低C/N比污水间歇曝气MBR脱氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南方许多城市污水的BOD、COD浓度都比较低,普遍存在碳源不足的问题,使用传统活性污泥工艺处理时由于碳源不足而脱氮效率较低,若排放水体则存在富营养化潜在危险,若增加深度处理则存在运行成本高、占地面积大、脱氮也不彻底等问题。而新的生物脱氮工艺又不成熟,工程应用上存在很多问题,因此低C/N比污水的高效脱氮成为当今水处理技术上的一个难题。
     论文针对我国南方城市普遍存在的低C/N比污水现状,克服目前膜生物反应器应用于污水回用存在的脱氮不彻底问题,开发了连续流一体化间歇曝气膜生物反应器(Intermittent-aeration Membrane Biological Reactor, IMBR)。IMBR集曝气、沉淀、膜滤于一体,通过三相分离器将反应区与膜室结合形成一体化构造来强化脱氮,实现污泥自回流,节省污泥回流费用,同时由于反应器上部进水中有机物的不断补充,满足反硝化所需碳源,降低了投加碳源的运行成本,提高了脱氮效果。论文的主要研究内容与结果如下:
     (1) IMBR降污效能及各运行参数对反应器脱氮效果的影响研究表明:工况Ⅱ(曝气2h,搅拌2h)对COD、NH4+-N、TN、SS具有较好的去除效果,系统出水完全满足《城市污水再生利用城市杂用水水质》(GB/T18920-2002)的要求,工况Ⅱ为三种工况下的最优运行工况。在工况Ⅱ运行条件下,随着HRT从4h增大到8h时,COD、氨氮和总氮的去除效果明显提高,当HRT增大到12h时,COD的去除效果反而下降,氨氮和总氮的去除效果有微小提高,建议HRT控制在8h左右;随着进水COD浓度和C/N值的升高,出水COD、氨氮与总氮浓度下降,其中总氮去除效果呈明显上升趋势;通过DO、ORP及pH曲线上A点可以判断曝气过程中碳氧化阶段结束及硝化反应的开始,通过DO降至零点及ORP、pH曲线上B点可以判断搅拌过程中硝化反应结束及反硝化开始,通过ORP曲线的硝酸盐膝(C点)和pH曲线的硝酸盐峰(C点)判断反硝化结束与厌氧释磷开始。
     (2) IMBR在不同工况的同步硝化反硝化脱氮研究表明:低溶解氧条件下IMBR在工况Ⅰ(持续曝气)、工况Ⅱ(曝气2h,搅拌2h)和工况Ⅲ(曝气2h,搅拌1h)中均存在SND现象。其中工况Ⅲ的SND脱氮效果较好,在曝气阶段的总氮平均去除率为56.38%,最大总氮去除率达到76.97%,在曝气/搅拌交替运行的完整周期内有53.96%的总氮通过SND去除。在工况Ⅲ运行条件下,随着DO浓度的增大,硝化率逐渐增大的同时,同步硝化反硝化率先增大后减小,在DO为0.5-1.0mg/L时SND脱氮效果最佳;随着C/N的增加,SND脱氮效果逐渐提高,当C/N为9时硝化反应成为脱氮过程的限制步骤,降低了TN的去除率,在C/N为7时SND脱氮效果最佳。
     (3)扫描电镜SEM图象表明,IMBR系统内的活性污泥絮体粗大而且密实,微生物相非常丰富,活性污泥内生长着大量的细菌、真菌、原生动物和后生动物,丰富的生物相为系统功能的稳定运行提供了有效保证。
     (4)根据Monod公式,推导出了IMBR在好氧条件下的同步硝化反硝化动力学模型,工况Ⅱ(曝气2h,搅拌2h)和工况Ⅲ(曝气2h,搅拌1h)的动力学模型中硝酸盐氮饱和常数KD分别为1.37mg/L和1.86mg/L,远远高于单级活性污泥反硝化过程中的饱和常数;工况Ⅲ的动力学常数A、B和KD值均大于工况Ⅱ的A、B和KD值,说明工况Ⅲ在好氧条件下的硝化速率和反硝化速率均高于工况Ⅱ,其氨氮去除效果和SND脱氮效果均优于工况Ⅱ。
     (5) IMBR的焓平衡及能耗评价指标分析表明:2h曝气/2h搅拌和2h曝气/1h搅拌两个工况的电耗在输入总能量中所占比例分别为53.38%和50.52%,大于进水能量所占比例,而出水和剩余污泥中能量所占比例均较低,进水中污染物的大部分能量转变成了功和热散失,污染物得到了降解;两个工况的比能耗偏高,能源利用率偏低,原因是进水中有机物浓度明显偏低,小试处理规模较小、供需氧不平衡所致,要提高能耗利用率,应改善供需氧平衡,并尽量减少剩余污泥量。
The BOD, COD concentrations are relatively low in many cities sewage in south China and the carbon source is insufficient. When the conventional activated sludge process was used to treatment the low C/N ratio urban sewage, the nitrogen removal efficiency was low because the lack of low carbon. If the effluent excluded Natural water, the eutrophication potential danger existed. If the advanced treatment was added in the conventional activated sludge process, the running costs was high, and the area was large and nitrogen removal was not complete. However the new biological nitrogen removal process was immature and there was many problems on the engineering application. So the high nitrogen removal in the low C/N ratio urban sewage treatment technology became a problem.
