亚高寒草甸弃耕地恢复演替过程及其生态学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口的增长,粮食问题的出现,人类为了自身生存的需要对自然资源进行掠夺性开发,其强度远远超出自然生态系统的承载力,这样自然生态系统遭到严重破坏,导致其结构和功能退化,生产力下降,生物多样性丧失。因此,保护自然生态系统、恢复和重建退化的生态系统已成为人类面临的重要课题。弃耕地演替是指耕地弃耕撂荒后所发生的次生演替。研究表明:如果弃耕地不超过其恢复的生物阈值(植物散布体、土壤种子库和自然物种库等)和非生物阈值(土壤结构,肥力等),给与它们足够的时间,让其自然演替,经过几十年,大多可以恢复或接近顶极植被的状态(特别对于生物多样性而言)。然而,当弃耕地超过了恢复阈值,它们的恢复和重建可能需要一个相当漫长的过程并且不同生态系统下的弃耕地恢复没有一种固定的演替模式。另外,在弃耕地演替恢复过程中,什么因素决定着群落的演替模式?不同生态系统下的弃耕地恢复机制是什么?对这些问题还不清楚,特别对于高海拔地区的生态系统,耕作干扰后草地的恢复是否与其它低海拔生态系统的弃耕地具有一致的恢复模式、速率及其恢复机制呢?为此,2003年采用了空间序列替代时间序列的方法,在甘肃省合作市郊(海拔3000米左右)选择了一个弃耕演替梯度,研究亚高寒草甸弃耕地演替恢复过程中植物群落的种类群成、结构、及其生态系统的功能演变过程,阐明植物群落、功能群和物种之间及其与各主要环境因素之间的相互关系,以期揭示亚高寒弃耕地生态恢复机制,为高海拔地区退化草地的恢复重建提供生态学依据。
     研究表明:
     (1)在弃耕地恢复过程中,随着弃耕时间的增加,物种丰富度,多度和地上生物量显著增加。非禾草(Forbs)植物增加速率远超过禾草(Grasses)和豆科功能群(Legumes)。非禾草植物可以解释总植物物种丰富度,多度和地上生物量的65%-85%以上。因此,在亚高寒弃耕地生态系统中非禾草植物对生态系统的恢复起着重要的作用,经过15-20年的弃耕恢复,弃耕地逐渐演替为一个物种丰富的非禾草植物群落(forblands)。
     (2)在弃耕地恢复过程中,弃耕15年后,灭绝率和迁入率相当,随后,迁入率低于灭绝率,从而导致了恢复演替过程中,物种丰富度增加,物种周转率(Species Turnover Rate)下降。
     (3)对演替恢复过程中不同功能群种子大小的变化进行比较后发现:各个功能群的种子大小随弃耕时间的增加而减小。一方面,邻近的自然植被可以散布种子到这些小面积的弃耕地;另一方面,高寒草地生态系统中,大多数莎草功能群和非禾草功能群植物具有良好的克隆繁殖能力,这样弃耕后,植物群落将利用种子繁殖和克隆繁殖来恢复植被。
     (4)在弃耕地恢复过程中,植被恢复较快,而土壤恢复相对缓慢,具有明显的滞后性。2006年和2007年数据表明:土壤有机碳和全氮随着弃耕时间是显著地线性下降。土壤微生物碳MBC (0-20 cm),土壤微生物碳与土壤有机碳的百分比MBC/Corg (%) (0-20 cm),土壤微生物碳与全氮的百分比MBC/TN (0-20 cm),土壤有机碳与全氮的比值C/N (20-40 cm)和土壤微生物氮MBN(0-20 cm)随着弃耕时间是“U”型的变化模式。而2008年的数据表明:0-10cm和10-20cm的土壤碳和土壤全氮表现出不显著增加趋势,20-40 cm的土壤碳、全氮随着弃耕时间表现出不显著地下降趋势。
     (5)在弃耕地恢复过程中,豆科和禾草的一些关键种对生态系统过程中的土壤碳氮的积累有更重要的作用,特别是对土壤氮的成份。禾草物种甘青针茅(Stipa przewalskyi Roshev),藨草(Scirpus tripueter),洽草(Koeleria cristata)与豆科物种黄花棘豆(Oxytropis ochrocephala),披针叶黄华(Thermopsis lanceolate)和多枝黄芪(Astragalus polycladus)相比,对MBN, MBN/TN有更大的影响;‘在演替后期,矮嵩草(Kobresio humilis)比野豌豆(Vicia sepium)与NH4-N有更显著的正相关关系。这样植被群落恢复过程中,豆科和禾草的关键种的协同作用对土壤氮的成份有更大的影响。总之,在低氮水平下,豆科物种丰富的草地群落中,随着弃耕时间的增加,土壤氮成份控制着植物群落的演替。
     (6)弃耕地恢复过程中,随着弃耕时间的增加,地上地下生物量显著地增加。地上总的生物量从弃耕1年的188 g/m2增加到弃耕30年的516 g/m2。地下根的生物量,从弃耕初期的402 g/m2增加到弃耕30年的2002 g/m2,再到天然草地的3000g/m2。地下地上生物量之比从最低的1倍到最高的10倍。所以,弃耕有助于植被群落的恢复,特别是有助于植被生产力的提高。
     (7)弃耕地植被恢复过程中,生态系统氮库均有增加的趋势。地上氮的范围为:2-10 g/m2;而地下氮的范围为:500-1800 g/m2。地上植物活体和凋落物的氮库低于根系。地上地下氮库大小的顺序为:土壤1007 g/m2>根13.76g/m2>植物地上活体3.68 g/m2>地上凋落物3.20 g/m2。相对于生态系统氮的增加趋势而言,生态系统磷库表现出一些不同的趋势:植物体增加,而土壤下降。地上植物活体和凋落物的磷库也低于根系。地上地下磷库大小顺序为:土壤179 g/m2>根1.16 g/m2>植物地上活体0.31 g/m2>地上凋落物0.27 g/m2。
     (8)在亚高寒草甸,小面积弃耕地由于具有持久的土壤种子库和来自于邻近的天然草甸的种子散布,在弃耕管理的方式下,这些弃耕地生态系统具有很高的自我修复能力和重建能力,且大多数情况下,经过15年至20年的弃耕恢复,’植物群落能够恢复并接近演替顶极的天然草甸。
With the growth of population and the emergence of food problems, the human have exploited too much natural resources to meet their own survival and demand, but its intensity has exceeded the carring capacity of natural ecosystems. The natural ecosystems have been seriously damaged, which leading to degradation of its structure and function, reduced productivity, loss of biodiversity. Therefore, protection of natural ecosystems, restoration and rehabilitation of degraded ecosystems will pose significant scientific and policy challenges. For restoration of abandoned farmlands, if they don't exceed the biotic and abiotic threshold in the cultivation legacy, it will not take too much time. In most cases, after several decades they can restore historical vegetation state. However, intensification of agriculture and rapid environmental change will lead to increasing numbers of old fields that show little recovery towards an historic vegetation state and exist the possibility of multiple pathways and trajectories after disturbances. In addition, the succession of old fields in the natural recovery process, what factors determine the pattern and structure of community succession, what affects the community succession rate? Currently, most of studies are focusing on the low altitude region, little information are available in the high altitude. In contrast to temperate ecosystem, many alpine grasslands are often dominated by forb species. Therefore, predictions based on temperate vegetation succession may not be valid for alpine ecosystems. The chronosequence approach to studying vegetation dynamics has provided significant insights into the patterns and mechanisms of plant succession. A chronosequence of abandoned fields was established in the Research Station of Alpine Meadow and Wetland Ecosystems of Lanzhou University in the eastern part of the Qing-Hai Tibetan Plateau, China (N34°55', E102°53') in 2003. We monitored plant life histories, species composition, diversity, structure, productivity, dynamics and functioning of plant communities over a 6-year period to assess vegetation establishment and recovery after cessation of agriculture. Understanding the relationships among plant species diversity, plant productivity and resource availability in restored ecosystems are important for the management, preservation, and restoration of native communities and may also be crucial for successfully restoring species-rich ecosystem.
