苛刻条件下的水基泡沫稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水基泡沫不仅在许多传统领域(如矿物浮选,洗涤,三次采油等)中应用广泛,近年来在其它领域(如光电阻隔,红外消光,电磁干扰屏蔽,爆炸缓解以及作为纳米材料的合成模板等)中也有重要的应用,其重大的应用前景使相关理论的研究和技术开发备受重视。伴随着与泡沫相关的新技术的产生和发展,如何开发满足越来越苛刻的实际应用条件要求的泡沫体系,已经成为亟待解决的难题。比如泡沫应用于极端苛刻条件油藏来提高采收率,为高温高盐油藏、稠油油藏、低渗透油藏等难动用油藏的有效开发揭示了良好前景。另外,当前采用烟道气捕集二氧化碳以及使用捕集后剩余复合气体作为驱油泡沫的发泡气体,由于其在节能减排保护环境方面的重要意义引人瞩目。在这些应用技术中,高温高盐、油相存在以及复合气体作为发泡气体,都是对泡沫性能具有重大挑战的苛刻条件,本文通过分别考察在上述苛刻条件下的泡沫性能,并探究相关机理,取得的理论认识用于指导应用体系的开发和工艺改进,为泡沫的有效应用奠定基础。
     本论文主要分为四个部分:
     第一部分为高温高盐条件下表面活性剂稳定的水基泡沫稳定性及机理研究。采用泡沫衰减法测定泡沫半衰期,对比了高温情况下不同表面活性剂溶液产生的泡沫其稳定性受盐度的影响。实验结果表明,一种极性基间柔性连接的双亲水基表面活性剂脂肪醇聚氧乙烯醚硫酸钠AES,在镁离子存在下形成的泡沫具有超高稳定性,远远高于其他表面活性剂。采用平面液膜稳定性、红外光谱等实验研究与分子模拟相结合的方法,以十二烷基硫酸钠SDS为对比体系,深入探讨了钙镁离子对表面活性剂分子界面行为及泡沫液膜稳定性的影响,给出了镁离子存在下AES超稳泡沫的机理,指出了一条高温高盐条件下取得超高泡沫稳定性的新技术途径。
     第二部分中,考察了高温高盐条件下表面活性剂复配体系的泡沫稳定性,通过探讨高盐情况下泡沫稳定性受温度的影响规律,得到了在超高矿化度条件下具有良好泡沫稳定性的体系,并采用分子模拟方法研究了高盐条件下复配表面活性剂在气液界面的相互作用机理,提出了采用表面活性剂复配协同优化泡沫稳定性的微观规律。
     第三部分主要研究油相对发泡能力和泡沫稳定性的影响。考察了原油以及其他油相的消泡能力,利用自行设计的微流控装置考察乳状液滴与泡沫气泡的相互作用,并采用分子模拟探讨表面活性剂在油水和气液界面的吸附排布行为,通过实验和分子模拟结果相结合的方法,提出了油相的消泡机制,并探讨了低张力泡沫用于驱油的可行性。
     论文最后一部分研究了不同发泡气体对泡沫稳定性的影响,并探讨了相关机理。主要涉及的气体为氮气、二氧化碳气体以及工厂烟道废气在碳捕集后产生的复合气体。通过对比不同气体为发泡气体的情况下泡沫的生成能力、泡沫稳定性的变化,给出了工厂废气作为发泡气体用于油田驱油的可能性。
Theoretical research and technology development about foam have attracted a lot attention for their important potential application, because aqueous foam has got successful utilization, not only in traditional regions, such as mineral floatation, detergent, and enhanced oil recovery, but also in many other advance fields recently, such as photoelectric barrier, infrared extinction or electromagnetic interference shielding, blast mitigation, and being used as soft bionic template for controllable synthesis of functional nanoparticles, etc. With the generation and quick development of the new technologies of foam, it has been imminent and urgent to develop the preferable foam systems meeting the requirement of more and more harsh conditions in the practical applications. For example, foam flooding can be applied to the reservoir with harsh conditions in enhance oil recovery, which provides promising prospects for the effective development of the high temperature and salinity reservoirs, heavy oil reservoirs and low permeability reservoirs, where crude oil is hard to be displaced. Besides, the using of carbon dioxide (CO2)and complex gases gotten from the flue gas as the foaming gas has been paid much attention, as it is very valuable because of its energy conservation and emissions reduction. However, the poor foam stability under harsh conditions, such as high temperature, high salinity, the existence of crude oil and using CO2as the foaming gas, has always been a problem.
     In this paper, foam stability under harsh conditions (high salinity, high temperature, the existence of oil and CO2being the foaming gas) was discussed and the mechanisms were studied to guide the development of application system and improve the process.
     This paper is divided into four parts:
     In the first part, the stability of foam stabilized by single surfactant at high salinity and high temperature was investigated. And the ultra stable aqueous foam stabilized by a kind of flexible connecting bipolar-headed surfactant alkyl polyoxyethylene sulfate (AE3S) with Mg2+coexisting was reported. Detailed molecular behavior of AE3S in foam film with divalent cationic Ca2+or Mg2+coexisting was investigated by molecular dynamic simulation, foam lamella stability evaluation and Infrared spectroscopy, comparing with traditional surfactant sodium dodecyl sulfate SDS, for the purpose of finding out how the micro character and array behavior of molecules in the foam film determined by molecular interaction effect the formation of Newton black film (NBF), and revealing the key mechanism maintaining ultra high foam film stability.
     The second part focuses on the mixed surfactants under various temperature and salinity. Optimized foam formulations for different application conditions were gotten. Mechanism of the enhanced foam stability by the synergism of AES and DSB was studied by molecular dynamics simulation, and the microscopic law to optimize foam stability by the surfactant synergism was proposed.
     In the third part, defoaming and antifoaming behaviors of the crude oil and several other kinds of oil were investigated. Microfiuidic device was designed to study the interaction between foam bubbles and emulsified oil droplets. Defoam and antifoam mechanisms were investigated by combining results of experimental and molecular dynamics simulation methods. And the feasibility of the application of low tension foam flooding on the oil displacement was discussed.
     Finally, the influences of foaming gas (nitrogen, composite gas and carbon dioxide) on the foamability and foam stability have been studied. The reasons for the instability of CO2foam were studied, and relatively stable CO2foam stabilized by SDS was found. Effluences of salinity, pH and surfactant concentration on CO? foam stability were studied. And the application probability of flue gas on the oil displacement was discussed.
