碳纳米管化学修饰电极的制备、表征及分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是由片层的石墨卷成的无缝中空的纳米级同轴圆柱体,圆柱体两端各有一个由半个富勒烯球体分子形成的帽子,它的直径可以从几个埃到几十纳米,而长度却可达到几个毫米。碳纳米管可分为由一层石墨组成的单壁碳纳米管(single-walled carbon nanotube,SWNT)和由多层石墨组成的多壁碳纳米管(multi-walled carbon nanotube,MWNT)两种。自1991年Iijima首次发现以来,碳纳米管由于具有奇特的结构、电学、机械、电化学性能以及在材料领域的巨大潜力而受到世界的广泛关注,开辟了材料科学和纳米技术的一个新时代。目前,碳纳米管已经广泛地应用于物理、化学、能源、材料等众多领域。
     任何事物都有它的两面性,碳纳米管也不例外。它虽然具有上述种种优点,但由于碳纳米管的巨大分子量导致了其不可溶解性,这极大地制约了它在制备电化学传感器方面的应用。碳纳米管电化学传感器(或者碳纳米管化学修饰电极)的制备是一项极富挑战性的研究课题,对拓宽碳纳米管的应用范围,丰富化学修饰电极的制备途径具有深远的意义。
     本论文以碳纳米管为修饰材料,探索新颖的碳纳米管分散体系和成膜技术,研究和制备出几类新型的碳纳米管膜修饰电极。这不仅大大拓展了碳纳米管的应用范围,而且丰富和发展了电化学分析的内容、技术和理论。结合各种表征手段,对所制备的碳纳米管膜修饰电极进行了较全面的表征,并重点开展了所制备的碳纳米管膜修饰电极在电分析化学中的应用基础研究。本论文的研究内容主要包括:
     第一部分:多壁碳纳米管—Nafion复合膜修饰电极的研究
     选择Nafion作为多壁碳纳米管(MWNT)的分散剂,将多壁碳纳米管有效地分散在Nafion-无水乙醇中,该MWNT—Nafion分散液性质稳定,通过溶剂挥发制备出MWNT-Nafion复合膜修饰电极。用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、反射红外光谱技术、以及电化学技术对该化学修饰电极进行了表征。实验发现,MWNT—Nafion膜修饰电极对多巴胺的电化学氧化还原具有明显的催化特性和抗干扰能力,它不仅可以提高多巴胺的氧化还原峰电流,而且降低了多巴胺的氧化还原过电位,同
    
    时实现了在高浓度抗坏血酸和尿酸存在下多巴胺的选择性测定。
    第二部分:碳纳米管一表面活性剂复合膜修饰电极的研究
     表面活性剂在电化学和电分析化学中已得到十分广泛的应用。我们选
    用了一种双C一H疏水链的表面活性剂(双十六烷基磷酸,DHP)作为碳纳
    米管的特效分散剂,成功地将碳纳米管分散在水中。此分散体系十分稳定、
    碳纳米管含量高(可达到lmg/mL),而且在电极表面具有成膜均匀、稳定、
    重现性好的特点。
     (l)用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、电化学交
    流阻技术以及循环伏安法对MWNT一DHP膜进行了表征。
     (2)利用多壁碳纳米管的结构特性(如中空结构、大的比表面、拓扑
    缺陷以及强的吸附能力等),结合I一对铅、福离子的诱导吸附作用,开发出
    一种高灵敏度同时测定水体中铅、福离子的碳纳米管修饰电极及检测体系。
    该方法具有灵敏度高、分析速度快、成本低、重现性好等优点,并成功应
    用于环境水样中铅、隔离子的测定,测定结果与原子吸收测定的结果相一
    致。
     (3)多巴胺(DA)和5一轻色胺(5一HT)是两种十分重要的神经递质,
    在常规固体电极上由于它们的电化学性质相似,氧化峰相互重叠,通常很
    难实现二者的同时测定。而且抗坏血酸也产生严重的干扰,三者的氧化峰
    重叠在一起,形成一个大的氧化峰包。但在MWNT一DHP膜修饰玻碳电极
    上,DA和5一HT分别在0.18V和0,36V出现两个相互间无干扰、灵敏度
    高的氧化峰(峰电位之差达180 mV)。与裸玻碳和DHP膜修饰玻碳电极相
    比,MwNT一DHP膜修饰电极对DA和5一HT的氧化表现出明显的催化活
    性,为DA和5一HT的氧化提供了较多的反应位点,加速了它们的电子交
    换速度,显著提高了氧化电流、降低了氧化过电位。进一步研究指出,高
    浓度的抗坏血酸和尿酸不干扰DA和5一HT的电化学响应。
     (4)详细考察了DNA以及鸟嚓吟(G)和腺嗓吟(A)在MWNT一
    DHP膜电极上的电化学行为,发现MWNT一DHP膜对G和A的氧化表现
    出催化特性,它不但显著提高了G和A的氧化峰电流,而且还降低了它们
    的氧化过电位。在此基础上,用计时电量法比较了G和A在裸玻碳电极、
    DHP膜电极以及MWNT一DHP膜电极上的吸附量,发现G和A在MWNT
    一DHP膜上的吸附量比其它两种电极提高近一个数量级,正是吸附量的提
    