     A 6-year period study showed that:
     1 During secondary succession, a significant increase in species richness, abundance and aboveground biomass occurred over time. More interesting, whether the early fields or the late fields, the forbs increased faster than the other functional groups over time. Based on plot level, the forbs accounted for 65-85% of species richness, abundance and aboveground biomass in all fields, suggesting that forb species drive the entire plant communities'assembly and are a key factor to restoration.
     2 Species turnover rate generally declined while species richness increased over time, which supports the generally accepted successional rate hypothesis. Following 15 years, immigration rate and extinction rate converged, suggested that it will take at least 15-20 years to restore, which suggesting that spontaneous succession has higher potential in restoration of degraded ecosystem, particularly of ex-arable fields in the eastern Tibet Plateau.
     3 We examined seed size of different functional groups during succession and found that seed size did not increase over time. Instead we found a decreasing trend in seed size over time, which suggests that seed dispersal influenced by seed size is not a key factor driving succession in the subalpine ecosystem. We hypothesize that seed dispersal is rapid regardless of seed size, because these relatively small abandoned fields are located in a matrix of native vegetation and have a persistent soil seed bank. Second, late successional stages are dominated by forbs and sedges and clonal reproduction may be driving force in their increase in abundances.
     4. The data in 2006 and 2007 showed that soil microbial carbon (MBC) and nitrogen (MBN) in the upper layer (0-20cm) showed U-shaped patterns along the fallow time gradient. However, soil organic carbon (Corg.), total nitrogen (TN) and the percent of microbial carbon to soil total nitrogen (MBC/TN) in the soil of deep layer (20-40cm) showed significant patterns of linear decline along the fallow time gradient. The data in 2008 showed that soil C and N (0-10cm and 10-20cm) had a nonsignificant increase trend over fallow time. In contrast, soil C and N (20-40cm) decreased significantly over fallow time. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and a stronger rehabilitating capability and soil restoration had seriously time-lag under natural recovery condition.
     5. During the succession, legume richness and aboveground biomass significantly increased and both were positively correlated with total species richness (S) and aboveground biomass (T-bio). This pattern suggests that legume richness increases community productivity. In addition, we found that aboveground biomass, legume and grass richness were positively correlated microbial nitrogen (MBN), and the ratio of microbial nitrogen to soil total nitrogen (MBN/TN), soil organic carbon and the ratio of soil total nitrogen (C/N) were negatively correlated with soil total nitrogen (TN), organic carbon (Corg), and microbial carbon (MBC). Contrary to our predictions grasses such as Stipa grandis, Scirpus tripueter, Koeleria cristata were more closely associated with MBN, MBN/TN than legumes such as Oxytropis ochrocephala, Thermopsis lanceolate and Astragalus polycladus. The late-successional grass Kobresio humilis had a stronger positive correlation with NH4-N as compared to the legumes and NO3-N was not associated with any legume species. This suggests that the combination grasses and legumes have a synergetic positive influence on the ecosystem properties, especially nitrogen. Therefore, in this N-limited, plant community diversity of both legumes and grasses has a strong influence on ecosystem changes during succession.
     6. Along secondary succession, the aboveground and belowground biomass both significantly increased over time. The total aboveground biomass increased from 188 g/m2 in the 1-year fallow to 516 g/m2 in the 30-years fallow. The root biomass increased signicantly from 402 g/m2 in the early successionl stages to 2002 g/m2 in the 30-years fallow to 3000 g/m2 in the natural meadow. The rate of below and above biomass varied from 1 time to 10 times, which the average in the all old fields was 1.58 and the average in the nature meadow was 9.97. These suggested that spontaneous succession is helpful for the vegetation development and ecosystem productivity restoration of old fields in the eastern Tibet Plateau.
     7. During succession, there was an increasing trend for the ecosystem nitrogen pool, of which the aboveground was 2-10 g/m2 and the belowground was 500-1800 g/m2, This suggests that the N pool size in the soil was significantly higher than in the aboveground. The order of N pool size among the above and belowground was soil 1007 g/m2>root 13.76g/m2>live plant 3.68 g/m2>above litter 3.20 g/m2, suggesting that the N pool in the soil and root made 77% contribution to the whole N ecosystem. Compared to the ecosystem nitrogen pool, the ecosystem P pool had an opposite trend that the live plant P content increased and the soil P content decreased over time and the P pool size in the soil was significantly higher than in the aboveground. The order of P pool size among the above and belowground was soil 179 g/m2>root 1.16 g/m2>live plant 0.31 g/m2> above litter 0.27 g/m2, suggesting that the P pool in the soil and root made 99.7% contribution to the whole P ecosystem.
     8. In this subalpine ecosystem, forbs are the most important functional group driving biodiversity and ecosystem productivity. Succession is strongly influenced by the low cultivation intensity and a small scale of agricultural fields in this region, which leads to a persistent soil seed bank of native species and local seed dispersal into abandoned fields from surrounding native vegetation patches. Because of this seed bank and dispersal, plant communities can recover without seed additions within a timescale of decades. However, the oldest fields still differed significantly from the control, never cultivated field, which had higher sedge and lower legume diversity and abundances. In addition, species turnover rate stabilized after 15-30 years of succession.
