超细碳氮化钛基金属陶瓷的微波烧结工艺与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiCN基金属陶瓷因其具有高的硬度、很好的耐磨性和红硬性、优良的热导率、以及良好的化学稳定性和抗粘结能力,是一种极具潜力的刀具材料。本论文采用球磨方法制备了TiCN超细粉末,采用微波烧结技术制备了超细TiCN基金属陶瓷以及纳米复合超细TiCN基金属陶瓷;考察了不同球磨时间下粉末粒度的分布情况,分析了球料比和球磨时间对TiCN粉末粒度的影响,研究了烧结温度、保温时间和纳米粒子添加量对材料组织与性能的影响规律;并利用扫描电子显微镜(SEM)(带EDS)观察并分析了TiCN粉末的形貌、超细TiCN基金属陶瓷的断口组织及其元素分布,得出如下研究结果:
     1.采用球磨工艺可有效制备TiCN超细粉末;随着球料比和球磨时间的增加,粉末平均粒径均出现先减小后增大的趋势,球料比为8:1时球磨50h可获得平均粒径为0.84μm的类球形TiCN超细粉末。
     2.采用微波烧结技术可以制备出晶粒细小、组织均匀、性能优异的超细金属陶瓷。随着烧结温度的升高,超细金属陶瓷的收缩率、致密度、抗弯强度和硬度均先增大后减小,在1500℃时出现极大值;超细金属陶瓷合适的微波烧结工艺为1500℃保温30min,此时其抗弯强度和硬度值分别为1547MPa和90.6HRA,与常规烧结相比分别提高了24.0%和0.7%。
     3.随着烧结温度的升高,纳米Al_2O_3复合超细金属陶瓷的线收缩率、致密度、抗弯强度和硬度均先增大后减小,在1500℃时出现极大值;纳米Al_2O_3复合超细金属陶瓷合适的微波烧结工艺为1500℃保温30min;实验中纳米Al_2O_3的添加反而降低了超细金属陶瓷的力学性能,其原因主要是纳米Al_2O_3在超细金属陶瓷内发生了严重的团聚。
     4.随着烧结温度的升高,纳米Si_3N_4复合超细金属陶瓷的线收缩率、致密度、抗弯强度和硬度均先增大后减小,在1500℃时出现极大值;纳米Si_3N_4复合超细金属陶瓷合适的微波烧结工艺为1500℃保温30min。
     5.随着纳米Si_3N_4添加量的增加,材料的抗弯强度和硬度均先增大后减小,当纳米Si_3N_4的添加量为2.0%时,材料具有最佳的力学性能,此时其抗弯强度和硬度分别为1749MPa和91.8HRA,较未添加纳米材料的超细金属陶瓷分别提高13.1%和1.3%。纳米Si_3N_4复合超细金属陶瓷的断裂方式为沿晶断裂和少量大颗粒硬质相的穿晶断裂,其强化机制为细晶强化和弥散强化。
Because of their high hardness, excellent wear resistance, red-hardness, thermal conductivity, chemical stability and bond resisitance ability, TiCN matrix cermets are considered as an extremely potential cutting material. In this paper, the ultra-fine TiCN powders were prepared by ball milling method. The size distribution of TiCN particles milled for different times was tested and the effect of ball-powders ratio and milling time on the average particle size of TiCN powders was analyzed. Ultra-fine TiCN matrix cermets reforced by nano-particle were prepared by a microwave sintering. The effect of sintering temperature, holding time and the addition of nanoparticle on the microstructure and mechanical properties of ultra-fine TiCN matrix cermets were studied. Simultaneously, both the micrographs of TiCN powders and the microstructures and distribution of elements of fracture surface of ultra-fine TiCN matrix cermets and their nanocomposite cermets were observed and investigated by scanning electron microscope (SEM) with EDS. The results are shown as follows:
     1.The ultra-fine TiCN powders were effectively prepared by ball milling. With the increasing of ball-powders ratio and milling time, the average particle size reduces first and then rises, and when milled for 50h with ball-powders ratio of 8:1, the ultra fine spheroidal powders of TiCN with the average size of 0.84μm can be obtained.