    高导致了G和A在MWNT膜上氧化峰电流的显著增加。
     通过对G和A测定条件的优化,建立了一种同时测定G和A的电分
    析方法,并成功用于双链小牛胸腺DNA中G和A含量的测定,进而得到
    (G+C)/(A+T)的比值,其结果与理论值很好吻合。
     (5)为了进一步考察此修饰电极在电分析中的应用,研究了植物生长
    激素一叫噪乙酸在此修饰电极上的电化学行为,制备出叫噪乙酸电化学传
    感器,并成功用于植物中叫垛乙酸的测定。
     (6)分别研究了甲状腺素和氯霉素在多壁碳纳米管膜修饰电极上的电
    化学行为,实验发现MWNT膜显著提高了测定甲状腺素和氯霉素的灵敏
    度。通过实验条件的优化,建立了两种新的测定甲状腺素和氯?
Carbon nanotubes (CNTs) are arrangements of carbon hexagons that are formed into tiny tubes. They usually have a diameter ranging from a few angstrom to tens of nanometers and can have lengths up to several micrometers. There are two distinct types of carbon nanotubes. The so-called single-walled carbon nanotube (i.e., SWNT or graphene tube) is made of one layer of graphene sheet while the multi-walled carbon nanotube (i.e., MWNT or graphitic tube) consists of more than one layer. Since their discovery bv lijima, CNTs have attracted much attention and opened up a new era in material science and nanotechnology due to their fascinating and extraordinary structural, mechanical, electrical, and electrochemical properties as well as their promise in the field of materials science. Now, CNTs have been widely used in various fields such as physics, chemistry, energy and material science.
    Everything has two sides, and there is no exception for carbon nanotubes. CNTs possess many attractive advantages, but the insolubility of CNTs in almost all solvents limits their application in the fabrication of CNTs-based electrochemical sensor. It is very interesting and full of challenge to fabricate CNTs-based electrochemical sensor (or CNTs-modified electrodes) for electrochemical researchers since the subtle electronic properties suggest that CNTs have the ability to promote electron transfer.
    In this thesis, carbon nanotubes were successfully dispersed into ethanol and water by utilizing special technology, which expanded the application areas of CNTs. Based on this, some kinds of CNTs-film-modified electrodes have been fabricated. Then, their applications in electroanalysis have been studied with great details. The main researches were summarized as follows:
    Section one: Study on the MWNT-Nafion composite film-modified electrode
    In the presence of Nafion, an excellent cation-exchange polymer, multi-wall carbon nanotube (MWNT) was easily and homogeneously
    IV
    
    
    dispersed into ethanol. Consequently, a uniform MWNT-Nafion film was obtained on a glassy carbon electrode (GCE) surface via solvent evaporation, and then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transfer (FT) IR spectra and electrochemical methods. The electrochemical behaviors of dopamine (DA) were examined. In comparison with the bare GCE and the Nafion-modified GCE, the MWNT-Nafion film-modified GCE shows obvious electrocatalytic activity to DA since it not only enhances the peak current but also lowers the overpotential. Moreover, the MWNT-Nafion film exhibits excellent selectivity towards DA even in the presence of high concentration of ascorbic acid (AA) and uric acid (UA).
    Section two: Studies on the MWNT-dihexadecyl hydrogen phosphate (DHP) film-modified electrode
    Surfactant contains hydrophobic group and hydrophilic group, and has been extensively used in electrochemistry. In the presence of dihexadecyl hydrogen phosphate (DHP), which contains two long C-H chains, MWNT was successfully dispersed into water. The resulting MWNT-DHP dispersion is very stable and homogeneous. Through evaporating solvent, a uniform and stable MWNT-DHP film was obtained on the electrode surface.
    (1) The MWNT-DHP thin film on the electrode surface was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and some electrochemical techniques such as electrochemical impedance spectra (EIS) and cyclic voltammetry (CV).
    (2) Utilizing the subtle properties of MWNT (hollow structure, closed topology, strong adsorptive ability and huge specific surface area) and the induced adsorption behavior of I", a sensitive electrochemical technique for the simultaneous determination of Cd2+ and Pb2+ has been developed. This sensing and determining system possesses following advantages: free of mercury, low detection limit, fast response, low cost and excellent reproducibility. Moreover, this proposed method was successfully used to detect Cd2+ and Pb2+ in
引文
[1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C60" Buckminsterfullerene, Nature 1985, 318: 162.
    [2] T.V. Hughes, C.R. Chamber, US patent, 1889, 405:480
    