引文
[1]Plateau, J: Statique experimentale et Theprique Des Liquidcs Soumis Aux Seules Forces Moleculaires, T. Gauthier Villars, Paris, 1873,1 (5): 93-4, 312-3; 1(6), 386.
    [2]张鹏,泡沫流体稳定性及泡沫在多孔介质中的行为和性能研究,山东大硕士学位论文,2005。
    [3]Pugh, R. J. Experimental Techniques for Studying the Structure of Foams and Froths. Adv. Colloid Interface Sci. 2005, 114-115, 239-251.
    [4]Evers, L. J.; Shulepov, S. Y.; Frens, G. Rupture of Thin Liquid Films from Newtonian and Viscoelastic Liquids. Faraday Discuss. 1996, 104, 335-344.
    [5]Stoyanov, S. D.; Paunov,V. N.; Basheva, E. S.; Ivanov, B.; Mehretcab, A.; Broze, G. Motion of the Front between Thick and Thin Film: Hydrodynamic Theory and Experiment with Vertical Foam Films. Langmuir 1997, 13, 1400-1407.
    [6]Golemanov, K.; Denkov, N. D.; Tcholakova, S.; Vethamuthu, M.; Lips, A. Surfactant Mixtures for Control of Bubble Surface Mobility in Foam Studies. Langmuir 2008, 24, 9956-9961.
    [7]Tan, S. N.; Yang, Y.; Morn, R. G. Thinning of a Vertical Free-Draining Aqueous Film Incorporating Colloidal Particles. Langmuir 2010, 26, 63-73.
    [8]Koelsch, P.; Motschmann, H. Relating Foam Lamella Stability and Surface Dilational Rheology. Langmuir 2005, 21, 6265-6269.
    [9]Gilanyi, T.; Stergiopulos, C.; Wolfram. Equilibrium Surface Tension of Aqueous Surfactant Solutions. E. Colloid Polym. Sci. 1976, 254, 1018-1023.
    [10]Jordanova, A.; Tenchov, B.; Lalchev, Z. Effects of the Interaction and Surface Morphology of Mixed DPoPE/Poloxamer 188 Monolayers and Thin Liquid Films. Soft Matter 2011, 7, 7003-7012.
    [11]Scheludko, A. Thin Liquid Films. Adv. Colloid Interface Sci. 1967, 1, 391-464.
    [12]Exerowa, D.; Kruglyakov, P. M. Foam and Foam Films: Theory, Experiment and Application; Elsevier: Amsterdam, 1998, 796.
    [13]Schelero, N.; Hedicke, G.; Linse, P.; Klitzing, R. v. Effects of Counterions and Co-ions on Foam Films Stabilized by Anionic Dodecyl Sulfate. J. Phys. Chem. B 2010,114,15523-15529.
    [14]Muruganathan, R. M; Krustev, R.; Muller, H. J.; Mohwald, H. Foam Films Stabilized by Dodecyl Maltoside.1. Film Thickness and Free Energy of Film Formation. Langmuir 2004,20,6352-6358.
    [15]Muruganathan, R. M.; Krustev, R.; Muller, H. J.; Mohwald, H. Foam Films Stabilized with Dodecyl Maltoside.2. Film Stability and Gas Permeability. Langmuir 2006,22,7981-7985.
    [16]Faraudo, J.; Bresme, F. Anomalous Dielectric Behavior of Water in Ionic Newton Black Films. Phys. Rev. Lett.2004,92,236102 (1-4).
    [17]Derjaguin, B. V.; Churaev, N. V. Fluid Interfacial Phenomena. Phys. Scr.1986, 15,663-738.
    [18]Israelachvili, J.; Wennerstrom, H. Role of Hydration and Water Structure in Biological and Colloidal Interactions. Nature 1996,379,219-225.
    [19]Valle-Delgado, J. J.; Molina-Bolivar, J. A.; Galisteo-Gonzalez, F.; Galvez-Ruiz, M. J. Evidence of Hydration Forces between Proteins. Curr. Opin. Colloid Interface Sci. 2011,16,572-578.
    [20]Demea, B.; Zemb, T. Hydration Gorces between Bilayers in the Presence of Dissolved or Surface-Linked Sugars. Curr. Opin. Colloid Interface Sci.2011, 16,584-591.
    [21]Petsev, D. N.; Vekilov, P. G. Evidence for Non-DLVO Hydration Interactions in Solutions of the Protein Apoferritin. Phys Rev Lett.2000,84,1339-1342.
    [22]Petsev, D. N.; Thomas, B. R.; Yau, S. T.; Vekilov, P. G. Interactions and Aggregation of Apoferritin Molecules in Solution:Effects of Added Electrolytes. Biophys J.2000,78,2060-2069.
    [23]Valle-Delgado, J. J.; Molina-Bolivar, J. A.; Galisteo-Gonzalez, F.; Galvez-Ruiz, M. J.; Feiler, A.; Rutland, M. W. Existence of Hydration Forces in the Interaction between Apoferritin Molecules Adsorbed on Silica Surfaces. Langmuir 2005,21,9544-9554.
    [24]Marcelja, S. Hydration Forces near Charged Interfaces in Terms of Effective Ion Potentials. Curr. Opin. Colloid Interface Sci.2011,16,579-583.
    [25]Bresme, F.; Faraudo, J. Computer Simulation Studies of Newton Black Films. Langmuir 2004,20,5127-5137.
    [26]Stanley, C.; Rau, D. C. Evidence for Water Structuring Forces between Surfaces. Curr. Opin. Colloid Interface Sci.2011,16,551-556.
    [27]Faraudo, J.; Fernando Bresme, F. Origin of the Short-Range, Strong Repulsive Force between Ionic Surfactant Layers. Phys. Rev. Lett.2005,94,077802(1-4).
    [28]Koehler, S. A.; Hilgenfeldt, S.; Stone, Generalized, H. A. A. View of Foam Drainage:Experiment and Theory. Langmuir 2000,16,6327-6341.
    [29]Bhattacharyya, A.; Monroy, F.; Langevin, D.; Argillier, J. F. Surface Rheology and Foam Stability of Mixed Surfactant-Polyelectrolyte Solutions. Langmuir 2000,16,8727-8732.
