攀钢包芯线氮化钒粉芯造粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化钒是冶金工业中一种重要的钒添加剂,通过钒氮微合金化技术能显著提高钢的强度和降低钢的成本。2001年12月攀枝花钢铁公司申请的“氮化钒的生产方法”专利开创了国内氮化钒的产业化进程。攀钢集团钢铁研究院在2005年发明了VT包芯线(一种粉芯为按一定比例混合的氮化钒粉末和钛铁粉末而外层是钢皮包裹制成的包芯线),该包芯线用于攀钢钢水冶炼时的成分调整。但该包芯线自投产以来一直存在芯粉密度不均匀等问题,其主要原因是氮化钒原料经破碎后产生大量细粉(经统计粒径小于0.6mm的细粉占到总重量的40%-50%),在通过漏斗对钢带进行加料时,细粉在漏斗内部产生架桥,阻碍其它粉料正常均匀地下流,使粉料在钢带长度内分布不均匀。
     为了改善粉末的流动性和提高细粉的利用率,本文对氮化钒粉末制定了分级—造粒—干燥的工艺,即将破碎后粒径小于1 mm的细粉通过筛分选出,用圆盘造粒机进行造粒,最后进行干燥。并用红外线快速水分测定仪测定生球的含水率;用体视显微镜观察干球外观形貌;用扫描电子显微镜观察干球横截面微观结构;用自制装置测量干球搅拌强度和抗压强度,自由降落试验测量干球落下强度。
     经过对氮化钒造粒正交试验结果和干燥试验结果分析表明:低温淀粉粘合剂可以做为氮化钒粉末造粒时的粘合剂;通过试验确定了氮化钒造粒—干燥最佳工艺,即在粒径范围为0.2~0.6mm的氮化钒粉末中加入1.0%的淀粉粘合剂,在35r/min的圆盘转速下进行造粒,然后在110℃下干燥1h,可以得到较为理想成粒率和较高强度的干球;由体视显微镜图可知,不同造粒条件组合得到的干球外观形貌差异比较大;大粒径的氮化钒球团长大是介于成层机理和粘结机理之间,小粒径的氮化钒球团长大主要以粘结机理长大。
     通过干燥试验发现:生球初含水率越小,干燥总速度越快;原料粒度越细、原料中粘合剂比例越大,干燥总速度越慢;干燥速度曲线受干燥温度大小影响。通过试验得出:氮化钒生球干燥速度曲线主要有单峰型和双峰型两种类型。在单峰型生球干燥曲线中,生球的干燥过程由增速期和减速期两阶段组成,而且干燥速度由增快到减慢是个渐变过程。在双峰型生球干燥曲线中,生球的干燥过程是由第一增速期,第一减速期,第二增速期和第二减速期四个阶段构成。
Vanadium nitride is an important vanadium alloy additive in metallurgical industry,V-N microalloying technology can increase the steel intensity significantly and reduce the cost of steel.A patent application for the production method of vanadium nitride had been filed by Panzhihua Iron and Steel Corporation in December,2001 and it initiated the industrialized process of vanadium nitride in China.VT cored wire(a kind of cored wire in which vanadium nitride powder and ferrotitanium powder are mixed in certain proportion and the powder is packed by steel strip) was invited by Panzhihua Iron and Steel Research Institute in 2005 and it was used to adjust the chemical element composition when melting steel by wire-feeding method.While there has been existing a problem of uneven powder core density since VT cored wire was commissioned,the main reason is that the fine vanadium nitride powders(the proportion of fine powders which particle size smaller than 0.6mm reach 40% to 50%)produced after crushing bridge in funnel by which to feed to steel strip, what hinders other powders downflowing at normal speed, so the phenomenon occurs.