    
    [3] J.A.E. Gibson. Early nanotubes? Nature 1992, 359:369
    [4] R. Bacon. Growth, structure, and properties of graphite whiskers, J. Appl. Phys. 1960, 31:283
    [5] P.G. Wiles, J. Abrahamson. Carbon fibre layers on arc electrodes-Ⅰ: Their properties and cool-down behaviour, Carbon 1978, 16:341
    [6] J. Abrahamson, P.G. Wiles, B.I. Rhoades, Abstract in proceeding of 14th Biennial conference on carbon (USA) 1979.
    [7] A. Oberlin, M. Endo. Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 1976, 32:335
    [8] 刘华.气相生长碳纤维的结构及生长机理的研究:[博士学位论文].沈阳:中国科学院金属研究所.1985
    [9] S. Iijima. High resolution electron microscopy of some carbonaceous materials, J. Microscopy 1980, 119: 99.
    [10] S. Iijima. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy, J. Cryst. Growt 1980, 50: 675.
    [11] S. Iijima. The 60-Carbon cluster has been revealed, J. Phys. Chem. 1987, 91: 3466.
    [12] S. Iijima. Helical microtubules of graphite carbon, Nature 1991, 354: 56.
    [13] T.W. Ebbesen, P. M. Ajayan. Large-scale synthesis of carbon nanotubes, Nature 1992, 358: 220.
    [14] S. Iijima, T. Ichihashi. Single shell carbon nanotubes of one nanometer diameter, Nature 1993, 363: 603.
    [15] D.S. Bethune, C.H. Kiang, M.S. Devries, G Gorman, R Savoy, R Beyers. Growth of carbon nanotubes with single-atomic-layer walls, Nature 1993, 363: 605.
    [16] T. Gao, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley. Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 1995, 243: 49.
    [17] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tom(?)nek, J.E. Fischer, R.E. Smalley. Crystalline ropes of metallic carbon nanotubes, Science 1996, 273: 483.
    
    
    [18] M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Santiesteban. Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett. 1993, 62: 202.
    [19] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar. Large-scale synthesis of carbon nanotubes by pyrolysis, Carbon 1995, 33: 873.
    [20] H.J. Dai, A.G. Rinzier, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 1996: 260: 471.
    [21] H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Lett. 1998, 72: 3282.
    [22] 于作龙,刘宝春,唐水花.利用沸腾床反应器制备碳纳米管,催化学报 2001,22:151.
    [23] P.M. Ajayan, O. Stepnan, C. Colliex, D. Trauth. Aligned carbon Nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 1994, 265: 1212.
    [24] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, H.W. Kroto, K. Prassides, A.K. Cheetham, P.D. Townsend, D.R.M. Walton. Controlled production of aligned-nanotube bundles, Nature 1997, 388: 52.
    [25] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang. Large-scale synthesis of aligned carbon nanotubes, Science 1996, 274: 1701.
    [26] Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian. Very long carbon nanotubes, Nature 1998,394:631.
    [27] T.H. Henning, F. Salama. Carbon in the universe, Science 1998, 282: 2204.
    [28] H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, Y. Takada. Role of sp~3 defect structures in graphite and carbon nanotubes, Nature 1994, 367:148.
    [29] 美国Rice大学R. E.Smalley研究小组网上图片,网址:http://cnst.rice.edu/pics.html.
    
