., J. G., Aerospace structural metals handbook. Syracuse University. Press. New York.1964
    [21]. Pokrovskaya, N. G.; Petrakov, A. F.; Shal'kevich, A. B., Modern high-strength structural steels for workpieces of aviation engineering[J]. Metallovedenie i Termicheskaya Obrabotka Metallov 2002, (12), 23-26.
    [22]. Tomita, Y., Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications [J]. International Materials Reviews 2000, 45, 27-37.
    [23]. Krauss, G., Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2001, 32 (4), 861-877.
    [24]. Pokrovskaya, N. G.; Petrakov, A. F.; Shal'kevich, A. B., Modern high-strength structural steels for aircraft engineering[J]. Metal Science and Heat Treatment 2002, 44 (11-12), 520-523.
    [25]. Fujimura, K.; Mori, T.; Higashi, T., et al., Effects of niobium and sulfur on the activity of carbon in high liquid steel steel and relations between interaction parameters and carbon potential[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 1973, 59 (2), 222-230.
    [26].张少棠,钢铁材料手册.第2卷,低合金高强度钢,中国标准出版社,北京, 2001
    [27]. Sha, W.; Cerezo, A.; Smith, G. D. W., Phase chemistry and precipitation reactions in maraging steels: Part II. Co-free T-300 steel[J]. Metallurgical Transactions A 1993, 24 (6), 1233-1239.
    [28]. Machmeier, P.; Matuszewski, T.; Jones, R., et al., Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I[J]. Journal of Materials Engineering and Performance 1997, 6 (3), 279-288.
    [29]. Qian, C.; Duan, Z.; Geng, P., et al., Effect of Alloying Elements on the Phase Transformation for Secondary-Hardening Martensite Steels Enriched Co and Ni[J]. Journal of Iron and Steel Research International 1999, 11 (6), 25-29.
    [30]. Hu, Z.; Wu, X.; Li, X., et al., Precipitation and transformation of the second carbides in isothermal tempered high CoNi alloy steel[J]. Jinshu Xuebao/Acta Metallurgica Sinica 2001, 37 (4), 381-385.
    [31]. Oh, Y.; Machmeier, P. M.; Matuszewski, T., et al., Evaluation of the nucleation and coarsening kinetic behavior of the secondary hardening carbide of Fe-14Co-10Ni-1Mo-0.16C steel at two chromium levels, using an analytical and modeling approach: Part II[J]. Journal of Materials Engineering and Performance 1997, 6 (3), 289-299.
    [32]. Hu, Z.; Wu, X.; Li, X., et al., Study on the precipitation of M2C in high Co-Ni alloy steel[J]. Journal of Materials Engineering and Performance 2001, 10 (4), 493-495.
    [33]. Hu, Z. F.; Wu, X. F.; Li, X. Q., et al., M2C precipitate in isothermal tempering of high Co-Ni alloy steel[J]. Journal of Iron and Steel Research International 2001, 8 (2), 56-58.
    [34]. Ayer, R.; Machmeier, P. M., Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metallurgical Transactions A 1993, 24 (9), 1943-1955.
    [35]. Li, Z.; Zhao, Z. Y., Research and development of AerMet100 steel[J]. Hangkong Cailiao Xuebao/Journal of Aeronautical Materials 2006, 26 (3), 265-270.
    [36]. Li, J.; Guo, F.; Li, Z., et al., Influence of Sizes of Inclusions and Voids on Fracture Toughness of Ultra-High Strength Steel AerMet100[J]. Journal of Iron and Steel Research International 2007, 14 (5 SUPPL. 1), 254-258.
    [37]. Ayer, R.; Machmeier, P., On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 1998, 29 A (3), 903-905.
    [38]. Little C D ; High strength fracture resistant weldable steels, USA Patent ,4 ,076 ,525 , 1978.[J].
    [39].中国航空材料手册编辑委员会.,中国航空材料手册---结构钢,不锈钢,北京:中国标准出版社, 1988.[J].
    [40]. Bhadeshia, H. K. D. H. In High performance bainitic steels, Materials Science Forum[C], Donostia-San Sebastian Basque Countr, 2005; Donostia-San Sebastian Basque Countr, 2005; pp 63-74.
    [41]. Garcia-Mateo, C.; Caballero, F. G.; Bhadeshia, H. K. D. H. In Mechanical properties of low-temperature bainite, Materials Science Forum[C], Donostia-San Sebastian Basque Countr, 2005; Donostia-San Sebastian Basque Countr, 2005; pp 495-502.
    [42]. Bhadeshia, H. K. D. H., 52nd Hatfleld Memorial Lecture large chunks of very strong steel[J]. Materials Science and Technology 2005, 21 (11), 1293-1302.
    [43]. Caballero, F. G.; Bhadeshia, H. K. D. H., Very strong bainite[J]. Current Opinion in Solid State and Materials Science 2004, 8 (3-4), 251-257.
    [44]. Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A., et al., Very strong low temperature bainite[J]. Materials Science and Technology 2002, 18 (3), 279-284.
    [45].徐祖耀,马氏体相变与马氏体,第二版,科学出版社,北京,1999.
    [46].范长刚;董瀚;时捷, 2200MPa级超高强度低合金钢的组织和力学性能[J].兵器材料科学与工程2006, (02).
    [47].范长刚;董瀚;时捷,镍含量对2200 MPa级超高强度钢力学性能的影响[J].金属热处理2007, (02).
    [48].范长刚;董瀚;时捷,淬火温度及残余奥氏体对2200MPa级超高强度钢力学性能的影响[J].热加工工艺(热处理版) 2006, (07).
    [49].范长刚;董瀚;雍岐龙,低合金超高强度钢的研究进展[J].机械工程材料2006, (08).
    [50]. Speer, J.; Matlock, D. K.; De Cooman, B. C., et al., Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia 2003, 51 (9), 2611-2622.
    [51]. Matlock, D. K.; Brautigam, V. E.; Speer, J. G. In Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Materials Science Forum[C], Madrid, 2003; Chandra, T.; Torralba, J. M.; Sakai, T., Eds. Madrid, 2003; pp 1089-1094.
    [52]. Speer, J. G.; Matlock, D. K., Recent developments in low-carbon sheet steels[J]. JOM 2002, 54 (7), 19-24.
    [53].中国机械工程学会热处理专业分会热处理手册编委会,第一卷.,工艺基础,机械工业出版社,北京, 2001
    [54]. Matas, S.; Hehemann, R. F., Retained austenite and the tempering of martensite[J]. Nature 1960,187 (4738), 685-686.