     In order to improve the powder flowability and the fine powder utilization,the classification-granulation-drying technological process is used. In this dissertation, the fine powders after crushing which particle size smaller than lmm are sorted by sieve,then granulated by pan granulator and dried by drier.The green pellets water content is measured by infrared rapid moisture instrument;the surface morphologies of dry pellets are studied by stereomicroscope;the microstructures of dry pellets cross-section are analysed with scanning electron microscope(SEM);the dry pellets compressive intensity and dry pellets stirring intensity are measured by self-made equipments;the dry pellets drop number is determined by free drop experiments.
     The results of vanadium nitride granulation orthogonal experiments and drying experiments show that,the low-temperature starch adhesive is the proper binder for vanadium nitride powder granulation;the optimum process of vanadium nitride granulation-drying operation for the dry pellets with ideal granulating rate and higher strength are investigated as follows:the disc rotation speed is 35r/min,the binder addition amount is 1.0%,the material particle size distribution is 0.2~0.6mm,the drying temperature is 110℃,the drying time is 1h; the surface morphologies of dry pellets is different under different granulation conditional combinations through the stereomicroscope graphs;the growth mechanisms of large particle vanadium nitride pellets lie between stratification and coalescence, the small particle pellets grow up by the way of coalescence.
     Based on the results of drying experiments, it's found that,the smaller the green pellets initial moisture content is, the faster the total drying speed is;the finer the materials particle and the larger the binder ratio in material is, the slower the total drying speed is; the drying rate curves are influenced with the drying temperature.There are two types of vanadium nitride pellets drying rate curves:one-peak type and two-peak type.The green pellets drying process of one-peak type is composed of increasing speed stage and deceleration stage and the process changes gradually.The green pellets drying process of two-peak type is composed of the fist increasing speed stage,the first deceleration stage,the second increasing speed stage and the second deceleration stage.
引文
[1]东涛,付俊岩.试论我国钢的微合金化发展方向.中国冶金,2002,5:16-19
    [2]干勇,董瀚.先进钢铁材料技术的进展.中国冶金,2004,8:1-6
    [3]Platts G K,Vassiliou A D,Pickening F B. Developments in microalloyed high-strength low-alloy steels:an overview. Metallurgist and Materials Technologist,1984,16(9):447-454
    [4]Delehouzee L,Dixmier J M,Henry J M,etal. Recent developments of calcium alloys cored wire. In:SCANINJECT 2,Proceedings-2nd International Conference on Injection Metallurgy. Lulea,1980
    [5]江俊峰,朴明哲.钢包喷粉技术及设备.鞍钢技术,1999,10:11-14
    [6]吴玉彬,陶春国.喂线技术在铸钢生产中的应用.铸造,1997,10:24-25
    [7]葛建国.高镁合金喂线技术在球墨铸铁生产中的应用[硕士学位论文].哈尔滨:哈尔滨工业大学,2002
    [8]巫瑞智,吴玉彬,翟长生等.喂线技术的现状与发展.铸造,2003,52(1):7-9
    [9]朱正宇,徐政,殷作虎.喂丝法生产蠕墨铸铁的研究.现代铸铁,2003,3:24-27
    [10]Holmes D,Reisinger R. Automation of magnesium cored wire injection to produce ductile iron. Foundryman,1998,91(6):196-199