     Aim at situation of the low C/N ratio urban sewage in south China widely and in order to solve the problem of incomplete nitrogen removal in wastewater reuse by MBR, the Integrated Intermittent-aeration Membrane Biological Reactor (IMBR) has been developed. IMBR set of aeration, sedimentation, membrane filtration in one, through the three-phase separator to integrating the reaction zone and membrane separation zone to strengthen nitrogen removal. This structure can achieve the sludge automatic return back to save the sludge return costs. The continuous influent from the reactor top can meet the required denitrification carbon source to improve nitrogen removal and reduce the running costs of adding carbon source. The main results are as follows.
     (1) The pollutants removal efficiency of IMBR and the operating parameters on the effect of nitrogen removal study showed that the COD, NH4+-N, TN and SS removal effect of IMBR under the conditionⅡ(2 hours aeration and 2 hours agitation) had better. The effluent quality of IMBR could meet the standard of the reused water quality criterion (GB/T18920-2002). The conditionⅡwas determined the optimal condition for the three operating conditions. With the hydraulic retention time (HRT) increased from 4h to 8h, the COD, NH4+-N and TN removal significantly improved under the conditionⅡ. When the HRT was increased to 12h, the COD removal effect declined and ammonia nitrogen and total nitrogen removal increased slightly. So the HRT of 8h had recommended. As the influent COD concentration and C/N ratio increased, the COD, NH4+-N, TN concentrations in the effluent declined, and TN removal effect significantly improved. Through point A on the curve of the DO, ORP and pH, the end of the carbon oxidation process and the start of nitrification had determined. Down to zero with the DO and through point B of ORP, pH curve, could determine the end of nitrification and the start of denitrification. And through the nitrate curve knee (point C) of ORP and the nitrate peak (point C) of pH curve could determine the end of denitrification and the start of anaerobic phosphorus release.
     (2) The simultaneous nitrification and denitrification (SND) studies of different working conditions in IMBR showed that SND existed in the working conditionⅠ(continuous aeration), working conditionⅡ(aeration 2h, agitation 2h) and working conditionⅢ(aeration 2h, agitation 1h) under the low dissolved oxygen conditions.In which SND removal effect of the conditionⅢhad best and the average TN removal rate was 56.38%, maximum TN removal rate reached 76.97% in the aeration phase. The TN removal by SND was 53.96% in the alternating running cycle with the aeration and mixing. With the increase of DO concentration, the nitrification rate increased and SND rate first increased and then decreased under the working condition III. The SND removal effect was best with the DO concentration of 0.5-1.0mg/L. With the C/N ratio increased, the SND removal effect was increased gradually. When the C/N ratio was 9, nitrification became limiting step in denitrification process the removal rate of TN reduced. The SND removal effect was best with the C/N ratio of 7.
     (3) The scanning electron microscope (SEM) images showed that the activated sludge floc within the system was bulky and dense. The variety of microorganisms was found in IMBR by the observation of microscope and there were growth of a large number of bacteria, fungi, protozoa and few micro metazoans. This provided an effective guarantee to the normal operation of the IMBR system.