     2.Ultra-fine TiCN matrix cermets were prepared by a microwave sintering. With the increasing of sintering temperature, the shrinkage rate, relative density, bending strength and hardness of the cermets all rise first and then reduce. And the ultra-fine TiCN matrix cermets sintered at 1500℃for 30 minutes shows small grains, homogeneous microstructures, and excellent properties with 1547MPa of bending strength and 90.6HRA of hardness, which are increased 24.0% and 0.7%, respectively, compared with that of the cermets prepared by convention sintering.
     3.With the increasing of sintering temperature, the shrinkage rate, relative density, bending strength and hardness of the cermets reforced by nano-Al_2O_3 all rise first and then reduce, the maximal value appeared when the temperature is 1500℃, and the suitable microwave technology is 1500℃for 30min. In this experiment, the addition of nano-Al_2O_3 reduces the mechanical properties of ultra-fine cermets which is due to nano- Al_2O_3’s conglobation.
     4.With the increasing of sintering temperature, the shrinkage rate, relative density, bending strength and hardness of cermets reforced by nano-Si_3N_4 all rise first and then reduce, the maximal value appears when the temperature is 1500℃, and the suitable microwave technology is 1500℃for 30min.
     5.With the increasing of the addition of nano-Si_3N_4, the bending strength and hardness of the cermets both rise first and then reduce. When the addition of nano-Si_3N_4 is 2.0vol%, the ultra-fine cermets shows excellent properties with 1749MPa of bending strength and 91.8HRA of hardness. Compared with these of the ultra-fine cermets without nanoparticles, a bending strength and hardness are increased 13.1% and 1.3% respectively. The fracture mode of ultra-fine cermets reforced by nano-Si_3N_4 is intercrystalline fracture and a little transcrystalline fracture of large grained hard phase, and the strengthening mechanism is grain refining and dispersion strengthening.
引文
[1] Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C,N) cermets-Metallurgy and properties[J]. International Journal of Refractory Metals & Hard Materials, 1995, 13(6):343-351.
    [2]贺从训,厦志华,汪有明等.Ti(C,N)基金属陶瓷的研究[J].稀有金属,1999,23(1):4-12.
    [3]林信平,曹顺华,李烔义.现代烧结技术在制备超细和纳米硬质合金中的应用[J].粉末冶金材料科学工程,2004,9(2):44-51.
    [4]周泽华,丁培道.Ti(C,N)基金属陶瓷中添加成分的研究现状[J].材料导报,2000,14(4):21-22.
    [5]黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金,1994,119(4):43-49.
    [6]康新婷,刘素英,蒋纪麟.Ti(C,N)基金属陶瓷的制备与应用[J].硬质合金,1999,16(1):51-55.
    [7] Ahn S, Kang S. Dissolution phenomena in the Ti(C0.7N0.3)-WC-Ni System[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(4):340-345.
    [8] George L, Wayne D. Kaplan, M B. Structure refinement of titanium carbonitride(TiCN)[J]. Materials Letters, 1998, 35(5-6):344-350.
    [9] Frederic M, Valentina M, Alida B. Microstructure of hot-pressed Ti(C,N)-based cermets [J]. Journal of the European Ceramic Society, 2002, 22(14-15):2587-2593.
    [10] Jinkwan J, Shinhoo K. Effect of ultra-fine powders on the microstructure of Ti(CN)-xWC-Ni cermets[J]. Acta Materialia, 2004, 52(6):1379-1386.
    [11]谢峰,张崇高,刘宁等.Ti(C,N)基金属陶瓷刀具与纳米改性[J].中国机械工程, 2002, 13(12):1062-1065.
    [12]肖纪美.材料的应用与发展[M].北京:人民教育出版社,1988:68-74.
    [13]王文光.金属陶瓷刀具的新进展[J].工具技术,1995,29(10):36-37.
    [14] Porat R, Nahariya, Ber A, et al. New Approach of Cutting Tool Materials-CERMET(Titanium Carbonitride-Based Material) for Machining Steels[J]. CIRP Annals-Manufacturing Technology, 1990(1):71-75.
    [15]铃木寿.TiC基金属陶瓷的发展与现状[J].日本金属学会会报,1983,4(22):312.
    [16]王辉平,尹志民.TiCN基金属陶瓷刀片的研究[J].硬质合金,2003,20(3):133-137.
    [17]刘晓峰,贺跃辉,黄伯云等.Ti(C,N)基金属陶瓷的发展现状及趋势[J].粉末冶金技术,2004, 22(4):236-240.