    [11]张玉富,陈晓雷,陈鹿民等.包芯线机组自动控制系统的设计与实现.郑州轻工业学院学报(自然科学版),2006,21(2):73-76
    [12]Gueussier A,Boussard P,Pellicani F,etal. Utilization of cored wire for ladle metallurgy. Cahiers d'Informations Techniques-Revue de Metallurgie,1983,80(11):159-171
    [13]包头文鑫实业有限公司.复合粉芯包芯线及其制造方法.中国.发明专利,2007-07-25
    [14]郑敏,王荣,孙群.钢包喂线技术的应用.鞍钢技术,2002,3:26-29
    [15]Guessie Andre L,Vachiery Edmon V,Tranchant J-L,etal. In-ladle treatment using a new cored wire technique. Iron and Steel Engineer,1983,60(10):35-41
    [16]朱彦方.喂线球化工艺生产铁素体球铁的质量控制.现代铸铁,2006,3:26-28
    [17]攀钢集团攀枝花钢铁研究院.用于实现钢液钒、氮合金化的包芯线.中国.发明专利,2005-08-16
    [18]A Carpenter. Vanadiun carbide process. US,3383196,1968-5-14
    [19]攀枝花钢铁(集团)公司.氮化钒的生产方法.中国.发明专利,2003-06-11
    [20]中国科学院上海硅酸盐研究所.立方相纳米氮化钒粉体的制备方法.中国.发明专利,2005-02-02
    [21]长沙隆泰科技有限公司.一种用工业微波炉生产氮化钒的方法.中国.发明专利,2005-07-27
    [22]J H Downing. Vanadium containing addition agent and process for production same. US,3334992,1967-8-8
    [23]R F Merkert. Method of producing a composition containing a large amount of vanadium and nitrogen. US,4040814,1977-8-9
    [24]王厚功,陈延民,朱元凯等.碳化钒、碳氮化钒生产工艺条件的实验室研究.钢铁钒钛,1988,2:19-24
    [25]P K Tripathy,A Arga,D K Bose. Preparation of vanadium nitride and its subsequent metallization by thermal decomposition. Journal of Alloys and Compounds,1994,209(1):175-180
    [26]于三三,付念新,高峰等.一步法合成碳氮化钒的研究.钢铁钒钛,2007,28(4):1-5
    [27]C L Yeh,Y D Chen. Combustion synthesis of vanadium carbonitride from V-C powder compacts under nitrogen pressure. Ceramics International,2007,33:365-371
    [28]Yong Cheol Hong,Dong Hun Shin,Han Sup Uhm. Production of vanadium nitride nanopowders from gas-phase VOC15 by making use of microwave phasma torch. Materials Chemistry and Physics,2007,101(1):35-40
    [29]Luyang Chen,Yunle Gu,Liang Shi,etal. A room-temperature synthesis of nanocrystalline vanadium nitride. Solid State Communications,2004,132(5):343-346
    [30]N S Gajbhiye,R S Ningthoujam. Low temperature synthesis,crystal structure and thermal stability studies nanocrystalline VN particles. Materials Research Bulletin,2006,41(9):1612-1621
    [31]任哲峥,黄维刚.氨解草酸氧钠制备纳米氮化钒粉体.功能材料,2007,038(A06):2112-2113
    [32]上海大学.氮化钒的制备方法及其装置.中国.发明专利,2005-01-12
    [33]Zajac S,Siwecki T,Hutchinson W B,etal. The Role of Carbon in Enchancing Precipitation Strengthening of V-Microalloyed Steels. In:Conf.Proc.of Int. Symposium on Microalloying in Steels:New Trends for the 21st Century. San-Sebasitian,1998
    [34]季怀忠,杨才福,张永权.氮在非调质钢中的作用.钢铁,2000,35(7):66-72
    [35]Zajac S,Lagneborg R,Siwecki T. The Role of Nitrogen in Microalloyed Steels. In:Microalloying'95 Pittsburgh. Pittsburgh,1995
    [36]Patrick Rodriguez,Joaquinl Brito,Alberto Albornoz,etal. Comparison of vanadium carbide and nitride catalysts for hydrotreating. Catalysis Communications,2004,5:79-82
    [37]Y Z Shen,S H Kim,C H Han,etal. Vanadium nitride precipitate phase in a 9% chromium steel for nuclear power plant applications. Journal of Nuclear Materials,2008,374(3):403-412
    [38]Urban Wiklund,Begona Casas,Nils Stavlid. Evaporated vanadium nitride as a friction material in dry sliding against stainless steel. Wear,2006,261:2-8