     (4) According to Monod equation, the kinetic models of SND under aerobic conditions of IMBR were achieved. The nitrate saturation constant KD in the kinetic model of SND under condition II (aeration 2h, agitation 2h) and condition III(aeration 2h, agitation 1h) were 1.37mg/L and 1.86mg/L. It was found KD on the conditions of SND was greater than that of denitrification proeess in general model for single-stage activated sludge system. The kinetic constants A, B and KD of the condition III were greater than A, B and KD of the conditionⅡ. It showed that the nitrification rate and denitrification rate of the condition III were higher than those of the condition II under aerobic conditions. Also it showed that the SND removal effect of the condition III was better than the conditionⅡ.
     (5) Energy (enthalpy) balance analysis and evaluation of energy consumption in IMBR proeess showed that power consumption of the condition II and the condition II in the proportion of total energy inputs were 53.38% and 50.52% and higher than the proportion of influent energy. The effluent and sludge were lower proportion of energy. Most of the energy of influent contaminants was transformed into work and heat loss and degradation of pollutants had been thoroughly. Specific energy consumption of two conditions were high and energy efficiency was low because of many reasons, such as low influent concentration of organic pollutants, a smaller experiment scale and oxygen supply and demand imbalance. So it should improve the oxygen supply and demand balance and minimize the amount of excess sludge to improve energy efficiency.
引文
[1]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    [2]付忠志,邹利安.深圳罗芳污水厂一期工程试运行简评[J].给水排水,2000,26(1):6-10.
    [3]章非娟.生物脱氮技术[M].北京:中国环境科学出版社,1992.
    [4]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [5]吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社,2003.
    [6]张景来,王剑波.环境生物技术及应用[M].北京:化学工业出版社,2002.
    [7]August Bonmati, Xavier Flotats, et al. Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre-or post-treatment to mesophilic anaerobic digestion[J]. Waste Mamagement,2003, (23):262-272.
    [8]Erdogan B, Sakizci M, Yorukogullari E. Characterization and ethylene adsorption of natural and modified clinoptilolites[J]. Applied Surface Science,2008, 254(8):2450-2457.
    [9]赵丹,任南琪,马放等.生物脱氮微生物学及研究进展[J].哈尔滨建筑大学学报,2002,35(5):60-65.
    [10]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [11]沈耀良,王宝贞.废水生物处理新技术理论与应用(第二版)[M].北京:中国环境科学出版社,2006.
    [12]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000,535-537.
    [13]娄金生,谢水波,何少华等.生物脱氮除磷原理与应用[M].北京:国防科技大学出版社,2002.
    [14]Chui.P.C., Terashima Y., Tay, J.H. and Ozaki, H. Performance of a partly aerated biofilter in the removal of nitrogen[J]. Wat. Sci.Tech.,1996,34(1-2):187-194.
    [15]Y.Z. Peng, Y. Ma, S.Y. Wang. Improving nitrogen removal using on-line sensors in the A/O process[J]. Biochemical Engineering Journal,2006,31(8):48-55.
    [16]J.A. Baeza, D. Gabriel, J. Lafuente. Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP)[J]. Process Biochemistry,2004,39(7):1615-1624.
    [17]Ballinger S. J., Head I. M., Curtis T. P., et al. The effectof C/N ratio on ammonia oxidising bacteria communitystructure in a laboratory nitrification-denitrification reactor[J]. Wat. Sci.Tech.,2002,46(1-2):543-550.
    [18]Xia Shibin, Liu Junxin. An innovative integrated oxidation ditch with verti-cal circle for domestic wastewater treatment[J]. Process Biochemistry,2004,39(4):1111-1117.
    [19]M. Casellas, C. Dagot, M. Baudu. Set up and assessment of a control strategy in a SBR in order to enhance nitrogen and phosphorus removal[J]. Process Biochemistry, 2006,41(9):1994-2001.
    [20]周律.二沟式氧化沟工艺性能的评价与改进研究[D].清华大学,1997.
    [21]Daekeun Kim, Tae-Su Kim, Hong-Duck Ryu, Sang-Ill Lee. Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification[J]. Process Biochemistry,2008,43(4):406-413.
    [22]Malgorzata Komorowska-Kaufman, Hanna Majcherek, Eugeniusz Klaczynski. Factors affecting the biological nitrogen removal from wastewater[J]. Process Biochemistry,2006,41(5):1015-1021.