引文
Abebe HM, Oba G, Angassa A. Weladji RB (2006) The role of area enclosures and fallow age in the restoration of plant diversity in northern Ethiopia. African Journal of Ecology 44,507-514
    Alard, D., Chabrerie,O., Dutoit, T., Roche, P.& Langlois, E. (2005) Patterns of secondary succession in calcareous grasslands:can we distinguish the influence of former land uses from present vegetation data? Basic and Applied Ecology,6,161-173.
    Allen T.F.H., Hoekstra T.W. (1989) Competition and the integration of population, community and ecosystem studies. Funct Ecol 3,642-643
    Amiotti NM, Zalba P, Sa'nchez LF, Peinemann N (2000) The impact of single tree on properties of loess-derived grasslands soils in Argentina. Ecology 81,3283-3290
    Anderson, J.P.E. and Domsch, K.H., (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry 10,215-221
    Anderson, K. J. (2007) Temporal patterns in rates of community change during succession. American Naturalist,169,780-793.
    Angers, D. A., Caron, J., (1998) Plant-induced changes in soil structure:processes and feedbacks. Biogeochemistry 42,55-72.
    Aplet, G. H.& Vitousek, P. M. (1994) An age-altitude matrix analysis of Hawaiian rain-forest succession. Journal of Ecology,82,137-147.
    Aplet, G. H., Flint, H. R.& Vitousek, P. M. (1998) Ecosystem development on Hawaiian lava flows:biomass and species composition. Journal of Vegetation Science,9,17-26.
    Armesto, J. J., Pickett, S. T. A., McDonnell, M. J., (1991) Spatial heterogeneity during succession:a cyclic model of invasion and exclusion. In:Kolasa, J., Pickett, S.T.A. (Eds.), Ecological Heterogeneity. Springer-Verlag, New York, pp.256-269.
    Asefa DT, ObaG, Weladji RB, Coleman JE (2003) An assessment of restoration of biodiversity in degraded High Mountain grazing lands in northern Ethiopia. Land Degradation & Development 14,25-38
    Aweto A.O. (1981) Secondary succession and soil fertility restoration in south western Nigeria. II. Soil fertility restoration. Journal of Ecology 69,609-614
    Baer S G. (2001) Changes in Ecosystem Function and Effects of Environmental Complexity on Floristic Diversity during Tallgrass Prairie Restoration[D]. Ann Arbor, MI:Kansas State University,
    Bakker, J. P., Marrs, R. H.& Pakeman, R. J. (2002) Long-term vegetation dynamics: Successional patterns and processes. Introduction. Applied Vegetation Science,5,2-6.
    Bakker, J. P., Olff, H., Willems, J. H.& Zobel, M. (1996) Why do we need permanent plots in the study of long-term vegetation dynamics? Journal of Vegetation Science,7,147-155.
    Bakker, J. P., Poschlod, P., Strykstra, R. J., Bekker, R. M.& Thompson, K. (1996) Seed banks and seed dispersal:Important topics in restoration ecology. Acta Botanica Neerlandica,45,461-490.
    Bakker, J. P., van Andel, J., van der, Maarel E., (1998). Plant species diversity and restoration ecology. Applied Vegetation Science 1,3-138.
    Bakker, J. P., Willems, J. H.& Zobel, M. (1996) Long-term vegetation dynamics: Introduction. Journal of Vegetation Science,7,146-146.
    Baskin CC and Baskin JM (1998) Seeds:ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, London. pp 666-667
    Bertollo P. (1998) Assessing ecosystem health in governed landscapes:a framework for developing core indicators. Ecosystem Health 4,33-51
    Bonet A (2004) Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain:insights for conservation and restoration of degraded lands. Journal of Arid Environments 56,213-23
    Bonet A and Juli G (2004) Pausas Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology 174,257-270
    Bonet, A.& Pausas, J. G. (2004) Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology,174,257-270.
    Bonet, A. (2004) Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain:insights for conservation and restoration of degraded lands. Journal of Arid Environments,56,213-233.
    Bornkamm, R. (1981) Rates of change in vegetation during secondary succession. Vegetatio, 47,213-220.
    Brookes PC Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry 17,837-842
    Broughton, L. C., Gross, K. L., (2000). Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125,420-427.
    Brown. V. K., Gange, A. C., (1989). Differential effects of above-and belowground insect herbivory during early plant succession. Oikos 54,67-76
    Brye K.R. and Kucharik C.J.2003. Carbon and Nitrogen Sequestration in Two Prairie Topochronosequences on Contrasting Soils in Southern Wisconsin. American Midland Naturalist 149,90-103
    Brye KR, Norman JM, Gower ST (2002) Assessing the Progress of a Tallgrass Prairie Restoration in Southern Wisconsin. American Midland Naturalist 148,218-235
    Bu, H. Y., Chen, X. L., Xu, X. L., Liu, K., Jia, P.& Du, G. Z. (2007) Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet plateau. Plant Ecology, 191,127-149.
    Buckner, D. L.& Marr, J. W. (1988) Alpine revegetation on Rollins Pass after 18 years. Proceedings:High Altitude Revegetation Workshop (ed W. R. a. B. Keammerer, L. F), pp.273-290. Water Resources Research Institute, Fort Collins.
    Burel F and Baundry J (1995) Species biodiversity in changing agricultural landscapes:a case study in the Pays d'Ange, France. Agriculture Ecosystem and Environment 55, 1993-2000.
    Burel, F., Baundry, J., (1995). Species biodiversity in changing agricultural landscapes:a case study in the Pays d'Ange, France. Agric. Ecosyst. Environ.55,1993-2000.
    Burrows, C. J. (1990) Processes of vegetation change. Unwin Hyman, London.
    Cains. JT. (1991) The status of the theoretical and applied science 1f restoration ecology. The Environment Professional,13,186-191.
    Cairns J Jr. (1995) Encyclopedia of Environmental Biology. Restoration ecology,3:223-235.
    Cairns J. Jr., Dickson K. L., Herricks E. E. Recovery and restoration of damaged ecosystems. University Press of Virginia.Charlottesvill.1977,71-80.
    Chabrerie,O., Laval, K., Puget, P., Desaire, S.& Alard, D. (2003) Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Applied Soil Ecology,24,43-56.
    Chambers, J. C. (1995) Disturbance, life history strategies, and seed fates in alpine herbfield communities. American Journal of Botany,82,421-433.