    [30]Teng, H.; Wang, F.; Sun, M.; Zhang, S. Acta Chimica Sinca 2005,63, 1570-1574.
    [31]Cecilia Leal, C.; Elham Moniri, E.; Luis Pegado. L.; Wennerstro 1 m, P. B.J. Chan. Phys.2007,111,5999-6005.
    [32]Shao, Q.; He, Y.; Jiang, S. Molecular Dynamics Simulation Study of Ion Interactions with Zwitterions, J. Phys.Chem.52011,115,8358-8363.
    [33]Schelero, N.; Hedicke, G.; Linse, P.; Klitzing, R. V. Effects of Counterions and Co-ions on Foam Films Stabilized by Anionic Dodecyl Sulfatc. J. Phys. Chem. B 2010,114,15523-15529.
    [34]Jungwirth, P.; Tobias, D. J. Surface Effects on Aqueous Ionic Solvation:A Molecular Dynamics Simulation Study of NaCl at the Air/Water Interface from Infinite Dilution to Saturation. J. Phys. Chem. B 2000,104,7702-7706.
    [35]Yan, H.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Molecular Dynamics Study of the Effect of Calcium Ions on the Monolayer of SDC and SDSn Surfactants at the Vapor/Liquid Interface. Langmuir 2011,27,5762-5771.
    [36]Garrett, P. R. In:Garrett, P. R., editor. The Mode of Action of Antifoams. In Defoaming:Theory and Industrial Applications. New York:Marcel Dekker; 1993. Chap.1.
    [37]Frye, G. C.; Berg, J. C. Mechanisms for the Synergistic Antifoam Action by Hydrophobic Solid Particles in Insoluble Liquids. J. Colloid Interface Sci.1989, 130,54.
    [38]Pugh RJ. Foaming, Foam Films, Antifoaming and Defoaming. Adv. Colloid Interface Sci.1996,64,67-142.
    [39]Wasan, D. T.; Christiano, S. P. Foams and Antifoams:A Thin Film Approach. In: Birdi KS, editor. Handbook of Surface and Colloid Chemistry. Boca Raton: CRC press; 1997. Chap.6.
    [40]Exerowa, D.; Kruglyakov, P. M. Foam and Foam Films. Amsterdam:Elsevier; 1998. Chap 9.
    [41]Pugh, R. J. In:Holmberg, K. editor. Foam Breaking in Aqueous Systems. Handbook of Applied Surface and Colloid Chemistry. New York:Wiley; 2001. Chap.8.
    [42]Robinson, J. V.; Woods, W. W. A method of Selecting Foam Inhibitors. J. Soc. Chem. Ind. Lond.1948,67,361-365.
    [43]Walker, H. W; Morrow, R. W; du Pont de Nemours EI. Vol.2.482.307. USA 1949.
    [44]Ross, S. J. The Inhibition of Foaming. Ⅱ. A Mechanism for the Rupture of Liquid Films by Anti-foaming Agents. Phys. Colloid Chem.1950,54,429.
    [45]Robinson, J. V.; Woods, W. W. A Method of Selecting Foam Inhibitors. J. Soc. Chem. Ind.1948,67,361-365.
    [46]Weaire, D.; Hutzler, S. The Physics of Foams, Clarendon Press, Oxford,1999.
    [47]Aveyard, R.; Clint, J. H. Liquid Droplets and Solid Particles at Surfactant Solution Interfaces. J. Chem. Soc. Faraday Trans.1995,91,2681-2697.
    [48]Aveyard, R.; Binks, B. P.; Fletcher, P. D. I.; Peck, T-G.; Garrett, P. R. Entry and Spreading of Alkane Drops at the Air/Surfactant Solution Interface in Relation to Foam and Soap Film Stability. J. Chem. Soc. Faraday Trans. 1993, 89, 4313-4321.
    [49]Garrett, P. R. In Defoaming: Theory and Industrial Applications; Garrett, P. R., Ed.; Marcel Dekker: New York, 1993; Chap.1.
    [50]Garrett, P. R. Preliminary considerations concerning the stability of a liquid heterogeneity in a plane-parallel liquid film. J. Colloid Interface Sci. 1980, 76, 587-590.
    [51]Aveyard, R.; Binks, B. P.; Fletcher, P. D. I.; Peck, T. G; Rutherford, C. E Aspects of Aqueous Foam Stability in the Presence of Hydrocarbon Oils and Solid Particles. Adv. Colloid Interface Sci. 1994, 48, 93-120.
    [52]Bergeron, V.; Cooper, P.; Fischer, C; Giermanska-Kahn, J.; Langevin, D.; Pouchelon, A. Polydimethylsiloxane (PDMS)-Based Antifoams. Colloids Surf A: Physicochem. Eng. Aspects 1997, 122, 103-120.
    [53]Garrett, P. R.; Moor, P. R. Foam and Dynamic Surface Properties of Micellar Alkyl Benzene Sulphonates.J. Colloid Interface Sci. 1993, 159, 214-225.
    [54]Garrett, P. R.; Davis, J.; Rendall, H. M. An Experimental Study of the Antifoam Behaviour of Mixtures of a Hydrocarbon Oil and Hydrophobic Particles. Colloids Surf, A: Physicochem. Eng. Aspects 1994, 85, 159-197.
    [55]Koczo, K.; Koczone, J. K.; Wasan, D. T. Mechanisms for Antilbaming Action in Aqueous Systems by Hydrophobic Particles and Insoluble Liquids.J. Colloid Interface Sci. 1994, 166, 225-238.
    [56]Aveyard, R.; Cooper, P.; Fletcher, P. D. I.; Rutherford, C. E. Foam Breakdown by Hydrophobic Particles and Nonpolar Oil. Langmuir 1993, 9, 604.
    [57]Denkov, N. D.; Cooper, P.; Martin, J. Y. Mechanisms of Action of Mixed Solid-Liquid Antifoams. 1. Dynamics of Foam Film Rupture. Langmuir 1999, 15, 8514-8529.
    [58]Hadjiiski, A.; Tcholakova, S.; Denkov, N. D.; Durbut, P.; Broze, G.; Mehreteab, A. Effect of Oily Additives on Foamability and Foam Stability. 2. Entry Barriers. Langmuir 2001, 17, 7011-7021.