    [55]. Rao, B. V.; Thomas., G., Transmission Electron Microscopy Characterization of Dislocated "Lath" Martensite, Proc. Inter. Conf.Martensitic Transformations-79, MIT., 1979,.12-16.
    [56]. Thomas, G.; Sarikaya, M., Lath Martensites in Carbon Steels Are They Bainitic? Proc. Inter. Conf. Solid to Solid Phase Transformations, 1981, Ed H. I. Aaronson., D. E. Langhlin, R. E. Sekerkay and C. M. Wayman, TMS-AIME., 1982, 999-1004.
    [57].Krauss, G., Steels: Heat Treatment and Processing Principles, ASM International,Metals Park, OH, USA, 1990.[J].
    [58]. Gerdemann, F. L. H.; Speer, J. G.; Matlock, D. K. In Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process, Materials Science and Technology[C], New Orleans, LA, 2004; New Orleans, LA, 2004; pp 439-449.
    [59]. Gerdemann, F. L. H., Microstructure and hardness of 9260 steel heat-treated by the quenching and partitioning process, Diploma Thesis, Aachen University of Technology, Germany, 2004.
    [60]. Clarke, A. J.; Speer, J. G.; Miller, M. K., et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia 2008, 56 (1), 16-22.
    [61]. Rizzo, F. C.; Edmonds, D. V.; He, K., et al. In Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 535-544.
    [62]. Speer, J. G.; Edmonds, D. V.; Rizzo, F. C., et al., Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science 2004, 8 (3-4), 219-237.
    [63]. Edmonds, D. V.; He, K.; Rizzo, F. C., et al., Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering A 2006, 438-440 (SPEC. ISS.), 25-34.
    [64]. Edmonds D V; He K; Rizzo F C, et al., Microstructural features of a new martensitic steel heat treatment: quenching and partitioning. In: 1st Int. Conf. on Super High Strength Steels, Rome, 2005, 1-20.
    [65]. B. Ehrhardt; Gerber, T.; Schaumann., T. W., Approaches to microstructural design of TRIP and TRIP aided cold rolled high strength steels. Proc. of Inter. Conf. on advanced high strength sheet steels for automotive applications. 2004, Colorado, USA, 46-55.
    [66]. O. Covarrubias; M. P. Guerrero; al., R. C. e., Transformation behaviour of Si and Mn bearing low carbon steels , ed. by B C De Cooman. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys . Aachen: WMG, 2001: 227-230.[J].
    [67]. S. J. Kim; C. G. Lee; al., I. C. e., Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15%C transformation-induced plasticity-aided cold-rolled steel sheets. Metall. Mater. Trans., 2001, 32A: 505-514.[J].
    [68]. J. Mahieu; D.V. Dooren; Barbé, L., et al., Influence of Al, Si and P on the kinetics of interitical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification. Steel Research 2002, 73: 267-273[J].
    [69]. Holloman J H, Journal of Applied Physics,1947,18, 1421-1425.
    [70]. Cohen, M., Transaction of Americain Society for Metals,1949,41,35-42[J].
    [71]. Zwaag, S. V. D.; Zhao, L.; Kruijver, S. O., et al., Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steel. ISIJ Int., 2002, 42, 1565-1570.
    [72]. D.Q. Bai; Chiro, A. D.; Yue., S., Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel. Materials Science Forum, 1998, 284-286, 253-260.[J].
    [73]. E.V. Pereloma; Timokhina, I. B.; Hodgson., P. D., Transformation behaviour in thermomechanically processed C-Mn-Si TRIP steels with and without Nb . Mater. Sci. Eng., 1999, A273~275, 448-452[J].
    [74]. K. Sugimoto; N. Usui; ., M. K., Effects of volume fraction and stability of retained austenite on ductility of TRIP-Aided dual-Phase Steels. ISIJ Int., 1992, 32 , 1311-1318[J].
    [75]. K. Sugimoto; T. Iida; Sakaguchi, J., Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel , ISIJ Int., 2000, 40, 902-908.[J].
    [76]. Streicher, A. M.; Speer, J. G.; Matlock, D. K., et al. In Quenching and partitioning response of a Si-added TRIP sheet steel, International Conference on Advanced High Strength Sheet Steels for Automotive Applications - Proceedings[C], Winter Park, CO, 2004; Baker, M. A., Ed. Winter Park, CO, 2004; pp 51-62.
    [77].戎咏华;王晓东,高强度钢的组织设计与控制,第七届全国固态相变及凝固会议论文摘要集,中国金属学会材料科学分会,中国物理学会相图专业委员会,2006,.53-56[J].
    [78]. Speer, J. G.; Streicher, A. M.; Matlock, D. K., et al. In Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures, Materials Science and Technology 2003 Meeting[C], Chicago, IL, 2003; Damm, E. B.; Merwin, M. J., Eds. Chicago, IL, 2003; pp 505-522.
    [79]. Clarke, A.; Speer, J. G.; Matlock, D. K., et al. In Microstructure and carbon partitioning in a 0.19%C-1.59%Mn-1.63%Si trip sheet steel subjected to quenching and partitioning (Q&P), Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 99-108.
    [80]. Speer, J. G., High strength advanced sheet steels for automotive applications: The "tempering and partitioning" process promises high strength and expansion[J]. Promete Alta Resisteacia e Alongamento 2005, 61 (553), 103-105.
    [81]. Speer, J. G.; Rizzo Assuncao, F. C.; Matlock, D. K., et al., The "quenching and partitioning" process: Background and recent progress[J]. Materials Research 2005, 8 (4), 417-423.
    [82]. De Cooman, B. C.; Speer, J. G., Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications[J]. Steel Research International 2006, 77 (9-10), 634-640.
    [83]. Edmonds, D. V.; He, K.; Miller, M. K., et al. In Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4819-4825.
    [84]. Hong, S. C.; Ahn, J. C.; Nam, S. Y., et al., Mechanical properties of high-Si plate steel produced by the quenching and partitioning process[J]. Metals and Materials International 2007, 13 (6), 439-445.
    [85]. Rizzo, F.; Martins, A. R.; Speer, J. G., et al. In Quenching and partitioning of Ni-added high strength steels, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4476-4481.
    [86]. de Moor, E.; Lacroix, S.; Clarke, A. J., et al., Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2008, 39 (11), 2586-2595.
    [87]. Thomas, G. A.; Speer, J. G.; Matlock, D. K., Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production[J]. Iron and Steel Technology 2008, 5 (10), 209-217.
    [88]. DeCooman, B. C.; J. G. Speer, Microstructure -properties relationships in quench and partition(Q&P) steel, implications for automotive anti-instrusion applications, Proc. 3rd Inter. Conf. on Advanced Structural Steels, 2006, Inst. Metals and Materials, Gyeongju, Korea,798-805[J].