    
    [30] V.H. Crespi. Relationship between global and local topology in nanotube junctions, Phys. Rev. B 1998, 58: 12671.
    [31] N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Carbon nanofibers: a unique catalyst support medium, J. Phys. Chem. 1994: 98: 13108.
    [32] 朱宏伟,慈立志,梁吉,魏秉庆,徐才录,吴德海.浮游催化法半连续制取碳纳米管的研究.新型碳材料 2000,15:48.
    [33] H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Chem. 1994, 72: 3282.
    [34] W.K. Hsu, M. Terrones, J.P. Hare, H. Terrones, H.W. Kroto, D.R.M. Walton. Electrolytic formation of carbon nanostructures, Chem. Phys. Lett. 1996, 262: 161.
    [35] Y.L. Li, Y.D. Yu, Y.J. Liang. A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 1997, 12: 1678.
    [36] J.Y. Huang, H. Yasuda, H. Mori. Highly curved carbon nanostructures produced by ball-milling, Chem. Phys. Lett. 1999, 303: 130.
    [37] R.L. Vander Wal, T.M. Ticich, V.E. Curtis. Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 2000, 323: 217.
    [38] S.C. Tsang, P.J.F. Harris, M.L.H. Green. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide, Nature 1993, 362: 520.
    [39] T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki. Purification of nanotubes, Nature 1994, 367: 519.
    [40] P.M. Ajayan, T.W. Ebbesen. Nanometer size tubes of carbon, Rep. Prog. Phys. 1997, 60: 1025.
    [41] E. Borowiak-Palen, T. Pichler, X. Liu, M. Knupfer, A. Graff, O. Jost, W. Pompe, RJ Kalenczuk, J. Fink. Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation, Chem. Phys. Lett. 2002, 363: 567.
    [42] S.M. Huang, L.M. Dai, A.W.H. Mau. Plasma etching for purification and controlled opening of aligned carbon nanotubes, J. Phys. Chem. B 2002, 106: 3543.
    
    
    [43] W. Chiang, B.E. Brinson, R.E. Smalley, J.L. Margrave, R.H. Hauge. Purification and characterization of single-wall carbon nanotubes, J. Phys. Chem. B 2001, 105: 1157.
    [44] A.R. Harutyunyan, B.K. Pradhan, J.P. Chang, G.G. Chen, P.C. Eklund. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles, J. Phys. Chem. B 2002, 106: 8671.
    [45] E. Farkas, M.E. Anderson, Z.H. Chen, A.G. Rinzler. Length sorting cut single wall carbon nanotubes by high performance liquid chromatography, Chem. Phy. Lett. 2002, 363: 111.
    [46] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green. A Simple chemical method of opening and filling carbon nanotubes, Nature 1994, 372:159.
    [47] R.T.K. Baker. Factors controlling the mode by which a catalyst operates in the graphite-oxygen reaction, Carbon 1986, 24: 715.
    [48] P.X. Hou, C. Liu, Y. Tong, M. Liu, H.M. Cheng. Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method, J. Mater. Res. 2001, 16: 2526.
    [49] H. Kajiura, S. Tsutsui, H.J. Huang, Y. Murakami. High-quality single-walled carbon nanotubes from arc-produced soot, Chem. Phys. Lett. 2002, 364: 586.
    [50] J.M. Bondow, T. Stora, J.P. Salvetat, F. Maier, T. Stoeckli, C. Duschl, L. Forro, W.A. de Heer, A. Chatelain. Purification and size-selection of carbon nanotubes, Adv. Mater. 1997, 9: 827.
    [51] S. Niyogi, H. Hu, M.A. Hamon, P. Bhowmik, B. Zhao, S.M. Rozenzhak, J. Chen, M.E. Itkis, M.S. Meier, R.C. Haddon. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs), J. Am. Chem. Soc. 2001, 123: 733.
    [52] B. Zhao, H. Hu, S. Niyogi, M.E. Itkis, M.A. Hamon, P. Bhowmik, M.S. Meier, R.C. Haddon. Chromatographic purification and properties of soluble single-walled carbon nanotubes, J. Am. Chem. Soc. 2001, 123: 11673.
    [53] G.S.Duesberg, W. Blau, H.J. Byrne, J. Muster, M. Burghard, S. Roth. Chromatography of carbon nanotubes, Synth. Metal. 1999, 103: 2484.
    [54] 谭平恒.碳纳米管及其相关材料的拉曼光谱学研究:[博士学位论文].
    