    Che D.R. (1982). A preliminary study of the effect on N fertilizer on herbage production and nutrient composition of Bromus inermis. Grassland of China 4,1-9.
    Chytry, M., Sedlakova, I.& Tichy, L. (2001) Species richness and species turnover in a successional heathland. Applied Vegetation Science,4,89-96.
    Cione N K, Padgett PE, and Allen EB (2002) Restoration of a native shrubland impacted by-exotic grasses, frequent fire, and nitrogen deposition in southern California. Restoration Ecology 10,376-384.
    Clements, F.E. (1916). Plant succession:An analysis of the development of vegetation. Washington, DC:Carnegie Institute. Washington Publ.
    Collins, S. L.& Glenn, S. M. (1991) Importance of spatial and temporal dynamics in species regional abundance and distribution. Ecology,72,654-664.
    Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302-1310.
    Connell, J. H.& Slatyer, R. O., (1977). Mechanism of successionin natural communities and their role in community stability and organization. Am. Nat. 111:1119-1144.
    Coulson, S. J., Bullock, J. M., Stevenson, M. J.& Pywell, R. F. (2001) Colonization of grassland by sown species:dispersal versus microsite limitation in responses to management. Journal of Applied Ecology,38,204-216.
    Cousins, S. A. O.& Aggemyr, E. (2008) The influence of field shape, area and surrounding landscape an plant species richness in grazed ex-fields. Biological Conservation,141, 126-135.
    Cramer, V. A., Hobbs, R. J.& Standish, R. J. (2008) What's new about old fileds? Land abandonment and ecosystem assembly. Trends in Ecology & Evolution,23,104-112.
    Csecserits, A.& Redei, T. (2001) Secondary succession on sandy old-fields in Hungary. Applied Vegetation Science,4,63-74.
    Dai W. Zhang R. et al. (2009), Soil fertility and species identity control community productivity in an experimental plant community in an area of subalpine meadow. Chinese Journal of Plant Ecology.33,45-52
    Daubenmire, R. (1970) Steppe vegetation of Washington. Washington State University Cooperative Extension, Pullman.
    De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, and Putten WH van der. (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422,711-713
    Deng, Z. F. (2003) Dynamic analysis of seed rain and seed bank in Kobresia pygmaea meadow. Chinese Journal. Applied Environmental Biology,9,7-1.
    Dolle, M.& Schmidt, W. (2009) The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots. Applied Vegetation Science,12,415-428.
    Donnegan, J. A.& Rebertus, A. J. (1999) Rates and mechanisms of subalpine forest succession along an environmental gradient. Ecology,80,1370-1384.
    Drury, W. H.& Nisbet, I. C. (1973) Succession. J. Arnold Arbor,54,331-368.
    Dukes, J. S. (2001) Biodiversity and invasibility in grassland microcosms. Oecologia,126, 563-568.
    Egle FE (1954) Vegetation science concepts I. Initial floristic composition. A factor in old-field vegetation development. Vegetatio 4,412-417.
    Fagan, K. C., Pywell, R. F., Bullock, J. M.& Marrs, R. H. (2008) Do restored calcareous grasslands on former arable fields resemble ancient targets? The effect of time, methods and environment on outcomes. Journal of Applied Ecology,45,1293-1303.
    Flanagan P W and Veum A K (1974) Relationships between respiration, weight loss, temperature and moisture in organic residues in tundra. In Soil Organisms and Decomposition in Tundra. Eds. A J Holding,O WHeal, S F MacLean Jnr and P WFlanagan. pp 249-278. Tundra Biome Steering Committee, Stockholm.
    Flinn, K. M. (2007) Microsite-limited recruitment controls fern colonization of post-agricultural forests. Ecology,88,3103-3114.
    Fornara. D. A., Tilman, D., (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol.96,314-322
    Foster, B. L.& Tilman, D. (2000) Dynamic and static views of succession:Testing the descriptive power of the chronosequence approach. Plant Ecology,146,1-10.
    Freeman, C. C. (1998) The flora of Konza Prairie:a historical review and contemporary patterns. Grassland dynamics:long-term ecological research in tallgrass prairies (ed A. K. Knapp), pp.69-80. Oxford Univ. Press.
    Gong ZT (1999). Chinese Soil Taxonomy:Theories, Methods and Applications. Science Press, Beijing.
    Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344-347
    Grime. J. P. (1979) Plant strategies and vegetation processes. Wiley, Chichester.
    Grime. J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amnerican Naturalist,111,1169-1194.
    Guo, L.B., Gifford. R.M.,2002. Soil carbon stocks and land use change:a meta analysis. Global Change Biol.8,345-360.
    Guo, Q., Brown, J. H.& Valone, T. J. (2000) Constraints of seed size on plant distribution and abundance. Ecology,81,2149-2155.
    Hamburg SP (1984) Effects of forest growth on soil nitrogen and organic matter pools following release from subsistence agriculture. Pages 145-158 in E. L. Stone, editor. Forest soils and treatment impacts. Proceedings of the Sixth North American Forest Soils Conference (June 1983). University of Tennessee, Knoxville, Tennessee, USA.
    Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, DiemerM, Dimitrakopoulos, PG and others (1999) Plant diversity andproductivity experiments in European grasslands. Science 286:1123-1127.
    Hector, A., (2000). Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and micro environment. Oikos,90,357-371
    Hobbie, S. E.,1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr.66,503-522.
    Hofstede, R. G. M., Modragon, M. X.& Rocha, C. M. (1995) Biomassof grazed, burned and undisturbed paramo grasslands, Colombia. Aboveground vegetation.. Artic and Alpine Research,27,1-12.
    Hooper, D. U., Bignell, D. E., Brown, V. K., et al, (2000). Interactions between aboveground and belowground biodiversity in terrestrial ecosystems:Patterns, mechanisms, and feedbacks. Bioscience 50,1049-1061.
    Huberty, L. E., Gross, K. L., Miller, C. J., (1998). Effects of nitrogen addition on successional dynamics and species diversity in Michigan old fields. J. Ecol.86,794-803
    Hudson, J. M. G.& Henry, G. H. R. (2009) Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology,90,2657-2663.
    Huston MA (1979) A general hypothesis of species diversity. American Naturalist 113,81-101
    Insam H and Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamationsites. Microbial Ecology 15,177-188
    Jackson, M.L., (1958). Soil Chemical Analysis, Prentice Hall, Englewood Cliffs, NJ.
    Janzen, D. (1973) Rate of regeneration after tropical high elevation fire. Biotropica,5,11.7-122.