    [89]. A. Hultgren, Isothermal transformation of austenite, Trans. ASM., 1947,39,915-1005[J].
    [90]. Speer, J. G.; Matlock, D. K.; DeCooman, B. C., et al., Comments on "On the definitions of paraequilibrium and orthoequilibrium" by M. Hillert and J. Agren, scripta materialia, 50, 697-9 (2004)[J]. Scripta Materialia 2005, 52 (1), 83-85.
    [91]. Hillert, M.; Agren, J., Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scripta Materialia 2005, 52 (1), 87-88.
    [92]. Hillert, M.; Agren, J., On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia 2004, 50 (5), 697-699.
    [93]. Krauss, G., Steels: Heat Treatment and Processing Principles, ASM International, Metals Park, OH, USA, 1990.
    [94]. D.P. Koistinen; Marburger, R. E., Acta metall. 1959,7 , 59-60. .
    [95]. M. Hillert; L. Hoglund; J. Agren, Escape of carbon from ferrite plates in austenite , Acta Metall. Mater, 1993. 41, 1951-1957[J].
    [96]. A. Borgenstam; A. Engstron; L. Hoglund, et al., DICTRA, a tool for simulation of diffusional transformations in alloys , J. Phase Equilib., 2000, 21,269-280[J].
    [97]. Hsu, T. Y.; Xuemin, L., Diffusion of carbon during the formation of low-carbon martensite. Scripta Metall, 1983,17,1285-1288[J].
    [98]. Gladman; D. Dulieu; I. D. McIvor, Microalloying 75, Proceedings, Union Carbide Corporation, New York, 1977, 32-55[J].
    [99].齐俊杰;黄运华;张跃编著,微合金化钢,北京:冶金工业出版社,2006[J].
    [100].科恩, M.,钢的微合金化及控制扎制,北京:冶金工业出版社,1990[J].
    [101].董翰,低合金钢的强化和韧化理论研究,超纯净超细晶合金化高强高韧钢(文集1),钢铁研究总院,北京,1998[J].
    [102].哈宽富,编著,金属力学性质的微观理论,科学出版社,北京,1983[J].
    [103]. S. Morito; H. Yoshida; T. Maki, et al., Effect of block size on the strength of lath martensite in low carbon steels, Mater. Sci. Eng, A, 2006, 438-440, 237-240[J].
    [104]. Grange, R. A., Strengthening steel by austenite grain refinement. Trans. ASM,1966, 59,26-48.
    [105]. Kehoe, M.; Kelly, P. M., The role of carbon in the strength of ferrous martensite[J]. Scripta Metallurgica 1970, 4 (6), 473-476.
    [106]. T. Inoue; S. Matsuda; Y. Okamura, et al., The Fracture of a Low Carbon Tempered Martensite Trans. JIM., 1970, 11,36-43[J].
    [107].惠卫军;董瀚;翁宇庆, 42CrMoVNb细晶高强度钢的力学行为,材料热处理学报, 2005, 26, 57-61
    [108]. Chunfang Wang; Maoqiu Wang; Jie Shi, et al., Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scritpa Mater, 2008, 58,492-495[J].
    [109]. Chunfang Wang; Maoqiu Wang; Jie Sui, et al., Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol,2007,23,659-664 [J].
    [110]. Norstron, Scand J. Metall. 1976, 5, 41-45
    [111]. Hsu, T. Y.; (Xu Zuyao), Effects of Rare Earth Element on Isothermal and Martensitic Transforamtions in Low Carbon Steels, ISIJ. Inter, 1998,38,1153-1164
    [112].徐祖耀,吕伟,王永瑞,稀土对低碳马氏体相变的影响,1995,30, 52-56[J].
    [113]. Krauss., G., Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Trans. B., 2001, 32B,205[J].
    [114]. G. Krauss, Heat treated martensitic steels: microstructural systems for advanced manufacture . ISIJ, Inter., 1995, 35,349.[J].
    [115]. V. K. Chandhok; J. P. Hirsh; E. J. Dulis, Effect of cobalt on carbon activity and diffusivity in steels .Trans. AIME., 1962, 224,858.[J].
    [116]. G. R. Speich; D. S. Dabkowski; L. F. Porter, Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co .Metall. Trans., 1973, 4,303[J].
    [117]. M. Schmidt; Hemphill., R., Innovations in Ultrahigh Strength Steel Technology, Proc. 34th Sagamore Army Materials Research Conf., G. B. Olson, M. Azrin and E. S. Wright eds., U. S. Army Materials Technology Laboratory, Watertown, MA, 1990, 239-260.[J].
    [118]. Y. Sakuma; O. Matsumura; H. Takechi, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn .Metall. Trans. A., 1991, 22A,489[J].
    [119]. V. F. Zackay; E. R. Parker; D. Fahr, et al., The enhancement of ductility in high-strength steels .Trans. ASM., 1967, 60,252.[J].
    [120]. O. Gr?ssel; G. Frommeyer; C. Derder, et al., Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels .J. Phys. IV. France, 1997, 7,383-392.[J].
    [121]. G. Frommeyer; Brux, U.; Neumann., P., Supra-ductile and high-strength manganese- TRIP/TWIP steels for high energy absorption purposes. ISIJ International, Vol. 43, 2003; p 438-446;[J].
    [122].胡赓祥;蔡珣;戎咏华主编,材料科学基础(第二版),上海交通大学出版社,2006[J].
    [1]戎咏华编著,分析电子显微学导论,北京:高等教育出版社,2006,65-67
    [2] TSL公司生产电子背散射衍射分析仪说明书,TSL,30-90
    [3] GB/T 228-2002《金属薄板(带)拉伸试验方法》
    
    [1].徐祖耀,马氏体相变与马氏体,第二版,科学出版社,北京,1999.
    [2].中国机械工程学会热处理专业分会热处理手册编委会;热处理手册.第1卷,工艺基础,机械工业出版社,北京, 2001.
    [3]. Speer, J.; Matlock, D. K.; De Cooman, B. C., et al., Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia 2003, 51 (9), 2611-2622.
    [4]. Speer, J. G.; Streicher, A. M.; Matlock, D. K., et al. In Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures, Materials Science and Technology 2003 Meeting[C], Chicago, IL, 2003; Damm, E. B.; Merwin, M. J., Eds. Chicago, IL, 2003; pp 505-522.
    [5]. De Cooman, B. C.; Speer, J. G., Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications[J]. Steel Research International 2006, 77 (9-10), 634-640.