    [59]Miller, C. A. Antifoaming in Aqueous Foams. Curr. Opin. Colloid Interface Sci. 2008,13,177-182.
    [60]Harkins, W. D. A General Thermodynamic Theory of the Spreading of Liquids to Form Duplex Films and of Liquids or Solids to Form Monolayers. J. Phys. Chem.1941,9,552-568.
    [61]Basheva, E. S.; Ganchev, D.; Denkov, N. D.; Kasuga, K.; Satoh, N.; Tsujii, K. Role of Betaine as Foam Booster in the Presence of Silicone Oil Drops. Langmuir 2000,16,1000-1013.
    [62]Arnaudov, L.; Denkov, N. D.; Surcheva, I.; Durbut, P.; Broze, G.; Mehreteab, A. Effect of Oily Additives on Foamability and Foam Stability.1. Role of Interfacial Properties. Langmuir 2001,17,6999-7010.
    [63]Calik, P.; Ileri, N.; Erdinc, B. I. Novel Antifoam for Fermentation Processes: Fluorocarbon-Hydrocarbon Hybrid Unsymmetrical Bolaform Surfactant. Langmuir 2005,21,8613-8619.
    [64]Andrianov, A.; Farajzadeh, R.; Nick, M. M.; Talanana, M.; Zitha, P. L. J. Immiscible Foam for Enhancing Oil Recovery:Bulk and Porous Media Experiments. Ind. Eng. Chem. Res.2012,51,2214-2226.
    [65]Valkovska, D. S.; Kralchevsky, P. A.; Danov, K. D.; Broze, G.; Mehreteab, A. The Effect of Oil Solubility on the Oil Drop Entry at Water-Air Interface. Langmuir 2000,16,8892-8902.
    [66]Lee, J.; Nikolov, A.; Wasan, D. Stability of Aqueous Foams in the Presence of Oil:On the Importance of Dispersed vs Solubilized Oil. Ind. Eng. Chem. Res., 2013,52,66-72.
    [67]Farajzadeh, R.; Andrianov, A.; Bruining, H.; Zitha, P. L. J. Comparative Study of CO2 and N2 Foams in Porous Media at Low and High Pressure-Temperatures. Ind. Eng. Chem. Res.2009,48,4542-4552.
    [68]Paulson, O.; Pugh, R. J. Flotation of Inherently Hydrophobic Particles in Aqueous Solutions of Inorganic Electrolytes. Langmuir 1996,12,4808-4813.
    [69]Binks, B. P. Particles as Surfactants Similarities and Differences. Curr Opin Colloid Interface Sci.2002,7,21-41.
    [70]Philip, W. Aerosol Influences on Marine Atmosphere Surface Layer Optics. SPIE. 1998, 23, 102-107.
    [71]Seki, N. Baek-Melting of a Horizontal Cloudy ice Layer with Radiative Heating. JHEAT TRANS-TASME. 1979, 10, 90-95.
    [72]Yang, Y.; Gupta, M. C. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nona Lett. 2005, 5, 2131-2134.
    [73]Ball, G. J.; East, R. A. Shock and Blast Attenuation by Aqueous Foam Barriers: Inlluences of Barrier Geometry. Shock Waves 1999, 9, 11-41.
    [74]Ma, G. W.; Ye, Z. Q. Analysis of Foam Claddings for Blast Alleviation. Int J Impact Eng. 2007, 34, 60-70.
    [75]Chen, B. D.; Cilliers, J. J.; Davey, R. J.; Garside, J.; Woodburn, E. T. Templated Nuclcation in a Dynamic Environment: Crystallization in Foam Lamellae.J. Am. Chem. Sot: 1998, 120, 1625-1626.
    [76]Mandal, S.; Arumugam, S. K.; Adyanthaya, S. D.; Pasricha, R.; Sastry, M. Use of Aqueous Foams for the Synthesis of Gold Nanoparticlcs of Variable Morphology.J. Mater. Chem. 2004, 14, 43-47.
    [77]Shankar, S. S.; Patil, U. S.; Prasad, B. L. V.; Sastry, M. Liquid Foam as a Template for the Synthesis of Iron Oxyhydroxide Nanoparticles. Langmnir 2004, 20, 8853-8857.
    [78]Farajzadeh, R.; Andrianov, A.; Zitha, P. L. Investigation of Immiscible and Miscible Foam for Enhancing Oil Recovery. J. Ind. Eng. Chem. Res. 2010, 49, 1910-1919.
    [79]颜五和,谢尚贤,韩培慧,泡沫与泡沫驱油,油田化学,1990,7(4):380-385
    [80]刘伟,董胜祥, 曹子龙,泡沫洗井工艺的研究及应用,钻采工艺,2002,25(2),45-48
    [81]李治龙,钱武鼎,我国油田泡沫流体应用综述,石油钻采工艺,1993,15(6):88-94
    [82]Alder, B. J.; Wainwright, T. E. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys. 1959, 31 (2): 459
    [83]Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. Phys Rev. 1964,136:405-411
    [84]Levitt, M; Warshel, A. Computer Simulations of Protein Folding. Nature 1975, 253:694
    [85]Averback, R. S.; Diaz de la Rubia, T. Displacement Damage in Irradiated Metals and Semiconductors". In H. Ehrenfest; F. Spaepen. Solid State Physics. New York:Academic Press.1998,51,281-402.
    [86]R. Smith. Atomic & Ion Ccollisions in Solids and at Surfaces:Theory, Simulation and Applications. Cambridge, UK:Cambridge University Press.1997
    [87]Offman, MN; Krol, M.; Silman, I.; Sussman, J. L.; Futerman, A. H. Molecular Basis of Reduced Glucosylceramidase Activity in the Most Common Gaucher Disease Mutant, N370S. J. Biol. Chem.2010,285:42105-42114.
    [88]Gamba, Z.; Hautman, J.; Shelly, J. C.; Klein, M. L. Molecular Dynamics Investigation of a Newtonian Black Film. Langmuir 1992,8,3155-3160.
    [89]Jang, S. S.; Goddard III, W. A. Structures and Properties of Newton Black Films Characterized Using Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110,7992-8001.
    [90]Tarek, M.; Tobias, D. J.; Klein, M. L. Molecular Dynamics Simulation of Tetradecyltrimethylamrnonium Bromide Monolayers at the Air/Water Interface. J. Phys. Chem.1995,99,1393-1402.