    Jia GM, Cao J, and Wang G (2005) Influence of land management on soil nutrients and microbial biomass in the Central Loess Plateau, Northwest China. Land Degradation & Development 16,455-462
    John CJ r John RH. (1996). Restoration ecology:The state of an emerging field. Annu. Rev. Energ. Env.,21,167-189.
    Jongepierova, I., Jongepier, J. W.& Klimes, L. (2004) Restoring grassland on arable land: an example of a fast spontaneous succession without weed-dominated stages. Preslia,76, 361-369.
    Jordan WR, Peters RL, Allen EB (1988) Ecological restoration as a strategy for conserving biological diversity. Environmental Management 12,55-72
    Juo ASR, Lal R (1977) The effect of fallow and continuous cultivation on the chemical and physical properties of an Alfisol in the tropics. Plant and Soil 47,567-584.
    Kahmen, S.& Poschlod, P. (2008) Does germination success differ with respect to seed mass and germination season? Experimental testing of plant functional trait responses to grassland management. Annals of Botany,101,541-548.
    Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of Science, Food Agriculture 24,1085-1090
    Kardol, P., Bezemer, T. M., Van der Putten, W. H., (2006). Temporal variation in plant-soil feedback controls.Succession. Ecology Letters 9,1080-1088
    Katharine N. Suding and Richard J. Hobbs (2008) Threshold models in restoration and conservation:a developing framework. Trends-in Ecology and Evolution doi:10.1016/j.tree.2008.11.012
    Kirmer, A., Tischew, S., Ozinga, W. A., von Lampe, M., Baasch, A.& van Groenendael, J. M. (2008) Importance of regional species pools and functional traits in colonization processes:predicting re-colonization after large-scale destruction of ecosystems. Journal of Applied Ecology,45,1523-1530.
    Knops J, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology,81:88-98
    Knops J, Wedin D, Tilman D (2001) Biodiversity and decomposition in experimental grassland ecosystems. Oecologia 126,429-433
    Knops, J. M. H., Bradley, K. L., Wedlin, D. A., (2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters 5,454-466.
    Lal R, Kimble J, Follett RF. (1997). Pedospheric processes and the carbon cycle [A]. Lai R, et al. Soil Processes and the Carbon Cycle [C]. Boca Raton:CRC Press,1-8.
    Lal R, Kimble JM, Follet RF, et al. (1999). Cropland to sequester carbon in soil. Soil Water Conservation 55,374-381.
    Landgraf D (2001) Dynamics of microbial biomass in Cambisols under a three year succession in north eastern Saxony. Journal of Plant Nutrition and Soil Science 164,665-671.
    Landgraf D, Bo"hm C, Makeschin F (2003) Dynamic of different C and N fractions in a Cambisol under five-year succession fallow in Saxony(Germany). Journal of Plant Nutrition and Soil Science 166,319-325
    Landgraf D, Klose S. (2002). Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. Plant Nutr Soil Sci 165,9-16.
    Landgraf D., Bohm C., Makeschin F(2003). Dynamic of different C and N fractions in a Cambisol under five-year succession fallow in Saxony(Germany). Journal of Plant Nutrition and.Soil Science 166,319-325
    Landgraf, D.2001. Dynamics of microbial biomass in Cambisols under a three year succession fallow in North Eastern Saxony. J Plant Nutr Soil Sci 164,665-671.
    Landsberg J. O'Connor T, Freudenberger D (1999) The impacts of livestock grazing on biodiversity in natural ecosystems. Nutritional Ecology of Herbivores (eds H.-J. Jung & G. C. Fahey), pp.752-777. American Society of Animal Science. Savoy, IL.
    Ledgard, S. F., Steele, K. W.,1992. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil,141,137-153.
    Lee K (2002) Secondary succession in abandoned fields after shifting cultivation.in Kangwon-Do, Korea. In:D. Lee and V. Jin, Editors, Ecology of Korea, Bumwoo Publishing Company, Seoul, pp:406-407
    Leps, J., Osbornova-Kosinova, J., Rejmanek, M., (1982). Community stability, complexity and species life history strategies. Vegetatio 50,53-63
    Li WH, Zhou XM. (1998) Ecosystems of Tibetanan Plateau and Approach for their Sustainable Management. Guangdong Science & Technology Press:Guangdong.
    Li, W. J., Li, J. H., Knops, J. M. H., Wang, G., Jia, J. J.& Qin, Y. Y. (2009) Plant Communities, Soil Carbon, and Soil Nitrogen Properties in a Successional Gradient of Sub-Alpine Meadows on the Eastern Tibetan Plateau of China. Environmental Management,44,755-765.
    Li, W. J., Li, J. H., Lu, J. F., Zhang, R. Y.& Wang, G. (2010) Legume-grass species influence plant productivity and soil nitrogen during grassland succession in the eastern Tibet Plateau. Applied Soil Ecology,44,164-169.
    Lichter, J. (2000) Colonization constraints during primary succession on coastal Lake Michigan sand dunes. Journal of Ecology,88,825-839.
    Liu Z.F., Liu G.H., Fu B.J., Zheng X.Q..(2008). Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grassla nds of Hulunbeir, Inner Mongolia, China. Ecological Research,23,511-518
    Lubchenco J (1978) Plant species diversity in a marine intertidal community:importance of herbivore food preference and algal competitive abilities. American Naturalist 112:23-39.
    Ma, M. J., Du, G. Z.& Zhou, X. H. (2009) Role of the Soil Seed Bank during Succession in a Subalpine Meadow on the Tibetan Plateau. Arctic Antarctic and Alpine Research,41, 469-477.
    Ma, M. J., Zhou, X. H.& Du, G. Z. (2010) Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet plateau. Flora,205,128-134.
    MacArthur, R.& Wilson, E. (1963) An equilibrium theory of insular zoogeography. Evolutionary Ecology,17,373-387.
    Manlay RL, Cadet P, Thioulouse J, Chotte JL (2000) Relationship between abiotic and biotic soil properties during fallow periods in the Sudanian zone of Senegal. Applied Soil Ecology 14,89-101
    Martinez-Duro, E., Ferrandis, P., Escudero, A., Luzuriaga, A. L.& Herranz, J. M. (2010) Secondary old-field succession in an ecosystem with restrictive soils:does time from abandonment matter? Applied Vegetation Science,13,234-248.
    Miles, E. K.& Knops, J. M. H. (2009a) Grassland compositional change in relation to the identity of the dominant matrix-forming species. Plant Ecology & Diversity,2,265-275.