    [6]. Streicher, A. M.; Speer, J. G.; Matlock, D. K., et al. In Quenching and partitioning response of a Si-added TRIP sheet steel, International Conference on Advanced High Strength Sheet Steels for Automotive Applications - Proceedings[C], Winter Park, CO, 2004; Baker, M. A., Ed. Winter Park, CO, 2004; pp 51-62.
    [7]. Clarke, A.; Speer, J. G.; Matlock, D. K., et al. In Microstructure and carbon partitioning in a 0.19%C-1.59%Mn-1.63%Si trip sheet steel subjected to quenching and partitioning (Q&P), Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 99-108.
    [8]. Speer, J. G., High strength advanced sheet steels for automotive applications: The "tempering and partitioning" process promises high strength and expansion[J]. Acos Avancados de Alta Resistencia Para Aplicacoes Automotivas : O Processo "Tempera e Particao" Promete Alta Resiste?acia e Alongamento 2005, 61 (553), 103-105.
    [9]. Edmonds, D. V.; He, K.; Miller, M. K., et al. In Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4819-4825.
    [10]. Gerdemann, F. L. H.; Speer, J. G.; Matlock, D. K. In Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process, Materials Science and Technology[C], New Orleans, LA, 2004; New Orleans, LA, 2004; pp 439-449.
    [11].Matlock, D. K.; Bra?utigam, V. E.; Speer, J. G. In Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Materials Science Forum[C], Madrid, 2003; Chandra, T.; Torralba, J. M.; Sakai, T., Eds. Madrid, 2003; pp 1089-1094.
    [12]. Rizzo, F. C.; Edmonds, D. V.; He, K., et al. In Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 535-544.
    [13]. Edmonds, D. V.; He, K.; Rizzo, F. C., et al., Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering A 2006, 438-440 (SPEC. ISS.), 25-34.
    [14]. Rizzo, F.; Martins, A. R.; Speer, J. G., et al. In Quenching and partitioning of Ni-added high strength steels, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4476-4481.
    [15].徐祖耀,钢的组织控制与设计(一)[J].上海金属2007, (01).
    [16].徐祖耀,钢热处理的新工艺[J].热处理2007, (01).
    [17].徐祖耀,钢的组织控制与设计(二)[J].上海金属2007, (02).
    [18]. Li, L.; Wollants, P.; He, Y. L., et al., Review and prospect of high strength low alloy TRIP steel[J]. Acta Metallurgica Sinica (English Letters) 2003, 16 (6), 457-465.
    [19]. De Cooman, B. C., Structure-properties relationship in TRIP steels containing carbide-free bainite[J].Current Opinion in Solid State and Materials Science 2004, 8 (3-4), 285-303.
    [20]. Sherif, M. Y.; Mateo, C. G.; Sourmail, T., et al., Stability of retained austenite in TRIP-assisted steels[J]. Materials Science and Technology 2004, 20 (3), 319-322.
    [21]. Olsson, K.; Sperle, J. O., New advanced ultra-high strength steels for the automotive industry[J]. AutoTechnology 2006, 6 (OCT.), 46-49.
    [22]. Tang, D. M., Review of alloying elements and processing of TRIP steels[J]. Journal of Iron and Steel Research 2008, 20 (1), 1-5.
    [23]. J-MatPro.
    [24]. Hillert, M.; A?gren, J., On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia 2004, 50 (5), 697-699.
    [25]. Hillert, M.; A?gren, J., Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scripta Materialia 2005, 52 (1), 87-88.
    [26]. Speer, J. G.; Matlock, D. K.; DeCooman, B. C., et al., Comments on "On the definitions of paraequilibrium and orthoequilibrium" by M. Hillert and J. Agren, scripta materialia, 50, 697-9 (2004)[J]. Scripta Materialia 2005, 52 (1), 83-85.
    [27]. D.P. Koistinen; Marburger, R. E., Acta metall. 1959,7 , 59-60. .
    [28]. Krauss, G., Steels: Heat Treatment and Processing Principles, ASM International, Metals Park, OH, USA, 1990.
    [29]. Wang, X. D.; Huang, B. X.; Wang, L., et al., Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2008, 39 (1), 1-7.
    [30]. Sauveur, A., What is a steel? Another answer[J]. Iron Age. 1924, 113: 581-583.[J].
    [31]. Zackay, V. F.; Parker, E. R.; Fahr, D., et al., The enhancement of ductility on high strength steels [J]. Trans. ASM, 1967, 60: 252-259[J].
    [32]. Zhong, N.; Wang, X.; Rong, Y., et al., Interface migration between martensite and austenite during quenching and partitioning (Q&P) process[J]. Journal of Materials Science and Technology 2006, 22 (6), 751-754.
    [33]. Speer, J. G.; Hackenberg, R. E.; Decooman, B. C., et al., Influence of interface migration during annealing of martensite/austenite mixtures[J]. Philosophical Magazine Letters 2007, 87 (6), 379-382.
    [34]. Clarke, A. J.; Speer, J. G.; Miller, M. K., et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia 2008, 56 (1), 16-22.
    [35]. Kehoe, M.; Kelly, P. M., The role of carbon in the strength of ferrous martensite[J]. Scripta Metallurgica 1970, 4 (6), 473-476.
    [36].齐俊杰;黄运华;张跃编著,微合金化钢,北京:冶金工业出版社,2006[J].
    [37].董翰,低合金钢的强化和韧化理论研究,超纯净超细晶合金化高强高韧钢(文集1),钢铁研究总院,北京,1998[J].
    [38].哈宽富,编著,金属力学性质的微观理论,科学出版社,北京,1983[J].
    [39]. Swarr, T.; Krauss, G., Effect of srtucture on the deformation of as-quenched and tempered martensite in Fe-0. 2 Pct C alloy. Metall Trans A, 1976. 7 A. 41-48.[J].
    [40]. Norstron, Scand J. Metall. 1976, 5, 41-45
    [41]. Speich, G. R., Tempering of low-carbon martensite. Trans Met Soc of AIME, 1969. 245. 2553-2564.[J].
    [42]. G.V.Kurdjumov, Rev.Met.Mem.Soc,1967,64, 99-110.
    [43]. G.V.Kurdjumov, Fiz. .Metal.Metalloved,1967, 24, 909 -17
    [44]. Rao, B. V.; Thomas., G., Transmission Electron Microscopy Characterization of Dislocated "Lath" Martensite, Proc. Inter. Conf.Martensitic Transformations-79, MIT., 1979,.12-16.