    [91]Shi, L.; Tummala, N. R.; Striolo, A. C12E6 and SDS Surfactants Simulated at the Vacuum-Water Interface. Langmuir 2010,26,5462-5474.
    [92]Chanda, J.; Bandyopadhyay, S. Molecular Dynamics Study of a Surfactant Monolayer Adsorbed at the Air/Water Interface. J. Chem. Theory Comput.2005, 1,963-971.
    [93]胡晓莹,李英,张辉,何秀娟,泡沫液膜的分子动力学模拟及泡沫析液机制的研究,化学学报,2010,68(2):131-135
    [94]胡晓莹,宋新旺,李全伟,何秀娟,王其伟,李英,分子模拟方法考察泡池沫生成能力,化学学报,2009,67(14):1691-1694
    [95]Yang, W.; Yang, X. Molecular Dynamics Study of the Influence of Calcium Ions on Foam Stability.J. Phys. Chem. B 2010,114,10066-10074.
    [96]Yang, W.; Wu, R.; Kong, B.; Zhang, X.; Yang, X. Molecular Dynamics Simulations of Film Rupture in Water/Surfactant Systems.J. Phys. Chem. B 2009,113,8332-8338.
    [97]Hu, X.; Li, Y.; He, X.; Li, C.; Li, Z.; Cao, X.; Xin, X.; Somasundaran, P. Structure-Behavior-Property Relationship Study of Surfactants as Foam Stabilizers Explored by Experimental and Molecular Simulation Approaches.J. Phys. Chem.B 2012,116,160-167.
    [1]Koehler, S. A.; Hilgenfeldt,S.; Stone, H. A. A Generalized View of Foam Drainage:Experiment and Theory. Langmuir 2000,16,6327-6341.
    [2]Bhattacharyya, A.; Monroy, F.; Langevin, D.; Argillier, J. F. Surface Rheology and Foam Stability of Mixed Surfactant-Polyelectrolyte Solutions. Langmuir 2000,16,8727-8732.
    [3]Evers, L. J.; Shulepov, S. Y.; Frens, G. Rupture of Thin Liquid Films from Newtonian and Viscoelastic Liquids. Faraday Discuss.1996,104,335-344
    [4]Stoyanov, S. D.; Paunov,V. N.; Basheva, E. S.; Ivanov, B.; Mehreteab, A.; Broze, G. Motion of the Front between Thick and Thin Film:Hydrodynamic Theory and Experiment with Vertical Foam Films. Langmuir 1997,13, 1400-1407.
    [5]Golemanov, K.; Denkov, N. D.; Tcholakova, S.; Vethamuthu, M.; Lips, A. Surfactant Mixtures for Control of Bubble Surface Mobility in Foam Studies. Langmuir 2008,24,9956-9961.
    [6]Tan, S. N.; Yang, Y.; Morn, R. G. Thinning of a Vertical Free-Draining Aqueous Film Incorporating Colloidal Particles. Langmuir 2010,26(1),63-73.
    [7]Koelsch, P.; Motschmann, H. Relating Foam Lamella Stability and Surface Dilational Rheology. Langmuir 2005,21,6265-6269.
    [8]Gilanyi, T.; Stergiopulos, C.; Wolfram. Equilibrium Surface Tension of Aqueous Surfactant Solutions. E. Colloid Polym. Sci.1976,254,1018
    [9]Scheludko, A. Adv. Colloid Interface Sci.1967,1,391-464.
    [10]Jordanova, A.; Tenchov. B.; Lalchev, Z. Effects of the Interaction and Surface Morphology of Mixed DPoPE/Poloxamer 188 Monolayers and Thin Liquid Films. Soft Matter 2011,7,7003-7012.
    [11]Exerowa, D.; Kruglyakov, P. M. Foam and foam films:Theory, Experiment and Application; Elsevier:Amsterdam,1998,796.
    [12]Gilanyi, T.; Stergiopulos, C.; Wolfram. Equilibrium Surface Tension of Aqueous Surfactant Solutions. E. Colloid Polym. Sci.1976,254,1018
    [13]Vonnegut, B. Rotating Bubble Method for the Determination of Surface and Interfacial Tensions; Rev. Sci. Instrum.1942.13 (6),6-9.
    [14]Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005,308,537-541
    [15]Xu, J. H.; Li, S. W.; Tan, J.; Wang, Y. J. and Luo, G. S. Controllable Preparation of Monodisperse O/W and W/O Emulsions in the Same Microfluidic Device. Langmuir 2006,22,7943-7946
    [16]Jeremy, L.; Steinbacher, R.; Moy, W. Y.; Price, K. E.; Cummings, M. A.; Roychowdhury, C.; Buffy, J. J.; Olbricht, W. L.; Haaf, M. and McQuade,D. T. Rapid Self-Assembly of Core-Shell Organosilicon Microcapsules within a Microfluidic Device. J. Am. Chem. Soc.2006,128,9442-9447.
    [17]Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. Effect of Support Pretreatments on Carbon-Supported Iron Particles. J. Phys. Chem.1987,91, 6269.
    [18]Gamba, Z.; Hautman, J.; Shelly, J. C.; Klein, M. L. Molecular Dynamics Investigation of a Newtonian Black Film. Langmuir 1992,8,3155-3160.
    [19]Sun, H.; Ren, P.; Fried, J. R. The COMPASS force field:Parameterization and Validation for Phosphazenes. Comput. Theor. Polym. Sci.1998,8,229
    [20]Verlet, L.; Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.1967,159,98-103.
    [21]Nose, S. A. Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys.1984,81,511-519.
    [22]Hoover, W. G. Canonical Dynamics:Equilibrium Phase-Space Distributions. Phys. Rev. A.1985,31,1695-1697.
    [1]Paulson, O.; Pugh, R. J. Flotation of Inherently Hydrophobic Particles in Aqueous Solutions of Inorganic Electrolytes. Langmuir 1996,12 (20), 4808-4813.
    [2]Binks, B. P. Particles as Surfactants Similarities and Differences. Curr Opin Colloid Interface Sci.2002,7,21-41.
    [3]Farajzadeh, R.; Andrianov, A.; Zitha, P. L. Investigation of Immiscible and Miscible Foam for Enhancing Oil Recovery.J. Ind. Eng. Chem. Res.2010,49 (4),1910-1919.