    Miles, E. K.& Knops, J. M. H. (2009b) Shifting dominance from native C-4 to non-native C-3 grasses:relationships to community diversity. Oikos,118,1844-1853.
    Moles, A. T.& Westoby, M. (2002) Seed addition experiments are more likely to increase recruitment in larger-seeded species. Oikos,99,241-248.
    Mueggler, W. F.& Stewart, W. L. (1980) Grassland and shrubland habitat types of western Montana. Intermountain Forest and Range Experimental Station, Ogden, UT.
    Mulder, C. P. H., Jumpponen, A., Hogberg, P., Huss-Danell, K.2002. How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133,4.12-421
    Myrold, D. D., P. A. Matson, and D. L. Peterson. (1989). Relationships between soil microbial properties and above-ground stand characteristics of conifer forests in Oregon. Biogeochemistry 8,265-281.
    Myster, R. W.& Pickett, S. T. A. (1994) A Comparison of Rate of Succession over 18 Yr in 10 Contrasting Old Fields. Ecology,75,387-392.
    Niu K. C., Zhao Z.G., Luo Y.J. and Du G.Z. (2006). Fertilization effects on species reproductive allocation in an alpine meadow plant community. Chinese Journal of Plant Ecology.30,817-826
    Oba G, Vetaas OR & Stenseth NC (2001) Relationships between biomass and plant species richness.in arid-zone grazinglands. Journal of Applied Ecology 38:836-845.
    Ocio J. A., Brooks P. C. (1990).An evaluation of methods for measuring the microbial biomass in soils following recent addition of wheat straw, and the characterization of the biomass that develops. Soil Biology and Biochemistry,22,685-262.
    Odum EP (1960) Organic production and turnover in old-field succession. Ecology 41,34-49
    Odum EP, Pinder JE Ⅲ and Christiansen TA (1984) Nutrient losses from sandy soils during old-field succession. American Midland Naturalist 111,148-154
    Olson, J. S. (1958) Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot. Gaz,119,125-130.
    Oster, M., Ask, K., Cousins, S. A.O.& Eriksson,O. (2009) Dispersal and establishment limitation reduces the potential for successful restoration of semi-natural grassland communities on former arable fields. Journal of Applied Ecology,46,1266-1274.
    Palik BJ, Goelbel PC, Kirkman LK, West L (2000) Using landscape hierarchies to guide restoration of disturbed ecosystems. Ecological Applications 10:189-202
    Palmer MA, Ambrose RF and Poff NL (1997) Ecological theory and community restoration ecology. Restoration Ecology 5:291-300.
    Paschke, M. W., McLendon, T.& Redente, E. F. (2000) Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems,3,144-158.
    Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Above-ground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65,256-268
    Peet RK, Christensen NL (1978) Changes in species diversity during secondary forest succession on the North Carolina Piedmont. In:During, H.J., Werger, M.J.A.&Willems J.H. (eds.) Diversity and pattern in plant communities, pp.233-245. SPB Academic Publishing. The Hague.
    Pickett STA (1982) Population patterns through twenty years of old field succession. Vegetatio 49,45-59.
    Pickett, S. T. A., S. L. Collins, and J. J. Armesto. (1987). A hierarchical consideration of causes and mechanisms of succession. Vegetatio 69,109-114
    Pokorny, M. L., Sheley, R. L., Svejcar, T. J.& Engel, R. E. (2004) Plant species diversity in a grassland plant community: Evidence for forbs as a critical management consideration. Western North American Naturalist,64,219-230.
    Poschlod, P.& Bonn, S. (1998) Changing dispersal processes in the central European landscape since the last ice age:an explanation for the actual decrease of plant species richness in different habitats? Acta Botanica Neerlandica,47,27-44.
    Potter KN, Torbert HA, Johnson HB, Tischler CR (1999) Carbon storage after long-term grass establishment on degraded soils. Soil Science 164,718-725
    Potthoff M, Jackson LE, Steenwerth KL, Ramirez I, Stromberg MR, Rolston DE (2005) Soil Biological and Chemical Properties in Restored Perennial Grassland in California. Restoration Ecology 13,61-73
    Prach, K.& Hobbs, R. J. (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restoration Ecology,16,363-366.
    Prach, K., Bartha, S., Joyce ChB, Pysek, P., van Diggelen, R., Wiegleb, G., (2001). The role of spontaneous vegetation succession in ecosystem restoration:A perspective. Appl. Veg. Sci.4,111-114.
    Prach, K., Pysek, P.& Smilauer, P. (1993) On the Rate of Succession. Oikos,66,343-346.
    Pywell, R. F., Bullock, J. M., Hopkins, A., Walker, K. J., Sparks, T. H., Burke, M. J. W.& Peel, S. (2002) Restoration of species-rich grassland on arable land:assessing the limiting processes using a multi-site experiment. Journal of Applied Ecology,39,294-309..
    Rapport D J. (1995). Evaluating and monitoring the health of largescale ecosystems[M] Heidelberg:Springer Verlag,5-31.
    Rapport D J. (1999). Gaining respectability development of quantitative methods in ecosystem health. Ecosystem health 5,1-2.
    Rees, M., Condit, R., Crawley, M., Pacala, S.& Tilman, D. (2001) Long-term studies of vegetation dynamics. Science,293,650-655.
    Reynolds, H. L., Packer, A., Bever, J. D.,& Clay, K., (2003). Grassroots ecology:plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84,2281-2291.
    Rice EL (1984) Allelopathy,2nd ed. Academic Press, Orlando, Fl, USA
    Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56-8.
    Robert son G P, Vitousek P M. (1981) Nitrification potentials in primary and secondary succession. Ecology,62,376-386.
    Robertson GP (1982) Factors regulating nitrification in primary and secondary succession. Ecology 63,1561-1573
    Robertson GP, Vitousek PM (1981) Nitrification potentials in primary and secondary succession. Ecology 62:376-386.
    Robles MD, Burke IC (1998) Soil organic matter recovery on conservation reserve program fields in southwestern Wyoming. Soil Science Society of America Journal 62:725-30
    Roscher, C., Thein, S. et al., (2008) Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J. Ecol.96,477-488
    Rosenthal, G. (2006) Restoration of wet grasslands-Effects of seed dispersal, persistence and abundance on plant species recruitment. Basic and Applied Ecology,7,409-421.
    Ruiz-Jaen, MC & Aide TM (2005) Restoration success:how is it being measured? Restoration Ecology 13,569-577
    Ruprecht E (2006) Successfully Recovered Grassland:A Promising Example from Romanian Old-Fields. Restoration Ecology 14:473-480
    Ruprecht, E. (2005) Secondary succession in old-fields in the Transylvanian Lowland (Romania). Preslia,77,145-157.