    北京:中国科学院半导体研究所,2001.
    [55] H. Hiura, T.W. Ebbesen, K. Tanigaki, H. Takahashi. Raman studies of carbon nanotubes, Chem. Phys. Lett. 1993, 202: 509.
    [56] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tom(?)nek, J.E. Fischer, R.E. Smalley. Crystalline ropes of metallic carbon nanotubes, Science 1996, 273: 483.
    [57] A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus. Diameter-selective raman scattering from vibrational modes in carbon nanotubes, Science 1997, 275:187.
    [58] R.A. Jishi, L. Venkata, M.S. Dresselhaus, G. Dresselhaus. Phonon modes in carbon nanotubules, Chem. Phys. Lett. 1993, 209: 77.
    [59] J.W. Che, T. Cagin, W.A. Goddard. Thermal conductivity of carbon nanotubes, Nanotechnology 2000, 11: 65.
    [60] P.G. Collins, M.S. Arnold, P. Avouris. Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 2001, 292: 706.
    [61] 王茂章,贺福.碳纤维的制造、性质及应用.北京:科学出版社,1984.
    [62] P.J. Britto, K.S.V. Santhanam, A, Rubio, A. Alonso, P.M. Ajayan. Charge transfer on carbon nanotube electrodes, Adv. Mater. 1998, 11: 154.
    [63] A. Peigney, C.H. Laurent, E. Flahaut, R. Bacsa, A. Rousset. Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 2000, 39: 507.
    [64] G.H. Cao, T. Cagin, W.A. Goddard. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes, Nanotechnology 1998, 9: 184.
    [65] M.R. Pederson, J.Q. Broughton. Nanocapillarity in fullerene tubules, Phys. Rev. Lett. 1992, 69: 2689.
    [66] B.I. Yakabson, C.J. Brabec, J. Bernholc. Nanomechanics of carbon tubes: instabilities beyond linear response, Phys. Rev. Lett. 1996, 76: 2511.
    [67] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 1997, 381: 678.
    
    
    [68] B.I. Ynkabson, R.E. Samlley. Am. Sci. 1997, 324.
    [69] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney. Single-crystal metals encapsulated in carbon nanoparticles, Science 1993, 259: 346.
    [70] S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty. Yttrium carbide in nanotubes, Nature 1993, 362: 503.
    [71] A.M. Rao, P.C. Eklund, S.J. Bandow, A. Yhess, R.E. Smalley. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 1997, 358: 257.
    [72] D. Ugarte, T. Stockli, W.A. de Heer. Filling carbon nanotubes, Appl. Phys. A 1998,67: 101.
    [73] S.C. Tsang, Y.K. Chen. P.J.E. Harris, M.L.H. Green. A simple chemical method of opening and filling carbon nanotunes, Nature 1994, 372: 159.
    [74] R.M. Lago, S.C. Tsang, K.L. Lu, Y.K. Chen, M.L.H. Green. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, Chem. Commun. 1995, 1355.
    [75] H. Hiura, T.W. Ebbesen, K. Tanigaki. Opening and purification of carbon nanotubes in high yields, Adv. Mater. 1995, 7: 275.
    [76] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley. Fullerene pipes, Science 1998, 280: 1253.
    [77] J. Chen, M.A. Hamon, H. Hu, Y.S. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon. Solution properties of single-walled carbon nanotubes, Science 1998, 282: 95.
    [78] M.A. Hamon, J. Chen, H. Hu, Y.S. Chert, M.E. Itikis, A.M. Rao, P.C. Eklund, R.C. Haddon. Dissolution of single-walled carbon nanotubes, Adv. Mater. 1999, 11: 834.
    [79] F. Pomper, D.E. Resasco. Water solubilization of single-walled Carbon nanotubes by functionalization with glucosamine, Nano. Lett. 2002, 2: 369.
    [80] M. Hazani, R. Naaman, F. Hennrich, M.M. Kappes. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes, Nano.
    