    [45]. Thomas, G.; Sarikaya, M., Lath Martensites in Carbon Steels Are They Bainitic? Proc. Inter. Conf. Solid to Solid Phase Transformations, 1981, Ed H. I. Aaronson., D. E. Langhlin, R. E. Sekerkay and C. M. Wayman, TMS-AIME., 1982, 999-1004.
    [46]. Hsu, T. Y.; Xuemin, L., Diffusion of carbon during the formation of low-carbon martensite. Scripta Metall, 1983,17,1285-1288[J].
    [47]. Grange, R. A., Strengthening steel by austenite grain refinement. Trans. ASM,1966, 59,26-48.
    [48]. Morito, S.; Yoshida, H.; Maki, T., et al., Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A 2006, 438-440 (SPEC. ISS.), 237-240.
    [49]. Krauss, G., Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2001, 32 (4), 861-877.
    [50]. Krauss., G., Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Trans. B., 2001, 32B,205[J].
    [51].赵才;江海涛;唐荻,低碳硅-锰系Q&P钢的热处理工艺及实验室研究,金属热处理,2008,33(2):56-59[J].
    [52].张明珠, 20CrMo双相钢力学性能与微观组织关系的研究,一重技术,2001(88)81-83[J].
    [53]. Zhang, M.; Gu, H., Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials , 2008. 15. 125-131.[J].
    [54].王桂民, 20MnVB钢热处理工艺与其组织和性能之间的关系,首钢技术,2006(3)6-11[J].
    [1]. Speer, J. G.; Streicher, A. M.; Matlock, D. K., et al. In Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures, Materials Science and Technology 2003 Meeting[C], Chicago, IL, 2003; Damm, E. B.; Merwin, M. J., Eds. Chicago, IL, 2003; pp 505-522.
    [2]. Gerdemann, F. L. H.; Speer, J. G.; Matlock, D. K. In Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process, Materials Science and Technology[C], New Orleans, LA, 2004; New Orleans, LA, 2004; pp 439-449.
    [3]. Speer, J. G.; Edmonds, D. V.; Rizzo, F. C., et al., Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science 2004, 8 (3-4), 219-237.
    [4]. Streicher, A. M.; Speer, J. G.; Matlock, D. K., et al. In Quenching and partitioning response of a Si-added TRIP sheet steel, International Conference on Advanced High Strength Sheet Steels for Automotive Applications - Proceedings[C], Winter Park, CO, 2004; Baker, M. A., Ed. Winter Park, CO, 2004; pp 51-62.
    [5]. Clarke, A.; Speer, J. G.; Matlock, D. K., et al. In Microstructure and carbon partitioning in a 0.19%C-1.59%Mn-1.63%Si trip sheet steel subjected to quenching and partitioning (Q&P), Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 99-108.
    [6]. Matlock, D. K.; Brautigam, V. E.; Speer, J. G. In Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Materials Science Forum[C], Madrid, 2003; Chandra, T.; Torralba, J. M.; Sakai, T., Eds. Madrid, 2003; pp 1089-1094.
    [7]. Rizzo, F. C.; Edmonds, D. V.; He, K., et al. In Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 535-544.
    [8]. Speer, J. G., High strength advanced sheet steels for automotive applications: The "tempering and partitioning" process promises high strength and expansion[J]. Promete Alta Resisteacia e Alongamento 2005, 61 (553), 103-105.
    [9]. Speer, J. G.; Rizzo Assuncao, F. C.; Matlock, D. K., et al., The "quenching and partitioning" process: Background and recent progress[J]. Materials Research 2005, 8 (4), 417-423.
    [10]. De Cooman, B. C.; Speer, J. G., Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications[J]. Steel Research International 2006, 77 (9-10), 634-640.
    [11]. Edmonds, D. V.; He, K.; Rizzo, F. C., et al., Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering A 2006, 438-440 (SPEC. ISS.), 25-34.
    [12]. Edmonds D V; He K; Rizzo F C, et al., Microstructural features of a new martensitic steel heat treatment: quenching and partitioning. In: 1st Int. Conf. on Super High Strength Steels, Rome, 2005, 1-20.
    [13]. Edmonds, D. V.; He, K.; Miller, M. K., et al. In Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4819-4825.
    [14]. Rizzo, F.; Martins, A. R.; Speer, J. G., et al. In Quenching and partitioning of Ni-added high strength steels, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4476-4481.
    [15]. Gladman; D. Dulieu; I. D. McIvor, Microalloying 75, Proceedings, Union Carbide Corporation, New York, 1977, 32-55[J].
    [16]. Gladman, T., The physical metallurgy of microalloyed steels, London, The Institute of Materials. 1997[J].
    [17].董翰,低合金钢的强化和韧化理论研究,超纯净超细晶合金化高强高韧钢(文集1),钢铁研究总院,北京,1998[J].
    [18]. Sha, W.; Cerezo, A.; Smith, G. D. W., Phase chemistry and precipitation reactions in maraging steels: Part II. Co-free T-300 steel[J]. Metallurgical Transactions A 1993, 24 (6), 1233-1239.
    [19]. Lee, H. M.; Sohn, H.; Yoo, C. H., Isothermal M2C carbide growth in ultrahigh strength high Co-Ni steels[J]. Scripta Materialia 1997, 37 (12), 1931-1937.
    [20]. Qian, C.; Duan, Z.; Geng, P., et al., Effect of Alloying Elements on the Phase Transformation for Secondary-Hardening Martensite Steels Enriched Co and Ni[J]. Journal of Iron and Steel Research International 1999, 11 (6), 25-29.
    [21]. Yoo, C. H.; Lee, H. M.; Chan, J. W., et al., M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 1996, 27 (11), 3466-3472.
    [22]. Yang, H. R.; Lee, K. B.; Kwon, H., Effects of Ni additions and austenitizing temperature on secondary hardening behavior in high Co-Ni steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2001, 32 (9), 2393-2396.
    [23].齐俊杰;黄运华;张跃编著,微合金化钢,北京:冶金工业出版社,2006[J].
    [24]. Chunfang Wang; Maoqiu Wang; Jie Shi, et al., Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scritpa Mater, 2008, 58,492-495[J].
    [25]. Chunfang Wang; Maoqiu Wang; Jie Sui, et al., Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol,2007,23,659-664 [J].
    [26]. Grange, R. A., Strengthening steel by austenite grain refinement. Trans. ASM,1966, 59,26-48.
    [27]. S. Morito; H. Yoshida; T. Maki, et al., Effect of block size on the strength of lath martensite in low carbon steels, Mater. Sci. Eng, A, 2006, 438-440, 237-240[J].