    Sarmiento, L., Llambi, L. D., Escalona, A.& Marquez, N. (2003) Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecology,166,63-74.
    Sasaki T, Okayasu T, Jamsran U and Takeuchi K (2008) Threshold changes in vegetation along a grazing gradient in Mongolian rangelands. Journal of Ecology 96:145-154.
    Scherer-Lorenzen, M., Palmborg, C., Prinz, A., Schulze, E. D.,2003. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84,1539-1552
    Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM (2007) Biogeochemical consequence of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379-1385
    Shang, Z. H. (2006) Soil seed banks of degraded alpine meadow grassland in headwater region of the Yellow River:quantities and dynamic of seed germination.Chinese Journal Applied Environmental Biology,12,313-317.
    Sheil, D., Jennings, S.& Savill, P. (2000) Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan rain forest. Journal of Tropical Ecology,16, 765-800.
    Sims, P. L.& Risser, P. G. (2000) Grasslands. North American terrestrial vegetation (ed M. G. B. a. W. D. Billings), pp.323-395. Cambridge University Press, Cambridge.
    Singh, H., Singh, K.P.,1993. Effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation. Biology and Fertility of Soils 16, 275-281.
    Smith JL, and Paul EA (1990) The significance of soil microbial biomass estimations. Pages 357-396 in J. M. Bollage and G. Stotzky, editors. Soil biochemistry. Marcel Dekker, New York.
    Soussana, J. F., Hartwig, U. A., (1996). The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187, 321-332.
    Spehn EM, Joshi J, Schmid B, Alphei J, Korner, Ch (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil 224,217-230.
    Spehn, E. M., Scherer-Lorenzen, M., Schmid, B., Hector, A., Caldeira, M. C., Dimitrakopoulos, P. G., Finn, J. A., Jumpponen, A., O'Donovan, G., Pereira, J. S., Schulze, E.D., Troumbis, A.Y.& Korner, Ch, (2002). The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98,205-218
    Standish, R. J., Cramer, V. A., Wild, S. L.& Hobbs, R. J. (2007) Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia, Journal of Applied Ecology,44,435-445.
    Stephan, A., Meyer, A. H., Schmid, B. (2000). Plant diversity affects culturable soil bacteria in experimental grassland communities. J. Ecol.88,988-998
    Suding KN and Hobbs R J (2008) Threshold models in restoration and conservation:a developing framework. Trends in Ecology and Evolution doi:10.1016/j.tree.2008.11.012
    Sun, G., Luo, P., Wu, N., Qiu, P. F., Gao, Y. H., Chen, H.& Shi, F. S. (2009) Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry,41,86-91. Swaine, M.D. and J.B. Hall. (1983). Early succession on cleared'forest land in Ghana. Journal of Ecology 71,601-627.
    Ter Braak, C.J.F., (1994). Canonical community ordination. Part I:basic theory and linear methods. Ecoscience 1,127-140.
    Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJ.
    Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379,718-720
    Tilman D. (1997). Community invasibility, recruitment limitation and grassland biodiversity. Ecology 78,81-92.
    Tilman, D.& Wedin, D. (1991) Dynamics of Nitrogen Competition between Successional Grasses. Ecology,72,1038-1049.
    Tilman, D. (1985). The resource-ratio hypothesis of plant succession. Am. Nat.125:827-852
    Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T.& Lehman, C. (2001) Diversity and productivity in a long-term grassland experiment. Science,294,843-845.
    Torok, P., Matus, G., Papp, M.& Tothmeresz, B. (2008) Secondary succession in overgrazed Pannonian sandy grasslands. Preslia,80,73-85.
    Urbanska, K. M. (1997) Restoration ecology of alpine and artic areas:are the classical concepts of niche and succession directly applicable? Opera Botanica,132,189-200.
    Van Cleve K and Yarie J (1986). Interaction of temperature, moisture and soil chemistry in controlling nutrient cycling and ecosystem development in the taiga of Alaska. In Forest Ecosystems in the Alaskan Taiga. A Synthesis of Structure and Function. Eds. K Van Cleve, F S Chapin Ⅲ, P W Flanagan, L A Viereck and C T Dyrness. pp 160-189. Springer, New York.
    Verhagen, R., Klooker, J., Bakker, J. P.& van Diggelen, R. (2001) Restoration success of low-production plant communities on former agricultural soils after top-soil removal. Applied Vegetation Science,4,75-82.
    Vitousek P M, Matson P A, Cleve K V. (1989). Nitrogen availability and nitrification during succession, primary, secondary and old field series. Plant and Soil,115:229-239.
    Wang G X, Qian J,-Cheng G D, et al. (2002). Soil organic carbon pool of grassland soils on the Qinghai-Tibetan plateau and its global implication. The Science of the Total Environment, 291,207-217.
    Wang G X, Wang Y B, Li Y S, et al. (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena, 70(3),506-514
    Wang G X, Wang Y B, Qian J, et al. (2006). Land Cover change and its impacts on soil C and N in two watersheds in the center of the Qinghai-Tibet Plateau. Mt Res Dev,26(2): 153-162
    Wang QJ (1997) The study of grassland resource, ecological environment and sustainable development on Qinghai-Tibetan Plateau. Qinghai Prataculture 6,1-11
    Wang, G. L., Liu, G. B.& Xu, M. X. (2009) Above-and belowground dynamics of plant community succession following abandonment of farmland on the Loess Plateau, China. Plant and Soil,322,343-343.
    Wardle DA, Walker LR, Bardgett RD. (2004). Ecosystem Properties and Forest Decline in Contrasting Long-term Chronosequences. Science 305,509-513.
    Wardle, D. A., (2003). Belowground consequences of aboveground food web interactions. Communities and Ecosystems, Princeton University Press, Princeton, New Jersey. pp. 105-137.
    Wardle, D. A., Nicholson, S., (1996). Synergistic effects of grassland species on soil microbial biomass and activity:implications for ecosystem-level effects of enriched plant diversity. Funct. Ecol.10,410-416.
    Wardle, D. A., Yeates, G. W., Nicholson, K. S., et al., (1999). Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol. Biochem.31,1707-1720
    Wedin D A. and Tilman D. (1990) Species Effects on Nitrogen Cycling:A Test with Perennial Grasses. Oecologia,84,433-441
    Weppler, T., Stoll, P.& Stocklin, J. (2006) The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plant Geum reptans. Journal of Ecology,94,869-879.