    Lett. 2003, 3: 153.
    [81] C.V. Nguyen, L. Delzeit, A.M. Cassell, J. Li, J. Han, M. Meyyappan. Preparation of nucleic acid functiortalized carbon nanotube arrays, Nano. Lett. 2002, 2: 1079.
    [82] W. Huang, Y. Lin, S. Taylor, J. Gaillard, A.M. Raom Y.P. Sun. Sonication-assisted functionalization and solubilization of carbon nanotubes, Nano. Lett. 2002, 2: 231.
    [83] 李博,康永福,施祖进,顾镇南.单层碳纳米管的化学修饰,高等学校化学学报2000,21:1633。
    [84] Z.F. Liu, Z.Y. Shen, T. Zhu, S.F. Hou, L.Z. Ying, Z.J. Shi, Z.N. Gu. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique, Langmuir 2000, 16: 3569.
    [85] S, Banerjee, S.S. Wong. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures, Nano. Lett. 2002, 2: 195.
    [86] V.A. Basiuk, E.V. Basiuk, J.M. Saniger-Blesa. Direct amidation of terminal carboxylic groups of armchair and zigzag single-walled carbon nanotubes: a theoretical study, Nano. Lett. 2001, 1: 657.
    [87] K.F. Fu, W.J. Huang, Y. Liu, L.A. Riddle, D.L. Carroll, Y.P. Sun. Defunctionalization of functionalized carbon nanotubes, Nano. Lett. 2001, 1: 439.
    [88] J.L. Bahr, J.P Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour. Functionalization of carbon nanotubes by electrocehmcial reduction of aryl diazonium salts: a bucky paper electrode, J. Am. Chem. Soc. 2001, 123: 6536.
    [89] C.A. Dyke, J.M. Tour. Solvent-free functionalization of carbon nanotubes, J. Am. Chem. Soc. 2003, 125: 1156.
    [90] A. Hamwi, H. Alevergnat, S. Bonnamy, F. Beguin. Fluorination of carbon nanotubes, Carbon 1996, 35: 723.
    [91] E.T. Mickelson, C.B. Huffman, A.G. Beguim, R.E. Smlley, R.H. Hauge, J.L. Margrave. Fluorination of single wall carbon nanotubes, Chem. Phy. Lett. 1998, 296: 188.
    [92] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, J.L. Margrave. Solvation of fluorinated
    
    single wall carbon nanotubes in alcohol solvents, J. Phys. Chem. B 1999, 103: 4318.
    [93] K.F. Kelly, I.W. Chiang, E.T. Mickelson, R.H. Hauge, J.L. Margrave, X. Wang, G.E. Scuseria, C. Radloff, N.J. Halas. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study, Chem. Phys. Lett. 1999, 313: 445.
    [94] R.K. Saini, I.W. Chiang, H. Peng, R.E. Smalley, W.E. Billups, R.H. Hauge, J.L. Margrave. Covalent sidewall functionalization of single wall carbon nanotubes, J. Am. Chem. Soc. 2003, 125: 3617.
    [95] M. Holzinger, O. Vostrowsky, A. Hircsh, F. Hennrich, M. Kappes, R. Weiss, F. Jellen. Side wall functionalisation of carbon nanotubes, Angew Chem. Int. Ed. 2001, 40: 4002.
    [96] M. Prato, M. Maggini. Fulleropyrrolidines: a family of full-fledged fullerene derivatives, Acc. Chem. Res. 1998, 31: 519.
    [97] V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, A. Hirsch. Organic functionalization of carbon nanotubes, J. Am. Chem. Soc. 2002, 124: 760.
    [98] X. Lu, F. Yian, N. Wang, Q. Zhang. Organic functionalization of the sidewalls of carbon nanotunes by Diels-Alder reactions: a theoretical predication, Org. Lett. 2002, 4: 4313.
    [99] R.J. Chen, Y. Zhang, D. Wang, H. Dai. Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 2001, 123: 3838.
    [100] S.A. Curran, P.M. Ajayan, W.J. Blau. D.L. Carroll, J. Coleman, A. Dalton, A.P. Davey, B. McCarthy. Composite from PPV and carbon nanotubes: a novel material for molecular optoelectronics, Adv. Mater. 1998, 10: 1091.
    [101] J.N. Coleman, A.B. Dalton, S. Curran, A. Rubio, A.P. Davey, A. Drury, B. McCarthy, B. Lahr, P.M. Ajayan, S. Roth, R.C. Barklie, W. Blau. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer, Adv. Mater. 2000, 12: 213.
    [102] J.E. Riggs, D.B. Walker, D.L. Carroll, Y.P. Sun. Optical Limiting properties of suspended and solubilized carbon nanotubes, J. Phys.
    