    [4]Philip, W. Aerosol Influences on Marine Atmosphere Surface Layer Optics. SPIE.1998,23,102-107.
    [5]Seki, N. Baek-Melting of a Horizontal Cloudy ice Layer with Radiative Heating. J. Heat Trans-T. ASME.1979,10,90-95.
    [6]Yang, Y. and Gupta, M. C. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Lett.2005,5 (11), 2131-2134.
    [7]Ball, G. J. and East, R. A. Shock and Blast Attenuation by Aqueous Foam Barriers:Influences of Barrier Geometry. Shock Waves 1999,9,37-47.
    [8]Ma, G. W. and Ye, Z.Q. Analysis of Foam Claddings for Blast Alleviation. Int J Impact Eng.2007,34,60-70.
    [9]Chen, B. D.; Cilliers, J. J.; Davey, R. J.; Garside, J.; Woodburn, E. T. Templated Nucleation in a Dynamic Environment:Crystallization in Foam Lamellae. J. Am. Chem. Soc.1998,120,1625-1626.
    [10]Mandal, S.; Arumugam, S. K.; Adyanthaya, S. D.; Pasricha, R.; Sastry, M. Use of Aqueous Foams for the Synthesis of Gold Nanoparticles of Variable Morphology. J. Mater. Chem.2004,14,43-47.
    [11]Shankar, S.S.; Patil, U.S.; Prasad, B. L. V.; Sastry, M. Liquid Foam as a Template for the Synthesis of Iron Oxyhydroxide Nanoparticles. Langmuir 2004,20,8853-8857.
    [12]Gonzenbach, U. T. Studart, A. R.; Tervoort, E.; Gauckler. L. G. Ultrastable Particle-Stabilized Foams. Angew. Chem. Int. Ed.2006,45,3526-3530
    [13]Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J. Stabilization of Foams with Inorganic Colloidal Particles. Langmuir 2006,22,10983-10988.
    [14]Binks, B. P.; Horozov. T. S. Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem.2005,117,3788-3791.
    [15]Fujii, S.; Ryan, A. J.; Armes, S.P. Long-Range Structural Order, Moire Patterns, and Iridescence in Latex-Stabilized Foams. J. AM. CHEM. SOC.2006,128, 7882-7886.
    [16]Alargova, R. G.; Warhadpande, D.S.; Paunov, V. N.; Velev, O. D. Foam Super Stabilization by Polymer Microrods. Langmuir 2004,20,10371-10374.
    [17]Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J. Macroporous Ceramics From Particle-Stabilized Wet Foams. J. Am. Ceram. Soc.2007,90, 16-22.
    [18]Fameau, A. L.; Saint-Jalmes, A.; Cousin, F.; Houssou, B. H.; Novales, B.; Navailles, L.; Nallet, F.; Gaillard, C.; Boue, F.; Douliez, J. P. Smart Foams: Switching Reversibly between Ultrastable and Unstable Foams. Angew. Chem. Int. Ed.2011,50,8264-8269.
    [19]Evers, L. J.; Shulepov, S. Y.; Frens, G. Rupture of Thin Liquid Films from Newtonian and Viscoelastic Liquids. Faraday Discuss.1996,104,335-344
    [20]Dev, D. K. and MukherjeeJ, K.D. Functional Properties of Rapeseed Protein Products with Varying Phytic Acid Contents. Agric. Food Chem.1986,34, 775-780.
    [21]Khalid, E.K.; Babiker, E.E.; Tinay, A.H. EL. Solubility and Functional Properties of Sesame Seed Proteins as Influenced by pH and/or Salt Concentration. Food Chemistry 2003,82,361-366.
    [22]Yang, W. H. and Yang, Y. X. Molecular Dynamics Study of the Influence of Calcium Ions on Foam Stability. J. Phys. Chem. B 2010,114,10066-10074.
    [23]Schelcro, N.; Hedicke, G.; Linse, P.; Klitzing, R. v. Effects of Counterions and Co-ions on Foam Films Stabilized by Anionic Dodecyl Sulfate. J. Phys. Chem. B 2010,114,15523-15529
    [24]Zhang, H.; Miller, C. A.; Garrett, P. R.; Raney, K. H. Mechanism for Defoaming by Oils and Calcium Soap in Aqueous Systems. J. Colloid Interface Sci.2003,263,633-644.
    [25]Zhang, H.; Miller, C. A.; Garrett, P. R.; Raney, K. H. Defoaming Effect of Calcium Soap.J. Colloid Interface Sci.2004,279,539-547.
    [26]Faraudo, J.; Bresme, F. Anomalous Dielectric Behavior of Water in Ionic Newton Black Films. Phys. Rev. Lett.2004,92,236102.
    [27]Faraudo, J. The Missing Link between the Hydration Force and Interfacial Water:Evidence from Computer Simulations. Curr. Opin. Colloid. Interface. Sci.2011,16,557-560.
    [28]Hu, X.; Li, Y.; He, X.; Li, C.; Li, Z.; Cao, C.; Xin, X.; Somasundaran, P. Structure Behavior Property Relationship Study of Surfactants as Foam Stabilizers Explored by Experimental and Molecular Simulation Approaches. J. Phys. Chem.52012,116,160-167.
    [29]Zhao, T.; Xu, G.; Yuan, S.; Chen, Y.; Yan, H. Molecular Dynamics Study of Alkyl Benzene Sulfonate at Air/Water Interface:Effect of Inorganic Salts. J. Phys. Chem.B 2010,114,5025-5033.
    [30]Yan, H.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Molecular Dynamics Study of the Effect of Calcium Ions on the Monolayer of SDC and SDSn Surfactants at the Vapor/Liquid Interface. Langmuir 2011,27,5762-5771.
    [31]Ghosh, T.; Garcia, A. E.; GArde, S. Molecular Dynamics Simulations of Pressure Effects on Hydrophobic Interactions. J. Am. Chem. Soc.2001,123, 10997-11003.
    [32]Ghosh, T.; Garcia, A. E.; GArde, S. Water-Mediated Three-Particle Iinteractions Between Hydrophobic Solutes:Size, Pressure, and Salt Effects. J. Phys. Chem. B 2003,107,612-617.
    [33]Muruganathan, R. M.; Krustev, R.; Miiller, H. J.; Mohwald, H. Foam Films Stabilized by Dodecyl Maltoside.1. Film Thickness and Free Energy of Film Formation. Langmuir 2004,20,6352-6358.