    [28].惠卫军;董瀚;翁宇庆42CrMoVNb细晶高强度钢的力学行为,材料热处理学报, 2005, 26, 57-61
    [29]. Kehoe, M.; Kelly, P. M., The role of carbon in the strength of ferrous martensite[J]. Scripta Metallurgica 1970, 4 (6), 473-476.
    [30].胡赓祥;蔡珣;戎咏华主编,材料科学基础(第二版),上海交通大学出版社,2006[J].
    [31]. E.V. Pereloma; Timokhina, I. B.; Hodgson., P. D., Transformation behaviour in thermomechanically processed C-Mn-Si TRIP steels with and without Nb . Mater. Sci. Eng., 1999, A273~275, 448-452[J].
    [32].M. Bouet; J. Root; Yue., S., The effect of Mo in Si-Mn Nb bearing TRIP steels, Materials. Science. Forum, 1998, 284-286, 319-326[J].
    [33]. H.L. Andrade; M.G.Akben; J.J.Jonas., Effect of molybdenum, niobium and vanadium on static recovery and recrystallization and strengthening in microalloyed steels, Metall. Trans,1983,14A, 1967-1977[J].
    [34]. K. Miyata; T. Omura; al., T. K. e., Corsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels, Metall. Mater. Trans, 2003, 34A, 1565-1573.[J].
    [35]. D.P. Koistinen; Marburger, R. E., Acta metall. 1959,7 , 59-60. .
    [36]. Krauss, G., Steels: Heat Treatment and Processing Principles, ASM International, Metals Park, OH, USA, 1990.[J].
    [37]. Wang, X. D.; Huang, B. X.; Wang, L., et al., Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2008, 39 (1), 1-7.
    [38]. Hsu, T. Y.; L. Xuemin, Diffusion of carbon during the formation of low-carbon martensite. ScriptaMetall, 1983,17,1285-1288.[J].
    [39]. Clarke, A. J.; Speer, J. G.; Miller, M. K., et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia 2008, 56 (1), 16-22.
    [40]. de Moor, E.; Lacroix, S.; Clarke, A. J., et al., Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2008, 39 (11), 2586-2595.
    [41]. Clarke A , Carbon partitioning into austenite from martensite in a silicon-containing high-strength sheet steel. Ph.D. Thesis. Golden, CO: Colorado School of Mines, 2006.[J].
    [42]. Gerdemann, F. L. H., Microstructure and hardness of 9260 steel heat-treated by the quenching and partitioning process, Diploma Thesis, Aachen University of Technology, Germany, 2004.
    [43]. Jingsheng, Y.; Zongsen, Y.; Chengjian, W., RARE EARTHS AND THE MECHANICAL PROPERTIES OF STEEL[J]. Journal of Metals 1988, 40 (5), 26-31.
    [44]. Fujimura, K.; Mori, T.; Higashi, T., et al., Effects of niobium and sulfur on the activity of carbon in high liquid steel steel and relations between interaction parameters and carbon potential[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 1973, 59 (2), 222-230.
    [45]. Shohoji, N., M-C dipole formation in fcc (face centred cubic) Fe1-yM yCx solid solution (M = Ti,Nb)[J]. Materials Science and Technology 2004, 20 (3), 301-306.
    [46]. Kurdjumov, G. V.; Sachs:, G., Over the mechanisms of steel. hardening. Z. Phys. 64, 1930,325 -343[J].
    [47].徐祖耀;吕伟;王永瑞,稀土对低碳马氏体相变的影响,1995,30, 52-56[J].
    [48]. Bailey, J. E.; Hirsch, P. B., The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver , Phil. Mag 4 (1960), 485-497 [J].
    [49].徐祖耀,马氏体相变与马氏体,第二版,科学出版社,北京,1999.
    [50]. Hsu, T. Y.; (Xu Zuyao), Effects of Rare Earth Element on Isothermal and Martensitic Transforamtions in Low Carbon Steels, ISIJ. Inter, 1998,38,1153-1164
    [51]. NORSTRON, Scand J. Metall. 1976, 5, 41-45
    [52]. Ashby, M. F., Proceedings of Second Bolton Landing Conference on Oxide Dispersion Strengthening Gordon and Breach New York (1968): 143.
    [53].哈宽富,编著,金属力学性质的微观理论,科学出版社,北京,1983[J].
    [54]. Zhong, N.; Wang, X.; Rong, Y., et al., Interface migration between martensite and austenite during quenching and partitioning (Q&P) process[J]. Journal of Materials Science and Technology 2006, 22 (6), 751-754.
    [55]. Speer, J. G.; Hackenberg, R. E.; Decooman, B. C., et al., Influence of interface migration during annealing of martensite/austenite mixtures[J]. Philosophical Magazine Letters 2007, 87 (6), 379-382.
    [56]. Krauss, G., Steels: Heat Treatment and Processing Principles, ASM International, Metals Park, OH, USA, 1990.
    [57]. Krauss., G., Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Trans. B., 2001, 32B,205[J].
    [58]. Swarr, T.; Krauss, G., Effect of structure on the deformation of as-quenched and tempered martensite in AN Fe-0. 2 Pct C alloy. Metall Trans A, 1976. 7 A. 41-48.[J].
    [59]. Zhang, M.; Gu, H., Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials , 2008. 15. 125-131.[J].
    [60]. Hashimoto, S., Effects of Nb and Mo addition to 0.2%C-1.5%Si-1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets. ISIJ International, 2004. 44, 1590-1598[J].
    [61]. Zhong, N.; Wang, X. D.; Huang, B. X., Microstructures and Mechanical Property of Quenched and Partitioned Fe-C-Mn-Si Steel. Proceedings of ICASS 2006, 885-891[J].
    [62]. Ostwald, W., Z. Phys. Chem. 37 (1901) 385.
    [63]. Baldan, A., Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories,Journal of Materials Science,2002(37) 2171– 2202[J].
    [64]. Ayer, R.; Machmeier, P. M., Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metallurgical Transactions A 1993, 24 (9), 1943-1955.
    [65]. Li, Z.; Zhao, Z. Y., Research and development of AerMet100 steel[J]. Hangkong Cailiao Xuebao/Journal of Aeronautical Materials 2006, 26 (3), 265-270.
    [66]. Li, J.; Guo, F.; Li, Z., et al., Influence of Sizes of Inclusions and Voids on Fracture Toughness of Ultra-High Strength Steel AerMet100[J]. Journal of Iron and Steel Research International 2007, 14 (5 SUPPL. 1), 254-258.
    [67]. Ayer, R.; Machmeier, P., On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 1998, 29 A (3), 903-905.