    [18]肖汉宁,李玉平,高纪明等.氨解对溶胶-凝胶法合成Ti(C,N)纳米粉末的影响[J].湖南大学学报,2001,28(4):35-38.
    [19]熊惟皓,胡镇华,崔崑.Ti(C,N)基金属陶瓷相界面层微晶结构的形成[J].金属学报,1996, 32(10):1075-1080.
    [20]刘宁,赵兴中,刘灿楼等.添加碳对Ti(C,N)基金属陶瓷组织和性能的影响[J].理化检验-物理分册,1995, 31(2):13-15.
    [21] Ananthapadmanabhan P V, Taylor Patrick R, Zhu W X. Synthesis of titanium nitride in a thermal plasma reactor[J]. Journal of Alloys and Compounds, 1999, 287(1-2):126-129.
    [22] Shen G Z , Tang K B, An C H, et al. Asimple route to prepare nanocrystalline titanium carbonitride[J]. Materials Research Bulletin, 2002, 37(6):1207-1211.
    [23] Lichtenberger O, Pippel E, Woltersdorf J, et al. Formation of nanocrystalline titanium carbonitride by pyrolysis of poly(titanylcarbodiimide)[J]. Materials Chemistry Physics, 2003, 81(1):195-201.
    [24] Jung J, Kang S. Effect of ultra-fine powders on the microstructure of Ti(CN)-Xwc-Ni cermets[J]. Acta Materialia, 2004, 52(6):1379-1386.
    [25] Park S ,Kang Y J, Kwon H J, et al. Synthesis of (Ti, M1, M2)(CN)-Ni nanocrystalline powders[J]. International Journal of Refractory Metals & Hard Materials, 2006(24):115-121.
    [26] Angerer P, Yu L G, Khor K A, et al. Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders[J]. Journal of the European Ceramic Society, 2005, 25(11):1919-1927.
    [27] Yuan Q, Zheng Y, Yu H J. Synthesis of nanocrystalline Ti(C,N) powders by mechanical alloying and influence of alloying elements on the reaction[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(1):121-125.
    [28] Xiang D P, Liu Y, Tu M J, et al. Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(1):111-114.
    [29]白万杰.等离子体化学气相合成法制备碳氮化钛陶瓷粉体的工艺[P].中国:ZL02153392.X,2004-09-22.
    [30] Frederic M, Valentina M, Alida B. Synthesis of ultrafine titanium carbonitride powders[J]. Applied Organometallic Chemistry, 2001, 15(5):421-429.
    [31] Xiong J, Guo Z X, Shen B L, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J]. Material & Design, 2007, 28(5):1689-1694.
    [32] Li Y, Liu N, Zhang X B, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(3):190-196.
    [33] Zhang Y X, Zheng Y, Zhong J, et al. Effect of carbon content and cooling mode on the microstructure and properties of Ti(C,N)-based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(6):1009-1013.
    [34] Wang J, Liu Y, Feng Y, et al. Effect of NbC on the microstructure and sinterability of Ti(C0.7N0.3)-based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(3):549-551.
    [35] Wang J, Liu Y, Zhang P, et al. Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)-xWC-Mo2C-(Co, Ni) system[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(1):9-13.
    [36] Wang J, Liu Y, Zhang P, et al. Effect of VC and nano-TiC addition on the microstructure and properties of micrometer grade Ti(CN)-based cermets[J]. Materials & Design, 2009, 30(6):2222-2226.
    [37]严永林,郑勇,承新等.Mo含量对Ti(C,N)基金属陶瓷组织和性能的影响[J].粉末冶金工业,2008, 18(1):28-31.
    [38] Wally P, Ettmayer P, Lengauer W. Ti-Mo-C-N system: Stability of the (Ti, Mo)(C, N) phase[J]. Journal of Alloys and Compounds, 1995,228(1):96-101.
    [39] Gibas T, Walter J, Jaworska, et al. Sinterability of carbide nitride phase pf titanium in high pressure conditions[J]. Journal of Materials Processing Technology, 1997, 64(1-3):133-140.
    [40] Kaidash O N. Activated sintering and interaction in the titanium nitride-nickel system[J]. Ceramics International, 1998, 24(2):157-162.