    [34]Muruganathan, R. M.; Krustev, R.; Miiller, H. J.; Mohwald, H. Foam Films Stabilized with Dodecyl Maltoside.2. Film Stability and Gas Permeability. Langmuir 2006,22,7981-7985.
    [35]Bresme, F. and Faraudo, J. Computer Simulation Studies of Newton Black Films. Langmuir 2004,20,5127-5137.
    [36]Derjaguin, B. V. and Churaev, N. V. Fluid Interfacial Phenomena Ch.1986,15, 663-738.
    [37]Israelachvili, J.; Wennerstrom, H. Role of Hydration and Water Structure in Biological and Colloidal Interactions. Nature 1996,379,219.
    [38]Valle-Delgado, J. J.; Molina-Bolivar, J. A.; Galisteo-Gonzalez, F.; Galvez-Ruiz, M. J. Evidence of Hydration Forces between Proteins. Curr. Opin. Colloid. Interface. Sci.2011,16,572-578.
    [39]Demea, B. and Zemb, T. Hydration Gorces between Bilayers in the Presence of Dissolved or Surface-Linked Sugars. Curr. Opin. Colloid. Interface. Sci.2011, 16,584-591.
    [40]Petsev, D. N. and Vekilov, P.G. Evidence for Non-DLVO Hydration Interactions in Solutions of the Protein Apoferritin. Phys Rev Lett.2000,84, 1339-1342.
    [41]Petsev D. N.; Thomas B. R.; Yau S.T.; Vekilov, P. G. Interactions and Aggregation of Apoferritin Molecules in Solution:Effects of Added Electrolytes. Biophys J.2000,78,2060-69.
    [42]Valle-Delgado, J. J.; Molina-Bolivar, J. A.; Galisteo-Gonzalez, F.; Galvez-Ruiz, M. J.; Feiler, A.; Rutland, M. W. Existence of Hydration Forces in the Interaction between Apoferritin Molecules Adsorbed on Silica Surfaces. Langmuir 2005,21,9544-54.
    [43]Marcelja, S. Hydration Forces near Charged Interfaces in Terms of Effective Ion Potentials. Curr Opin Colloid Interface Sci.2011,16,579-583.
    [44]Stanley, C. and Rau, D. C. Evidence for Water Structuring Forces between Surfaces. Curr. Opin. Colloid Interface. Sci.2011,16,551-556.
    [45]Jordi Faraudo. Origin of the Short-Range, Strong Repulsive Force between Ionic Surfactant Layers. Phys. Rev. Lett.2005,94,077802.
    [46]Kapitan, J.; Dracinsky, M.; Jakub Kaminsky.; Benda, L.; Bouf, P. Theoretical Modeling of Magnesium Ion Imprints in the Raman Scattering of Water.J. Phys. Chem. B 2010,114,3574-3582.
    [47]Sufriadin; Idrus, A.; Pramumijoyo, S.; Warmada,I. W.;Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia. Indonesian Journal of Geology,2012,7 (2),77-85.
    [1]荆忠胜.表面活性剂概论[M].北京:中国轻工业出版社,1999:191-242.
    [2]Malysa, K. Wet foams:Formation properties and mechanism of stability. Advances Colloid Interface Science,1992,40 (2):37-83
    [3]Cecilio, C. S.; Juan, M. R. P. Interfacial, foaming and emulsifying characteristics of soudium casemate as influence by protein concentration in solution. Food Hydrocolloid,2005,19(3):407-416.
    [4]燕永利,张宁生,屈撑囤,等.胶质液体泡沫的形成及其稳定性研究[J].化学学报,2006,64(1):54-60.
    [5]Rosen. Milton. J.; Zhu, Z. H. Synergism in Binary Mixtures of Surfactants.7. Synergism in Foaming and its Relation to Other Types of Synergism. Surfactants & Detergents Technical 1998,65,663-668
    [6]Hsu, N. H.; Maa, J. R. Foam Fractionation with Synergism.Ind. Eng. Chem. Process Des. Dev.1905,24,38-41
    [7]Sohrabi, B.; Gharibi, H.; Tajik, B.; Avadian, S.; Hashemianzadeh, M. Molecular Interactions of Cationic and Anionic Surfactants in Mixed Monolayers and Aggregates.J. Phys. Chem.52008,112,14869-14876.
    [8]Rosen, M. J.; Hua, X. Y. J. Surface concentration and molecular interactions in binary mixtures of surfactants. Colloid Interface Sci.1981,86 (4):164-169
    [9]Dahanayake, M.; Cohen, A. W.; Rosen, M. J.Phys. Chem.1986,90,2413
    [10]Snow, S. A.; Fenton, W. N.; Owen, M. J. Zwitterionic Organofunctional Siloxanes as Aqueous Surfactants:Synthesis and Characterization of Betaine Functional Siloxanes and Their Comparison to Sulfobetaine Functional Siloxanes. Langnmir 1991,7,868-871.
    [11]Dominguez, H.; Rivera. M. Mixtures of Sodium Dodecyl Sulfate/Dodecanol at the Air/Water Interface by Computer Simulations. Langmuir 2005,21, 7257-7262
    [12]Seung Soon Jang, Shiang-Tai Lin, Prabal K. Maiti, Mario Blanco, and William A. Goddard Ⅱ; Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface:Effect of Molecular Architecture of Alkyl Benzene Sulfonate. J. Phys. Chem.B 2004,108,12130-12140
    [13]Koelsch, P.; Motschmann, H. Relating Foam Lamella Stability and Surface Dilational Rheology. Langmuir 2005,21,6265-6269
    [14]张辉,甜菜碱水基泡沫的性能及在泡沫钻井中的应用研究,山东大学研士学位论文,2009
    [1]Valkovska, D. S.; Kralchevsky, P. A.; Danov, K. D.; Broze, G.; Mehreteab, A. The Effect of Oil Solubility on the Oil Drop Entry at Water-Air Interface. Langmuir 2000,16,8892-8902
    [2]Garrett, P. R. The Mode of Action of Antifoams. In Defoaming:Theory and Industrial Applications. New York:Marcel Dekker; 1993. Chap. I.