    [23]Hong-Duck Ryu, Daekeun Kim, Heun-Eun Lim, Sang-Ill Lee. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system[J]. Process Biochemistry,2008,43(7) 729-735.
    [24]Schmidt, Ingo; Sliekers, Olav Markus. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews, 2003,(27)4:481-492.
    [25]Ying-Chih Chiu, Li-Ling Lee, Cheng-Nan Chang, Allen C. Chao. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation,2007, 59(1):1-7.
    [26]Vandegraff A.A., Mulder A. and Debruijn P. Anaerobic Oxidation of ammonium in a biologically mediated process[J]. Appl. Envir. Microbiol,1995,61(4):1246-1251.
    [27]Hong W Zhao, Donalds Mavinic, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J]. Wat. Res.,1999,33(4):961-970.
    [28]Hongbo Liu, Changzhu Yang, Wenhong Pu, Jingdong Zhang. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor[J]. Chemical Engineering Journal,2008,140(1-3):122-129.
    [29]Kuenen.J.G, Robertson.L.A. Combined nitrification denitrification process[J]. FEMS. Microbial Rev,1994,15(2):109-117.
    [30]Castingnetti.D, Hollocher.T.C. Heterotrophic nitrification among denitrifiers[J]. Appl. Env. Microbial,1984,7:16-20.
    [31]Gupta.S.K, Raja.S.M. Simultaneous nitrification denitrification in a rotating biologi-cal contactor[J]. Envir. Tech,1994,15(3):145-153.
    [32]Yoo.H, Ahn.K.H. Nitrogen removal from synthetic waste water by Simultaneous nitrification and denitrification (SND) via nitrate in an intermittently-aerated reactor[J]. Water Res.,1999,33(1):145-154.
    [33]Katie A Third, Natalie Burnett, Ralf Cord-Ruwisch. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnol Bioeng,2003,83(6):706-720.
    [34]FU Zhimin, YANG Fenglin, ZHOU Feifei, etal. Contr ol of COD/N Ratio for Nutrient Removal in a Modified Membrane Bioreactor (MBR) Treating High Strength Wastewater[J]. Bioresource Technology,2009,100(1):136-141.
    [35]QI Rong, YANG Kun, YU Zhao-xiang. Treatment of coke plant wastewater by SND fixed biofilm hybrid system[J]. Journal of Environmental Sciences,2007, (19):153-159.
    [36]Zhao H W, Donald S Mavinic, William. Controlling factors for simultaneous nitrification and denitrification in a Two-stage intermittent aeration process treating domestic sewage[J]. Wat. Res.,1999,33(4):971-978.
    [37]Norbert Weissenbachera, Christian Loderera. NOx monitoring of a simultaneous nitrifying-denitrifying(SND) activated sludge plant at different oxidation reduction potentials[J]. Wat. Res.,2007,5(41):397-405.
    [38]Abelingu, Seyfridcf. Anaerobic-aerobic treatment of high strength ammonium wastewater—nitrogen removal via nitrite[J]. Wat. Sci. Tech.,1992,26(5):1007-1015.
    [39]Votes J P. Removal of nitrogen from highly nitrogenous wastewater[J]. JWPCF,1975, 47(2):394-398.
    [40]Suntherson S, Ganczarczyk J J. Inhibition of nitrite oxidation during nitrification: some observations[J]. Wat Poll Res J Can,1986,21(5):257-266.
    [41]Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for treatment of wastewater with high ammonia concentration[J]. Wat. Res.,2003, 37(6):1371-1377.
    [42]Fux C, Boehler M, Huber P, etal. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (Anammox) in a pilot plant[J]. JournalBiotechnol,2002,99(3):295-306.
    [43]YangQ, PengY Z, Liu X H,etal. Nitrogen removal via nitrite from municipalwastewaterat low temperaturesusing real-time control to optimize nitrifying communities[J]. Environ Sci Technol,2007,41(23):8159-8164.
    [44]HAN D W, CHANG J S, KIM J. Nitrifying microbial community analysis of nitrite accumulating biofilm reactor by fluorescence in situ hybridization[J]. Wat. Sci. Tech., 2003,47(1):97-104.
    [45]祝贵兵,彭永臻,郭建华.短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2008,40(10):1552-1557.