    [41] Park J K, Park S T. Densification of TiN-Ni cermets by improving wettability of liquid nickel on TiN grain surface with addition of Mo2C[J]. International Journal of Refractory Metals & Hard Materials, 1999, 17(4):295-298.
    [42] Yang H T, Roberts S. Gas pressure sintering of Al2O3/TiCN composite[J]. Ceramics International, 2005, 31(8):1073-1076.
    [43] Kim J W, Ahn S Y, Kang S. Effect of the complete solid-solution phase on the microstructure of Ti(CN)-based cermet[J]. International Journal of Refractory Metals & Hard Materials, 2009, 27(2):224-228.
    [44] Manoj Kumar B V, Bikramjit B. Mechanisms of material removal during high temperature fretting of TiCN-Ni based cermets[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(6):504-513.
    [45]于海军,郑勇,卜海建等.热等静压处理对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2006, 23(3):124-138.
    [46]晋勇,王玉环,胡希川等.微波烧结金属陶瓷材料的工艺研究[J].工具技术,2004,38(9):96-98.
    [47]夏阳华,丰平,胡耀波等.SPS技术的进展及其在硬质合金制备中的应用[J].硬质合金,2003, 20(4):216-218.
    [48] Zheng Y, Xiang S, MinYou, et al. Fabrieation of nanocomposite Ti(C,N)-based cermet by spark plasma sintering[J]. Materials Chemistry and physics, 2005, 92(1):64-70.
    [49] Gao M X, Yi P, Oliveira F J, et al. The formation of core-rim Structures in Fe40Al/(TiC-TIN-WC) cermets produced by pressureless melt infiltration[J]. Materials science and Engineering A, 2004, 371(1-2):277-252.
    [50] Kim S, Min K, Kang S. Rim structure in Ti(C0.7No.3)-WC-Ni cermets[J]. J.Am.Ceram.Soc, 2003, 86(10):1761-1766.
    [51] Zackrisson J, Rolander U, Jansson B, et al. Microstructure and performance of a cermet material heat-treated in nitrogen[J]. Acta Mater, 2000,48(17):4281-4291.
    [52] Frederic M, Valentina M, Alida B. Microstructure of hot-pressed Ti(C,N)-based cermets[J]. Journal of the European Ceramic Society, 2002,22(14-15):2587-2593.
    [53] Joardar J, Kim S W, Kang S. Effect of nanocrystalline binder on the microstructure and mechanical properties of ultrafine Ti(CN) cermets[J]. Materials Science and Engineering A, 2003, 360(1-2):385-389.
    [54] Ishihara S, Shibata H, Goshima T, et al. Thermal shock induced microcraking of cermets and cemented carbides[J]. Scripta Materialia, 2005, 52(7):559-563.
    [55] Ostberg G, Buss K, Christensen M, et al. Mechanisms of plastic deformation of WC-Co and Ti(C,N)-WC-Co[J]. International Journal of Refractory Metals & Hard Materials, 2006, 24(1-2):135-144.
    [56] Mari D, Bolognini S, Feusier G, et al. Experimental strategy to study the mechanical behaviour of hardmetals for cutting tools[J]. International Journal of Refractory Metals & Hard Materials, 1999, 17(1-3):209-225.
    [57] Bellosi A, Calzavarini R, Faga M G, et al. Characterisation and application of titanium carbonitride-based cutting tools[J]. Journal of Materials processing Technology, 2003, 143-144:527-532.
    [58] Chavanes A, Pauty E, Woydt M. Titanium-molybdenum carbonitride as light-weight and wear resistant monolithic material[J]. Wear, 2004, 256(7-8):647-656.
    [59] Kwon W T, Park J S, Kang S. Effect of group IV elements on the cutting characteristics of Ti(C,N) cermet tool and reliability analysis[J]. Journal of Materials Processing Technology, 2005, 166(1):9-14.
    [60]张立德,牟季美.纳米材料和纳米结构[M].北京:科学技术出版社,2002:2-75.
    [61] HalPerin W P. Quantum size effects in metal particles[J]. Rev of Moden phys, 1986, 58(3):533-606.
    [62] Liu N, Xu Y D, Li H, et al. effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets[J]. Journal of the European Ceramic Society, 2002, 22(13):2409-2414.
    [63]许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能[J].复合材料学报,2003,20(1):33-37.