    Chem. B 2000, 104: 7071.
    [103] R. Czerw, Z.X. Guo, P.M. Ajayan, Y.P. Sun, D.L. Carroll. Organization of polymers onto carbon nanotubes: a route to nanoscale assembly, Nano. Lett. 2001, 1: 423.
    [104] M.J. O'Connell, P. Boul, L.M. Ericson, C. Huffman, Y.H. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley. Reversible water-solublization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett. 2001, 342: 265.
    [105] B.Z. Tang, H. Xu. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes, Macromolecules 1999, 32: 2569.
    [106] J.H. Fan, M.X. Wan, D.B. Zhu, B. Chang, Z. Pan, S. Xie. Nanotubes coated by conducting polypyrrole, J. Appl. Polym. Sci. 1999, 74: 2605.
    [107] J.H. Fan, M.X. Wan, D.B. Zhu. Synthesis and properties of carbon nanotube-polypyrrole composites, Synthetic Metals 1999, 102: 1266.
    [108] F. Balavoine, P. Schulta, C. Richard, V. Mallouh, T.W. Ebbesen, C. Mioskowski. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors, Angew. Chem. Int. Ed. 1999, 38: 1912.
    [109] M. Shim, A. Javey, N. Wong Shi Kam, H. Dai. Polymer functionalization for air-Stable n-type carbon nanotube field-Effect transistors, J. Am. Chem. Soc. 2001, 123: 11512.
    [110] M. Mao, S.M. Huang, L.M. Dai, G. Wallace, R. Gao, Z. Wang. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers, Angew. Chem. Int. Ed. 2000, 39: 3664.
    [111] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath. Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew. Chem. Int. Ed. 2001, 40: 1721.
    [112] R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R.Y. Rozen. Stabilization of individual carbon nanotubes in aqueous solutions, Nano. Lett. 2002, 2: 25.
    [113] K. Otobe, H. Nakao, H. hayashi, F. Nihey, M. Yudasaka, S. Iijima.
    
    Fluorescence visualization of carbon nanotubes by modification with silicon-based polymer, Nano. Lett. 2002, 2:1157.
    [114] X. Wang, Y. Lin, W. Qiu, D. Zhu. Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials, J. Mater. Chem. 2002, 12: 1636.
    [115] A. Star, Y. Liu, K. Grant, L. Ridvan, J.F. Stoddart, D.W. Steuerman, M.R. Diehl, A. Boukai, J.R. Heath. Noncovalent side-wall functionalization of single-walled carbon nanotubes, Macromolecules 2003, 36: 553.
    [116] L. Grigorian, K.A. Williams, S. Fang, G.U. Mumanasekera, A.L. Loper, E.C. Dickey, S.J. Pennycook, P.C. Eklund. Reversible intercalation of charged iodine chains into carbon nanotube ropes, Phys. Rev. Lett. 1998, 80: 5560.
    [117] R. Yu, L. Wei, Q. Liu, J. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G. Q. Xu, T.S. Andy Hor. Platinum deposition on carbon nanotubes via chemical modification, Chem. Mater. 1998, 10: 718.
    [118] Q. D. Chen, L.M. Dai, M. Gao, S.M. Huang, A. Mau. Plasma activation of carbon nanotubes for chemical modification, J. Phys. Chem. B 2001, 105: 618.
    [119] B. N. Khare, M. Meyyappan, A.M. Cassell, C.V. Nguyen, J. Han. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge, Nano. Lett. 2002, 2: 73.
    [120] R. F. Service. Superstrong nanotubes show they are smart, too, Science 1998, 281: 940.
    [121] P. Ball. Roll up for the revolution, Nature 2001, 414: 142.
    [122] H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley. Nanotubes as nanoprobes in scanning probe microscopy, Nature 1996, 384: 147.
    [123] S. Wong, E. Joselevich, A. Woolley, C. Cheung, C. Lieber. Covalently functionalized nanotubes as nanometer probes for chemistry and biology, Nature 1998, 394: 52.
    [124] T. Nishino, T. Ito, Y. Umezawa. Carbon nanotube scanning tunneling microscopy tips for chemically selective imaging, Anal. Chem. 2002, 74:
    