    [46]沙之杰,杨勇.短程硝化反硝化生物脱氮技术综述[J].西昌学院学报(自然科学版),2008,22(3):61-64.
    [47]Jetten M S M et al. Towards a more sustainable municipal wastewater treatment system[J]. Wat. Sci. Tech.,1997,35(9):171-180.
    [48]Jetten M S M et al. New pathways for ammonia conversion in soil and aquatic systems[J]. Plant and Soil,2001,230(1):9-19.
    [49]Tage Dalsgaard, BoThamdruP, Donald E.Canfield. Anaerobic ammonium oxidation (anammox) in the marine environment[J]. Research in Microbiology,2005, 156(4):457-464.
    [50]Pia Engstrom, Tage Dalsgaard, Stefan Hulth, Robert C. Aller. Anaerobic ammonium oxidation by nitrite (anammox):Implications for N2 Production in coastal marine sediments[J]. Geochimica et Cosmochimica Aeta,2005,69(8):2057-2065.
    [51]Wang Jianlong, Kang Jing. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor[J]. Process Biochemistry, 2005,40(5):1973-1978.
    [52]Bipin K. Pathak, Futaba Kazama, Yuko Saiki, Tatsuo Sumino. Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors[J]. Bioresource Technology,2007,98(11):2201-2206.
    [53]Mulder A., van de Graaf A.A, L. A. Rovertson, J. G. Kuenen. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed Reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-184.
    [54]Van de Graaf A.A., de Bruijn P., L.A.Robertson, M.S.M. Jetten, J.G Kuenen. Autotrophic growth of anaerobic ammonium oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology,1996,142:2187-2196.
    [55]Marc Strous, Eic Van de Gerven, Ping Zheng, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations [J]. Wat. Res.,1997,31(8):1955-1962.
    [56]Hyungseok Yoo, Kyu H.A., Hyung-Jie L., Kwang-Hwan L., Youn-Jung K., Kyung-Guen S. Nitrogen removal from synthetic waste water by simultaneous nitrification and denitrification via nitrite in an intermittently-aerated reactor[J]. Wat. Res.,1999,33(1):146-149.
    [57]Mike S. M. Jetten, Wagner M., Fuerst J., M. C. M. van Loosdrecht, Kuenen G., Strous M. Microbiology and application of the anaerobic ammonium oxidation (ANAMMOX) process[J]. Curr Opin Biotechnol,2001,12:283-288.
    [58]Van Dongen U, Jetten M S M. The SHARON-ANAMMOX proccss for treatment ammonium rich wastewater[J]. Water Sci. Tech.,2001,44(1):153-160.
    [59]Christian F, Boehler M, Philipp H et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot land[J]. Journal of Biotechnology,2002,99(3):295-306.
    [60]Abma W. O., Schultz C. E., Mulder J. W., et al. Full scale granular sludge Anammox process[J]. Water Sci. Tech.,2007,55(8-9):27-33.
    [61]Koch G., Egli K., van der Meer J. R., Segrist H. Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor[J]. Wat.Sci.Tech.,2000,41:191-198.
    [62]Third K., Sliekers O.A., Kuenen J.G., Jettern M.S.M. The CANON system (completely autotrophic nitrogen removal over nitrite in one single reactor) under ammonium limitation:interation and competition between three groups of bacteria[J]. Syst. Appl. Microbiol,2001,24:588-596.
    [63]Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND)[J]. Wat. Sci.Tech.,1999,39 (6):61-68.
    [64]Zhao H W, Mavinic D S, Oldham W K, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J]. Wat. Res.,1999,33(4):961-970.
    [65]Yoo H S. Ahn K H, Lee H J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor[J]. Wat. Res.,1999,33(1):145-154.
    [66]门晓欣.Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水,1999,15(3):1-6.
    [67]Helmer C, Kunst S. Simultaneous nitrification/denitrification in an aerobic bilfilm system[J]. Wat. Sci.Tech.,1998,37(4-5):183-877.
    [68]Munch E.V, Lant P.A., Kelle LJ. Simultaneous Nitrfication and Denitrificationin Bench-scale Sequencing Batch Reactors[J]. Wat. Res.,1996,30(2):277-284.