    [64]许育东,刘宁,曾庆梅等.纳米TIN改性金属陶瓷刀具的磨损性能研究[J].机械工程材料,2002, 26(6):28-31.
    [65]田春艳,姜海,刘宁.纳米TiN改性TiC基金属陶瓷刀具切削性能的研究[J].工具技术,2003,37(2):8-10.
    [66]熊继,沈保罗.超细金属陶瓷的研究现状[J].工具技术,2003,37(4):10-13.
    [67]郑勇,汪胜样,袁泉等.纳米复合TiC(,N)基金属陶瓷烧结晶粒长大的特性[J].三峡大学学报,2003, 25(2):105-107.
    [68]刘文俊,郑勇,游敏.烧结温度对细晶粒Ti(C,N)基金属陶瓷组织和性能的影响[J].三峡大学学报,2003, 25(2):114-117.
    [69] Ting. W. R. & W. A. G Academic Process, New York, 1968.
    [70] Hu X L, Chen K, Yin H. Microwave sintering-new technology for ceramic[J], 1995, 31(1):29-32.
    [71]晋勇,谢华锟.微波烧结技术的应用与发展[J].工具技术,2005,39(1):19-23.
    [72]刘平安,王慧,程小苏等.陶瓷的微波烧结及研究现状[J].中国陶瓷,2005,41(4):5-7.
    [73]吕明,陈楷,苏雪筠.氧化物陶瓷的微波烧结机理[J].中国陶瓷,1998,35(4):26-29.
    [74]胡晓力,陈楷,尹虹.陶瓷烧结新技术—微波烧结[J].中国陶瓷,1995,31(1):29-32.
    [75] Katz J D. Microwave Sintering of Ceramics[J]. Annu Rev Mater Sic, 1992, 22(1):153-170.
    [76] Cheng J P, A grawal D, Zhang Y H, et al. FabricatingTransparent Ceramics by Microwave Sintering[J]. America Ceramics Society Bull[J], 2000,79(9):71-74.
    [77] Fang Y, Roy R, A grawal D K, et al. TransparentMullite Ceramics from Diphasic Aerogels by Microwaveand Conventional Processing[J]. Mater Let, 1996, 28(1-3):11-15.
    [78] Park H C, Lee Y B, Lee S G, et al. Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates[J]. Ceramics International, 2005, 31(2):293-296.
    [79]李云凯,纪康俊,钟家湘等.纳米Al2O3-ZrO2(3Y)复相陶瓷的微波烧结[J].硅酸盐学报,1998, 26(6):740-744.
    [80] Thakur O P, Chandra P, Agrawal D K. Microwave synthesis and sintering of Ba0.95Sr0.05TiO3[J]. Materials Letters, 2002, 56(6):970-973.
    [81] Liu H X, Deng H, Liu Y, et al. Microwave hydrothermal synthesis PZT of nanometer crystal[J]. Journal of Materials Sciences and Technology, 2004, 20(5):637-638.
    [82]李俊,冷观武,文俊翔等.微波烧结铁氧体软磁材料的初步研究[J].磁性材料及器件,2004,35(4):30-31.
    [83] Dalton R C, Clark D E. Combuston sythesis using microwave energy[J]. Crea Eng Sci Proc , 1990, 11(9-10):1729-1742.
    [84] Duangduen A, David E C. Ignition behavior and characteristics of microwave-combustion synthesized Al2O3-TiC powders[J]. Ceramics International 30(2004):1909-1912.
    [85]李燕,刘宁.细晶粒TiCN-Co金属陶瓷的显微结构与力学性能[J].材料热处理学报,2008, 29(1):1-4.
    [86]周书助,王社权,王零森.纳米Ti(C,N)基金属陶瓷烧结过程中的相成分变化[J].中南大学学报(自然科学版),2007,38(3):404-408.
    [87]唐绍裘.球磨技术的理论与实践[J].中国陶瓷,1990,(3):37-42.
    [88]熊惟皓,胡镇华,崔昆.Ti(C,N)基金属陶瓷烧结性能及其组织的研究[J].华中理工大学学报,1997, 25(10):13-16.
    [89]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1989:152-200.
    [90] Davidge R W. Mechanical Behavior of Ceramics[M]. Cambridge: Cambridge University Press, 1979: 86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700