    4275.
    [125] 范守善.碳纳米管及相关的一维纳米材料,材料导报,1999,13:42.
    [126] P. M. Ajayan, S. Iijima. Capillarity induced filling in carbon nanotubes, Nature 1993, 361: 333.
    [127] S. Seraphin, D. Zhou, J. Jiao , J.C. Withers, R. Loutfy. Yttrium carbide in nanotubes, Nature 1993, 362: 503.
    [128] E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki. Capillarity and wetting of carbon nanotubes, Science 1994, 265:1850.
    [129] S. C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green. A simple chemical method of opening and filling carbon nanotubes, Nature 1994, 372: 159.
    [130] H. J. Dai, E. Wong, Y. Lu, S. Fan, C.M. Lieber. Synthesis and characterization of Ccarbide nanorods, Nature 1995, 375: 769.
    [131] P. M. Ajayan, O. Stephan, P. Redlich, C.Colliex. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature 1996, 375: 564.
    [132] Q. Li, S.S. Fan, W. Han. Jpn. J. Appl. Phys. 1997, 36: 1501.
    [133] W. Han, S. Fan, Q. Li, Y.D. Hu. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science 1997, 277: 1278.
    [134] W. Han, S. Fen, Q. Li. Appl. Phys. Lett. 1997, 71: 227.
    [135] F. Balavoine, P. Schulti, C. Richard, V. Mallouh, T.W. Ebbesen, C. Mioskowski. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors, Angew. Chem. 1999, 111: 2036.
    [136] S.J. Tans, A.R. Verschueren, C. Dekker. Room-temperature transistor based on a single carbon nanotube, Nature 1998, 393: 49.
    [137] P.G. Collins, M.S. Arnold, P. Avouris. Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 2001, 292: 706.
    [138] V. Deryke, R. Martel, J. Appenzeller, P. Avouris. Carbon nanotube inter- and intramolecular logic gates, Nano. Lett. 2001, 1: 453.
    [139] H. M. Cheng, Q.H. Yang, C. Liu. Hydrogen storage in carbon nanotubes, Carbon 2001, 39: 1447.
    
    
    [140] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai. Nanotube molecular wires as chemical sensors, Science 2000, 287: 622.
    [141] P. M. Wagner, O. Lourie, Y. Feldman, R. Tenne. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 1998, 72: 188.
    [142] M. S. Dresselhaus. Down the straight and narrow, Nature 1992, 358: 195.
    [143] P. J. Britton, K.S.V. Santhanam, P.M. Ajayan. Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 1996, 41: 121.
    [144] J. J. Davis, J.C. Richard, H. Allen O. Hill. Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem. 1997, 440: 79.
    [145] P. F. Liu, J.H. Hu. Carbon nanotube powder microelectrodes for nitrite detection, Sensors and Actuators B: Chemical 2002, 84: 194.
    [146] Z. H. Wang, Y.M. Wang, G.A. Luo. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid, Analyst 2002, 127: 653.
    [147] Z. H. Wang, Y.M. Wang, G.A. Luo. A selective voltammetric method for uric acid detection at β-cyelodextrin modified electrode incorporating carbon nanotubes, Analyst 2002, 127: 1353.
    [148] H. X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Anal. Chem. 2001, 73: 915.
    [149] 罗红霞,施祖进,李南强,庄乾坤.羧基化单层碳纳米管修饰电极电化学表征及其电催化作用,高等学校化学学报,2000,21:1372.
    [150] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu. Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode, Microchem. J. 2002, 73: 325.
    [151] F. H. Wu, G.C. Zhao, X.W. Wei. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun. 2002, 4: 690.
    [152] M. Musamech, J. Wang, A. Merkoci, Y.H. Lin. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes,
    
    Electrochem. Commun. 2002, 4: 743.
    [153] M. F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano. Lett. 2003, 3: 269.
    [154] 陈荣生,肖华,黄卫华,童华,王宗礼,程介克.单壁碳纳米管修饰的高灵敏纳米碳纤维电极,高等学校化学学报 2003,24:808.
    [155] G. L. Che, B.B. Lakschmi, E.R. Fisher, C.R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production, Nature 1998, 393: 346.
    [156] W.A. De Heer, A. Chatelain, D. Ugarte. A carbon nanotube field-emission electron source, Science 1995,270:1179.
    [157] W.A. De Heer, J.M. Bonard, K. Fauth, A. Chatelain, L. Forro, D. Ugarte. Electron field emitters based on carbon nanotube films, Adv. Mater. 1997, 9: 87.
    [158] R.H. Baughman, C.C. Cui, A.A. Zakhidov, Z. Iqbat, J.N. Barisci, G. M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz. Carbon nanotube actuators, Science 1999, 284: 1340.
    [159] C.M. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent. High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 1997, 70: 1480.
    [160] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production, Nature 1998, 393: 346.
    [161] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus. Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 1999, 286: 1127.
    [162] J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutarte, P. Geneste, P. Bernier, P.M. Ajayan. Applications of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 1994, 116: 7935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700