    [68]. M. Schmidt; Hemphill., R., Innovations in Ultrahigh Strength Steel Technology, Proc. 34th Sagamore Army Materials Research Conf., G. B. Olson, M. Azrin and E. S. Wright eds., U. S. Army Materials Technology Laboratory, Watertown, MA, 1990, 239-260.[J].
    [69]. Akbarpour, M. R.; Ekrami, A., Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels,Materials Science and Engineering A 477 (2008) 306-310
    [70]. Davies, R. G., Influence of Martensite Composition and Content on the Properties of Dual Phase Steels, METALLURGICAL TRANSACTIONS A, 1978 (9), 671-679[J].
    [71].范长刚;董瀚;时捷, 2200MPa级超高强度低合金钢的组织和力学性能[J].兵器材料科学与工程2006, (02).
    [72].范长刚;董瀚;时捷,镍含量对2200 MPa级超高强度钢力学性能的影响[J].金属热处理2007, (02).
    [73].范长刚;董瀚;时捷,淬火温度及残余奥氏体对2200MPa级超高强度钢力学性能的影响[J].热加工工艺(热处理版) 2006, (07).
    [74].范长刚;董瀚;雍岐龙,低合金超高强度钢的研究进展[J].机械工程材料2006, (08).
    [75]. Bhadeshia, H. K. D. H., 52nd Hatfleld Memorial Lecture large chunks of very strong steel[J]. Materials Science and Technology 2005, 21 (11), 1293-1302.
    [76]. Caballero, F. G.; Bhadeshia, H. K. D. H., Very strong bainite[J]. Current Opinion in Solid State and Materials Science 2004, 8 (3-4), 251-257.
    [77]. Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A., et al., Very strong low temperature bainite[J]. Materials Science and Technology 2002, 18 (3), 279-284.
    [78]. Mintz, B., Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels[J]. International Materials Reviews 2001, 46 (4), 169-197.
    [79]. Senuma, T., Physical metallurgy of modern high strength steel sheets[J]. ISIJ International 2001, 41 (6), 520-532.
    [80]. Heller, T.; Nuss, A., Effect of alloying elements on microstructure and mechanical properties of hot rolled multiphase steels[J]. Ironmaking and Steelmaking 2005, 32 (4), 303-308.
    [81]. Klueh, R. L., Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. International Materials Reviews 2005, 50 (5), 287-310.
    [1]. Edmonds, D. V.; He, K.; Miller, M. K., et al. In Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment, Materials Science Forum[C], Vancouver, 2007;Vancouver, 2007; pp 4819-4825.
    [2]. Speer, J. G., High strength advanced sheet steels for automotive applications: The "tempering and partitioning" process promises high strength and expansion[J]. Promete Alta Resisteacia e Alongamento 2005, 61 (553), 103-105.
    [3]. Zhong, N.; Wang, X. D.; Huang, B. X., Microstructures and Mechanical Property of Quenched and Partitioned Fe-C-Mn-Si Steel. Proceedings of ICASS 2006, , 885-891[J].
    [4]. Speer, J. G.; Rizzo Assunc?a?o, F. C.; Matlock, D. K., et al., The "quenching and partitioning" process: Background and recent progress[J]. Materials Research 2005, 8 (4), 417-423.
    [5]. Edmonds, D. V.; He, K.; Rizzo, F. C., et al., Quenching and partitioning martensite-A novel steel heat treatment[J]. Materials Science and Engineering A 2006, 438-440 (SPEC. ISS.), 25-34.
    [6]. Rizzo, F.; Martins, A. R.; Speer, J. G., et al. In Quenching and partitioning of Ni-added high strength steels, Materials Science Forum[C], Vancouver, 2007; Vancouver, 2007; pp 4476-4481.
    [7]. de Moor, E.; Lacroix, S.; Clarke, A. J., et al., Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2008, 39 (11), 2586-2595.
    [8]. Thomas, G. A.; Speer, J. G.; Matlock, D. K., Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production[J]. Iron and Steel Technology 2008, 5 (10), 209-217.
    [9]. Wang, X. D.; Zhong, N.; Rong, Y. H., et al., Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process, Journal of Materials Research, 2009, 24:260-267[J].
    [10]. Matlock, D. K.; Bra?utigam, V. E.; Speer, J. G. In Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Materials Science Forum[C], Madrid, 2003; Chandra, T.; Torralba, J. M.; Sakai, T., Eds. Madrid, 2003; pp 1089-1094.
    [11]. Speer, J.; Matlock, D. K.; De Cooman, B. C., et al., Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia 2003, 51 (9), 2611-2622.
    [12]. Cohen, M., Transaction of Americain Society for Metals,1949,41,35-42[J].
    [13]. Holloman J H, Journal of Applied Physics,1947,18, 1421-1425.
    [14].Krauss, G., Steels: Heat Treatment and Processing Principles, ASM International,Metals Park, OH, USA, 1990.[J].
    [15]. Speer, J. G.; Edmonds, D. V.; Rizzo, F. C., et al., Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science 2004, 8 (3-4), 219-237.
    [16]. Clarke, A. J.; Speer, J. G.; Miller, M. K., et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia 2008, 56 (1), 16-22.
    [17]. Zhong, N.; Wang, X.; Rong, Y., et al., Interface migration between martensite and austenite during quenching and partitioning (Q&P) process[J]. Journal of Materials Science and Technology 2006, 22 (6), 751-754.
    [18]. Bhadeshia, H. K. D. H. In BAINITE: MOBILITY OF THE TRANSFORMATION INTERFACE, Journal de Physique (Paris), Colloque[C], Louvain-La-Neuve, Belg, 1982; Louvain-La-Neuve, Belg, 1982.
    [19]. Krielaart, G. P.; Van Der Zwaag, S., Kinetics of |??ú|? phase transformation in Fe-Mn alloys containing low manganese[J]. Materials Science and Technology 1998, 14 (1), 10-18.
    [20]. Olson, G. B.; Bhadeshia, H. K. D. H.; Cohen, M., Coupled diffusional/displacive transformations.Part II. Solute trapping[J]. Metallurgical transactions. A, Physical metallurgy and materials science 1990, 21 A (4), 805-809.
    [21]. Olson, G. B.; Bhadeshia, H. K. D. H.; Cohen, M., Coupled diffusional/displacive transformations: Part II. Solute trapping[J]. Metallurgical Transactions A 1990, 21 (3), 805-809.
    [22]. Onink, M.; Tichelaar, F. D.; Brakman, C. M., et al., An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites[J]. Journal of Materials Science 1995, 30 (24), 6223-6234.
    [23]. Ricks, R. A.; Howell, P. R., Precipitation on growth ledges of planar, low energy interphase boundaries in Fe-C-X alloys[J]. Journal of Materials Science 1983, 18 (11), 3393-3398.