    Whittaker, R. H. (1975) Communities and ecosystems. Macmillan, New York.
    Wilson SD and Keddy PA (1988) Species richness, survivorship and biomass accumulation along an environmental gradient. Oikos 53,375-380
    Wisheu IC, Keddy PA (1989) Species richness-standing crop relationship along four lakeshore gradients:constraints on the general model. Canadian Journal Botany 67,1609-1617
    Woods DK (2000) Dynamics in late-successional hemlock-hardwood forests over three decades. Ecology 81,110-126
    Wu, G. L.& Du, G. Z. (2007) Germination is related to seed mass in grasses (Poaceae) of the eastern Qinghai-Tibetan Plateau, China. Nordic Journal of Botany,25,361-365.
    Zak, D.R., Tilman, D., Parmenter, R.R., Rice, C.W., Fisher, F.M., Vose, J., Milchunas, D.& Martin, C.W. (1994). Plant production and soil microorganismsi n a late-successional ecosystems:A continental-scale study. Ecology 75,2333-2347.
    Zhang, S. T., Du, G. Z.& Chen, J. K. (2004a) Correlates of seed size in a subalpine meadow on the east part of the Tibet plateau. Ecoscience,11,6-15.
    Zhang, S. T., Du, G. Z.& Chen, J. K. (2004b) Seed size in relation to phylogeny, growth form and longevity in a subalpine meadow on the east of the Tibetan Plateau. Folia Geobotanica,39,129-142.
    Zhou XM, Li YN. (2001). Ecological conditions affecting Kobersia meadow. In Chinese Kobersia Meadow, ZhouXM (ed.). China Science Press:Beijing; 1-23.
    任洪玉,温仲明,杨勤科.(2003).黄土沟壑区植被恢复及其物种多样性的变化.干旱区农业研究21(2),154-158.
    任海,彭少麟.(2002)恢复生态学导论.科学出版社.
    余作岳,彭少麟(1996)热带亚热带退化生态系统植被恢复生态学研究广州广东科学技术出版社.
    侯永平,段昌群,何峰.(2005)滇中高原不同植被恢复条件下土壤肥力和水分特征研究.水土保持通报12(1),49-53.
    刘庆(1999).青藏高原东部(川西)生态脆弱带恢复与重建研究进展.资源科学,21(4),80-86.
    周华坤,赵新全,周立,刘伟,李英年,唐艳鸿(2006)青藏高原高寒草甸的植被退化与土壤退化特征研究草业学报6:31-40
    周华坤,赵新全等(2005)青藏高原高寒草甸的植被退化与土壤退化特征研究14,(3),31-40
    周华坤,周立,赵新全,等.(2003)江河源区“黑土滩”型退化草场的形成过程与综合治理.生态学杂志,22(5),51-55
    姜 恕,戚秋慧,孔德珍.(1985).内蒙古羊草大针茅草地群落生物量初步研究[A].草原生态系统研究(第1集)[C].北京:科学出版社,12-22.
    康乐.(1990)生态系统的恢复与重建,见:马世骏主编,现代生态学透视,北京:科学出版社,300-308
    张大勇,王刚,杜国祯.(1988)亚高山草甸弃耕地植物群落演替的数量研究(Ⅰ)群落群成分析.植物生态学与地植物学学报.12(4),293—291
    张金屯.数量生态学.北京:科学出版社2004
    戎郁萍(2004)我国弃耕地植被的恢复与重建研究概述四川草原5:1-4
    朱桂林 山仑刘国彬 (2004)弃耕演替与恢复生态学生态学杂志23:94-96
    李永强,许志信.(2002).典型草原区撂荒地植物群落演替过程中物种多样性变化.内蒙古农业大学学报23(4),26-31.
    李海英彭红春王启基 (2004)高寒矮嵩草草甸不同退化演替阶段植物地上部氮磷元素比较西北植物学报24(11),2069-2074
    李海英,彭红春,王启基(2004)高寒矮嵩草草甸不同退化演替阶段植物群落地上生物量分析草业学报,5:26-32
    李裕元,邵明安.(2004)子午岭植被自然恢复过程中植物多样性的变化.生态学报24(2),252-260.
    杜国祯覃光莲等(2003)高寒草甸植物群落中物种丰富度与生产力的关系研究植物生态学报,27(1)125-132
    杜国祯,王刚.(1991).亚高山草甸弃耕地演替群落的种多样性及种间相关分析.草业科学8(4),53-5727.
    温仲明,焦峰,卜耀军,焦聚英.(2005).黄土沟壑区植被自我修复与物种多样性变化-以吴旗县为例.水土保持研究12(1),1-3.
    牛亚菲 (1999)青藏高原生态环境问题研究.地理科学进展163-171
    王一博,王根绪,沈永平,等.(2005)青藏高原高寒区草地生态环境系统退化研究.冰川冻土,27(5):633-640
    王启基,李世雄,王文颖景增春(2008)江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应生态学报3:886-893
    王启基,周兴民,张堰清,等.(1995).高寒小嵩草草原化草甸植物群落结构特征及其生物量[J].植物生态学报,19(3),225-235.
    王启基,王文颖,邓自发.(1998)青海海北地区高山嵩草草甸植物群落生物量动态及能量分配[J].植物生态学报,22(3),222-230.
    王国梁,刘国彬,许明祥(2001)黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报22(1),1-5.
    王文颖,王启基,景增春,李世雄,史惠兰 (2006)江河源区高山嵩草草甸覆被变化对植物群落特征及多样性的影响 资源科学2:118-123
    王根绪,李元寿,王一博,等.(2007)近40年来青藏高原典型高寒湿地系统的动态变化.地理学报,62(5),481-491
    王根绪,程国栋,沈永平,等.(2002)土地覆盖变化对高山草甸土壤特性的影响[J].科学通报,47(23),1771-1777.
    章家恩,徐琪(1999)恢复生态学研究的一些基本问题探讨应用生态学报,10,109-113
    胡中民,樊江文等(2005)中国草地地下生物量研究进展 生态学杂志24(9),1095-1101
    许木启,黄玉瑶(1998),受损水域生态系统恢复与重建研究生态学报,18:547-558
    赵新全(2009).高寒草甸生态系统与全球变化.科学出版社.中国.北京
    马玉寿,郎百宁,王启基.(1999)“黑土型”退化草地研究工作的回顾与展望[J].草业科学,16(2),5-9.
    马祥华,焦菊英.(2005).黄土丘陵沟壑区退耕地自然恢复植被特征及其与土壤环境的关系.中国水土保持科学3(2),15-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700