    [69]Castignettiand D, HollocherT C. Heterotrophic nitrification among denitrifiers[J]. Applied and Environmental Microbiology,1984,47(4):620-623.
    [70]Mark Poth, Dennis D. Focht N15 kinetic analys is N2O production by Nirosom onas europaea an exam ination of nitrifier denitrification[J]. Applied and Environmental Microbiology,1985,49(5):1134-1141.
    [71]Robertson LA, Van Niel EWJ, Torremans RAM, et al. Simultaneous nitrification/ denitrification in aerobic chemostat cultures of thiosphaera[J]. Applied and Environmental Microbiology,1988,54 (11):2812-2818.
    [72]Van. N E W J. Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification[D]. pH. D Thesis. Delft University of Technology, Delft, 1991,78-80.
    [73]Robertson L.A., et al. Aerobic denitrification in various heterotrophic nitrifiers[J]. Antonie van Leeuwenhoek,1989,56(4):289-299.
    [74]Robertson L.A., Kuenen J.G. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria[J]. Antonie van Leeuwenhoek,1990,57(3):139-152.
    [75]Munch E V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Wat. Res.1996,30(2):277-284.
    [76]Katie A Third, Natalie Burnett, Ralf Cord-Ruwisch. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnol Bioeng,2003,83(6):706-720.
    [77]Rikke Louise Meyer, Raymond Jianxiong Zeng, Valerio Giugliano. Challenges for simultaneous nitrification, denitrification and phosphorus removal inmicrobial aggregates:mass transfer limitation and nitrous oxide production[J]. FEMS Microbiology Ecology,2005,52(3):329-338.
    [78]Rittmann Bruce, Langeland Wayne E. Simultaneous Denitrification with Nitrification in Single-channel Oxidation Ditches[J]. Journal WPCF,1985,57(4).
    [79]Keller P. K. Study of Factors Affecting Simultaneous Nitrification and Denitrification(SND)[J], Wat. Sci. Tech.,1999,36(6):61-68.
    [80]Zhao H. W., Mavinic D. S. et al. Controlling factors for simultaneous nitrification and denitrification in a two stage intermittent aeration process treating domestic sewage[J]. Wat. Res.,1999,33(4):961-970.
    [81]Byong H J, Mari Y, Yasunori T et al. Effect of C/N values on microbial simultaneous removal of carbonaceous and nitrogenous substances in wastewater by single continuous-flow fluidized-bed bioreactor containing porous carrier particles [J]. Biochemical Engineering Journal,2000,5:29-37.
    [82]Klangduen Pochana, Jurg Keller. Study of factors affecting simultaneous denitrification and nitrification(SND)[J]. Wat.Sci.Tech.,1999,39(6):61-68.
    [83]Yoo H., Ahn K.H. et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrate in an intermittently-aerated reactor[J]. Wat. Res.,1999,33(1):145-154.
    [84]邹联沛,刘旭东,王宝贞等.MBR中影响同步硝化反硝化生态因子[J].环境科学,2001,22(4):51-55.
    [85]方茜,张朝升,张可方等.污泥龄及pH值对同步硝化反硝化过程的影响[J].广州大学学报,2008,7(3):50-54.
    [86]Belmelle B, et al. Study of Factors Controlling Nitrite Build-up in Biological Processes for Water Nitrification[J]. Wat. Sci. Tech.,1992,26(5-6):1017-1025.
    [87]Yang L, Alleman J E. Investigation of Batchwise Nitrite Build-up by an Enriched Nitrification Culture[J]. Wat. Sci. Tech.,1992,26(5-6):997-1005.
    [88]张颖,顾平,邓晓饮.膜生物反应器在污水处理中的应用进展[J].中国给水排水,2002,18(4):90-92.
    [89]Gnirss R. and Dittrich J. Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal:results from trials with different small-scale pilot plants[J]. Wat. Errviron. Res.,2002,72(5):602-609.
    [90]Tom Stephenson, Simon Judd, Bruce Jefferson and Keith Brindle. Membrane bioreactor for treatment[M]. IWA Publishing,2000.
    [91]顾国维,何义亮编著.膜生物反应器——在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [92]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用[J].水处理技术,1999,25(2):63-69.
    [93]Yamamoto K, Hiasa M, Mahmood T, et al. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank[J]. Wat. Sci. Technol, 1989,21:43-54.