    [3]Aveyard, R; Binks, B. P.; Fletcher, P. D. I.; Peck, T. G.; Rutherford, C. E.; Aspects of Aqueous Foam Stability in the Presence of Hydrocarbon Oils and Solid Particles. Adv Colloid Interface Sci.1994,48,93-120.
    [4]Pugh, R. J. Foaming, Foam Films, Antifoaming and Defoaming. Adv Colloid Interface Sci.1996,64,67-142.
    [5]Wasan, D. T.; Christiano, S. P. Foams and Antifoams:a Thin Film Approach. In: Birdi K.S, editor. Handbook of Surface and Colloid Chemistry. Boca Raton: CRC press 1997, Chap.6.
    [6]Exerowa, D; Kruglyakov, P. M.; Foam and Foam Films. Amsterdam:Elsevier 1998, Chap.9.
    [7]Pugh, R.J.; In:Holmberg K, editor. Foam Breaking in Aqueous Systems. Handbook of Applied Surface and Colloid Chemistry. New York:Wiley 2001. Chap.8.
    [8]Aveyard, R.; Binks, B. P.; Fletcher, P. D. I.; Peck, T-G.; Garrett, P. R. Entry and Spreading of Alkane Drops at the Air/Surfactant Solution Interface in Relation to Foam and Soap Film Stability. J. Chem. Soc. Faraday Trans.1993,89,4313.
    [9]Denkov, N. D.; Cooper, P.; Martin, J. Y. Mechanisms of Action of Mixed Solid-Liquid Antifoams.1. Dynamics of Foam Film Rupture. Langmuir 1999, 15,8514-8529.
    [10]Chaisalee, R.; Soontravanich, S.; Yanumet, N.; Scamehorn, J. F. Mechanism of Antifoam Behavior of Solutions of Nonionic Surfactants Above the Cloud Point. J. Surf. Det. 2003,6,345-351.
    [11]Valkovska, D. S.; Kralchevsky, P. A.; Danov, K. D.:Broze, G.; Mehreteab, A. The Effect of Oil Solubility on the Oil Drop Entry at Water-Air Interface. Langmuir 2000,16,8892-8902.
    [12]Zhang, H.; Miller, C. A.; Garrett, P. R.; Raney, K. H. Mechanism for defoaming by oils and calcium soap in aqueous systems. J. Colloid Interface Sci.2003,263, 633-644.
    [13]Garrett, P. R. in Defoaming:Theory and Industrial Applications, ed. P. R. Garrett, Marcel Dekker, New York,1993, Chap.1.
    [14]Frye, G. C.; Berg, J. C. Antifoam Action by Solid Particles. J. Colloid Interface Sci.1989,127,222-238.
    [15]Roberts, K.; Axberg, C.; Osterlund, R. The Effect of Spontaneous Emulsification of Defoamer on Foam Prevention. J. Colloid Interface Sci.1977, 62,264-271.
    [16]Garrett, P. R. The Effect of Polytetrafluoroethylene Particles on the Foamability of Aqueous Surfactant Solutions.J.Colloid Interface Sci.1979,69,107-121.
    [17]Dippenaar, A. The Destabilization of Froth by Solids. I. The Mechanism of Film Rupture. Int. J. Min. Proc.1982,9,1-14.
    [18]Aveyard, R.; Cooper, P.; Fletcher, P. D. I.; Rutherford, C. E. Foam Breakdown by Hydrophobic Particles and Nonpolar Oil. Langmuir 1993, 9, 604-613.
    [19]Aveyard, R.; Binks, B. P.; Fletcher, P. D. I.; Peck, T. G; Rutherford, C. E. Adv. Colloid biter face Sci. 1994, 48, 93.
    [20]R. Aveyard and J. H. Clint. Liquid Droplets and Solid Particles at Surfactant Solution Interfaces. J. Chem. Soc. Faraday Tram. 1995, 91, 2681-2697.
    [21]Aveyard, R.; Beake, B. D.; Clint, J. H. Wettability of Spherical Particles at Liquid Surfaces.J. Chem. Soc. Faraday Tram. 1996, 92, 4271-4277.
    [22]Frye, G. C.; Berg, and J. C. Mechanisms for the Synergistic Antifoam Action by Hydrophobic Solid Particles in Insoluble Liquids. J. Colloid Interface Sci. 1989, 130, 54-59.
    [23]N. D. Denkov. Mechanisms of Foam Destruction by Oil-Based Antifoams. Langmuir 2004, 20, 9463.
    [24]Denkov, N. D.; Cooper, P.; Martin, J. Y. Mechanisms of Action of Mixed Solid-Liquid Antifoams. 1. Dynamics of Foam Film Rupture. Langmuir 1999, 15, 8514-8529.
    [25]Denkov, N. D. Mechanisms of Action of Mixed Solid-Liquid Antifoams. 2. Stability of Oil Bridges in Foam Films. Langmuir 1999, 15, 8530-8542.
    [26]Aveyard, R.; Clint, J. H,. J. Chem. Soc.1995, 91, 2681.
    [27]Jang, S. S.; Lin, S. T.; Maiti, P. K.; Blanco, M.; Goddard Ⅱ, W. A. Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of AIkyl Benzene Sulfonate;J. Phy.s. Chem. 5 2004, 108, 12130-12140
    [1]Wellington, S. L.; Vinegar, H. J. Surfactant-Induced Mobility Control for Carbon Dioxide Studied with Computerized Tomography. In Surfactant Based Mobility ControlsProgress in Miscible Flood Enhanced Oil Recovery; Smith, D. H., Ed.; ACS Symposium Series 373; American Chemical Society:Washington, DC,1988; 373:344-358.
    [2]Rossen, W. R. Foams in Enhanced Oil Recovery. In Foams:Theory Measurement and Applications; Prud' homme, R. K., Khan S., Eds.; Marcel Dekker:New York, 1996.
    [3]Hirasaki, G J. J. Pet. Technol.1989,41,449-456.
    [4]Farajzadeh, R.; Andrianov, A.; Bruining, H. Zitha, P. L. J. Comparative Study of CO2 and N2 Foams in Porous Media at Low and High Pressure-Temperatures. Ind Eng Chem. Res.2009,48,4542-4552.
    [5]Fried, A. N. Foam drive process for increasing the recovery of oil. Bureau of Mines Report of Investigation. Bureau of Mines:Washington, DC,1961.
    [6]Bond, D. C.; Holbrook, O. C. U. S. Patent No.2,866,507,1958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700