    [39]Xin-Ping Qu,Mi Zhou,Tao Chen,etal. Study of ultrathin vanadium nitride as diffusion battier for copper interconnect. Microelectronic Engineering,2006,83:236-240
    [40]韩仲琦.料仓及重力场的粉粒体流动.水泥技术,2003,3:18-24
    [41]高汝伟,王标,刘汉强等.粉末流动性和添加润滑剂对烧结钕铁硼磁体取向度和磁性能的影响.自然科学进展,2006,16(4):495-498
    [42]Liu L X,Marziano I,Bentham A C,etal. Effect of particle properties on the flowability ibuprofen powders. International Journals of Pharmaceutics,2008,362(1):109-117
    [43]Satoru Watano,Yasushi Imada,Kenji Hamada,etal. Microgranulation of fine powders by a novel rotating fluidized bed granulator. Powder Technology,2003,131(2):250-255
    [44]奚天鹏,刘传义,何士安.粉体干燥-造粒-微波加热干燥新工艺.塑料助剂,2005,52(4):25-28
    [45]张一敏.球团理论与工艺.北京:冶金工业出版社,2002
    [46]张一敏.球团矿生产技术.北京:冶金工业出版社,2005
    [47]李建平.中国粉体造粒技术现状与展望.中国粉体工业,2005,5:17-20
    [48](加)C.E.CAPES著,钱树得,顾芳珍译.造粒技术.北京:化学工业出版社1992
    [49]Peter Knight. Challenges in granulation technology. Powder Technology,2004,140:156-162
    [50]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999
    [51]《化学工程手册》编辑委员会编辑.化学工程手册,第23篇:粉碎、分级及团聚.北京:化学工业出版社,1987
    [52]Dan Bergstrom,Samuel Israelsson,Marcus Ohman,etal. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Processing Technology,2008,89(12):1324-1329
    [53]王兆霖,吕雪松,胡金辉等.粘附性颗粒流态化聚团尺寸的预测模型.化工冶金,1998,19(3):225-230
    [54]丘可昂.金属粉末自然坡度角的研究.稀有金属材料与工程,1993,22(5):74-79
    [55]D Geldart,E C Abdullah,A Hassanpour,etal. Characterization of powder flowability using measurement of angle of repose. China Particuology,2006,4(3):104-107
    [56]P C Chadwick,J Bridgwater. Solids flow in dish granulators. Chemical Engineering Science,1997,52(15):2497-2509
    [57]Wei-Da Tu,Shu-San Hsiau,Andy Ingram,etal. The effect of powder size on induction behaviour and binder distribution during high shear melt agglomeration of calcium carbonate. Powder Technology,2008,184:298-312
    [58]Paul R Mort. Scale-up and control of binder agglomeration processes-Flow and stress fields. Powder Technology,2009,189(2):313-317
    [59]Rohit Ramachandran,Jonathan M-H Poon,Constantijn F W Sanders,etal. Experimental studies on distributions of granule size,binder content and porosity in batch drum granulation:Inferences on process modelling requirements and process sensitivities. Powder Technology,2008,188(2):89-101
    [60]马慕尚.影响圆盘造粒的因素.磷肥与复肥,1994,2:62-64
    [61]阴继翔.内配碳球团矿直接还原工艺参数的优化研究:[硕士学位论文].北京:北京科技大学,1997
    [62]付菊英.球团基本知识讲座,第三讲:生球的干燥.烧结球团,1982,3:85-90
    [63]黄典冰,孔令坛,林宗彩生球干燥过程及其数学模型.金属学报,1992,28(12):B533-B539
    [64]Berman Yu A. Investigation and calculation of pellet dying process under isothermal conditions. Steel in the USSR,1984,14(7):312-315
    [65]J A Thurlby. A dynamic mathematical model of the complete grate/kiln iron-ore pellet induration process. Metallurgical Transactions,1988,19B:103-111
    [66]Clark K N. Iron ore pellet drying mechanisms under the heating conditions encountered in a straight-grate indurator. Transactions of the Institution of Mining & Metallurgy,1981,90:66-72
    [67]M Ilic,I W Turner. Drying of a wet porous material. Applied Mathematical Modelling,1986,10(1):16-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700