    [24]. Simonen, E. P.; Aaronson, H. I.; Trivedi, R., Lengthening kinetics of ferrite and bainite sideplates[J]. Metallurgical Transactions 1973, 4 (5), 1239-1245.
    [25]. Togashi, F.; Nishizawa, T., Effect of alloying elements on the mobility of ferrite/austenite interface [J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals 1976, 40 (1), 12-21.
    [26]. Zi-Kui, L.; A?gren, J., On the transition from local equilibrium to paraequilibrium during the growth of ferrite in Fe-Mn-C austenite[J]. Acta Metallurgica 1989, 37 (12), 3157-3163.
    [27]. Hillert, M., Diffusion and interface control of reactions in alloys[J]. Metallurgical Transactions A 1975, 6 (1), 5-19.
    [28]. Krielaart, G. P.; Van Der Zwaag, S., Kinetics ofγ→a phase transformation in Fe-Mn alloys containing low manganese[J]. Materials Science and Technology 1998, 14 (1), 10-18.
    [29]. Wits, J. J.; Kop, T. A.; Van Leeuwen, Y., et al., A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys[J]. Materials Science and Engineering A 2000, 283 (1-2), 234-241.
    [30]. Vooijs, S. I.; Van Leeuwen, Y.; Sietsma, J., et al., On the mobility of the austenite-ferrite interface in Fe-Co and Fe-Cu[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2000, 31 (2), 379-385.
    [31].徐祖耀,马氏体相变与马氏体,第二版,科学出版社,北京,1999.
    [32]. Rizzo, F. C.; Edmonds, D. V.; He, K., et al. In Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005[C], Phoenix, AZ, 2005; Howe, J. M.; Laughlin, D. E.; Lee, J. K., et al., Eds. Phoenix, AZ, 2005; pp 535-544.
    [33]. Hillert, M.; Agren, J., On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia 2004, 50 (5), 697-699.
    [34]. Hillert, M.; Agren, J., Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scripta Materialia 2005, 52 (1), 87-88.
    [35]. M. Hillert; L. Hoglund; J. Agren, Escape of carbon from ferrite plates in austenite , Acta Metall. Mater, 1993. 41, 1951-1957[J].
    [36]. A. Borgenstam; A. Engstron; L. Hoglund, et al., DICTRA, a tool for simulation of diffusional transformations in alloys , J. Phase Equilib., 2000, 21,269-280[J].
    [37]. Speer, J. G.; Hackenberg, R. E.; Decooman, B. C., et al., Influence of interface migration during annealing of martensite/austenite mixtures[J]. Philosophical Magazine Letters 2007, 87 (6), 379-382.
    [38]. Ban-ya, S.; Elliott, J. F.; Chipman, J., Thermodynamics of austenitic Fe-C alloys[J]. Metallurgical and Materials Transactions 1970, 1 (5), 1313-1320.
    [39]. Chipman, J., Thermodynamics and phase diagram of the Fe-C system[J]. Metallurgical Transactions 1972, 3 (1), 55-64.
    [40]. Lobo, J. A.; Geiger, G. H., Thermodynamic and solubility of carbon in ferrite and ferritic Fe-Mo alloys[J]. Metall Trans A 1976, 7 A (9), 1347-1357.
    [41]. Kurdjumov, G. V.; Sachs:, G., Over the mechanisms of steel. hardening. Z. Phys. 64, 1930,325 -343[J].
    [42]. Nishiyama. Z, Martensitic transformation. In: Fine M, Meshii M, Wayman C, editors. Materials science and technology, 2nd edition: Academic Press, 1978. [J].
    [43]. Mahon, G. J.; Howe, J. M.; Mahajan, S., HRTEM study of the {252}gamma austenite-martensite interface in an Fe-8Cr-1C alloy[J]. Philosophical Magazine Letters 1989, 59 (6), 273-279.
    [44]. Moritani, T.; Miyajima, N.; Furuhara, T., et al., Comparison of interphase boundary structure between bainite and martensite in steel[J]. Scripta Materialia 2002, 47 (3), 193-199.
    [45]. M. Hillert, Diffusion and interface control of reactions in alloys, Metall. Trans. 6A (1975) 5-19.[J].
    [46]. Orr R L, Chipman J., Trans Metall Soc AIME, 1967; 239: 630[J].
    [47]. Kaufman L, Clougherty E X,Weiss R J, Acta Metall, 1963,11: 323 [J].
    [48]. Mogutnov, B. M.; A, T. I.; A, S. L., Thermodynamics of Iron--Carbon Alloys [in Russian], Metallurgiya, Moscow (1972).[J].
    [49].徐祖耀;张鸿冰;罗守福, Fe-C合金Ms的热力学计算及马氏体相变驱动力,金属学报,1984,6:151-161[J].
    [50]. B, F. F. M.; S, D.; A, S., Mathematical model coupling phase transformation and temperature evolution during quenching of steels, Materials Science and Technology, 1985, 1, 838~841
    [51]. S, D.; E, G.; A, S., et al., Stress-phase transformation interactions basic principles, modeling , and calculation of internal stresses, Materials Science and Technology, 1985, 1,806~814
    [52].潘健生;张伟民;袁文庆,影响热处理计算机模拟精度的若干问题的探讨,中国热处理学会,首届中国热处理活动周论文集,大连,2002
    [53]. Bhadeshia, H. K. D. H., Driving force for martensitic transformation in steels. Metal Science (1981) 15: 175-177
    [54]. Svoboda, J.; Fischer, F. D.; Fratzl, P., et al., Kinetics of interfaces during diffusional transformations[J]. Acta Materialia 2001, 49 (7), 1249-1259.
    [55]. Crank, J., The Mathematics of Diffusion (2n ed.), Oxford Science Publications (1975) 137-159.
    [56]. Santofimia, M. J.; Zhao, L.; Sietsma, J., Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels[J]. Scripta Materialia 2008, 59 (2), 159-162.
    [57]. Gerdemann, F. L. H.; Speer, J. G.; Matlock, D. K. In Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process, Materials Science and Technology[C], New Orleans, LA, 2004; New Orleans, LA, 2004; pp 439-449.
    [58]. Hillert, M.; Sundman, B., A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys[J]. Acta Metallurgica 1976, 24 (8), 731-743.
    [59]. Enomoto, M., Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Materialia 1999, 47 (13), 3533-3540.
    [60]. Gamsjag?er, E.; Svoboda, J.; Fischer, F. D., Solute drag or diffusion processes in a migrating thick interface[J]. Philosophical Magazine Letters 2008, 88 (6), 415-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700