    [94]Brockmann M, Seyfried C F. Sludge activity under the conditions of crossflow microfiltration[J]. Wat. Sci. Tech.,1997,35(10):173-181.
    [95]杨小丽.膜生物反应器处理城市污水的微环境特征及膜污染控制[D].东南大学,2006.
    [96]陆晓峰,梁国明,陈洁等.MBR与CAS法处理市政污水的比较[J].水处理技术,2006,32(9):56-59.
    [97]Suwa Y, Suzuki T, Toyohara H, et al. Single-sludge nitrogen removal by an activated sludge process with cross-flow filtration[J]. Wat. Res.,1992,26(9):1149-1157.
    [98]Chiemchaisri C, Wong Y K., Urase T, et al. Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic waste water treatment[J]. Wat. Sci. Tech.,1992,25(10):231-240.
    [99]Cote P., Buisson H. Pound C. and Arakaki G. Immersed membrane activated sludge for the reuse of municipal wastewater[J]. Desalination,1997,113(2-3):189-196.
    [100]Cote P, Buisson H. and Praderie M. Immersed membrane activated sludge process applied to the treatment of municipal wastewater[J]. Wat. Sci. Tech.,1998,38(4-5): 437-442.
    [101]Samer Adham, P Gagliardo, L. Boulos, J. Oppenheimer and R. Trussell. Feasibility of the membrane bioreactor process for water reclamation[J]. Wat. Sci. Tech.,2001, 43(10):203-209.
    [102]B. Zhang, K. Yamamoto. Seasonal change of microbial population and activities in a building wastewater reuse system using a membrane separation activated sludge process[J]. Wat. Sci. Tech.,1996,34(5-6):295-302.
    [103]刘锐,黄霞等.膜生物反应器和传统活性污泥工艺的比较[J].环境科学,2001,22(3):20-24.
    [104]郑祥,魏源送,樊耀波,刘俊新.膜生物反应器在我国的研究进展[J].给水排水,2002,28(2):105-110.
    [105]孟耀斌等.分置式膜生物反应器处理生活污水的抗冲击负荷能力[J].环境科学,2000,21(5):22-26.
    [106]A van Bentem, D Lawrence, F Horjus, et al. MBR pilot research in Beverwijk:side studies [J]. H2O MBR Special,2001:16-21.
    [107]Simon Judd. The development in MBR technology [J]. H2O MBR Special, 2001:56-57.
    [108]Renze van Houten, Herman Evenblij, Mischa Keijmel. Membrane bioreactors hit the big time-ten years of research in the Netherlands[J]. H2O MBR Special, 2001:26-29.
    [109]EI I-Iani Bouhabila, Roger Ben Aim and Herve Buisson. Fouling characterization in membrane bioreactors[J]. Separation and Purification Technology,2001, 22-23:123-132.
    [110]Gunther Gehlert, Mariati Abdulkadir, Jan Fuhrmann and Jobst Hapke. Dynamic modeling of an ultrafiltration module for use in a membrane bioreactor[J]. Journal of Membrane Science,2005,248(1-2):63-71.
    [111]C Smith, D Di Gregorio, R M Talcott. The use of ultrafiltration membranes for activated sludge separation[C]. Proc 24rd Ind. Waste Conf., Purdue University, Ann Arbor Science, Ann Arbor, U.S.A.,1969,1300-1310.
    [112]Shoji K. Japan's Aqua Renaissance '90 project[J]. Wat. Sci. Tech.,1991, 23(7-9):1573-1582.
    [113]Yamamoto K. Direct solid-liqud separation using hollow fiber membrane in an activated sludge tank[J]. Water Science and Technology,1989,21(1):43-54.
    [114]Gander M, Jefferson B, J udd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations[J]. Sep. Pur. Tech.,2000,18:119-130.
    [115]顾国维,何义亮.膜生物反应器—在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [116]丁毅,张传义,袁丽梅.MBR在污水处理中的应用与研究进展[J].给水排水,2007,33(11):170-173.
    [117]岑运华.日本水综合再生利用系统90计划的进展概要[J].环境科学研究,1990,3(2):50-55.
    [118]林晶,赵庆祥,陆美红等.膜分离活性污泥法的研究[J].城市环境和城市生态,1994,7(1):6-11.
    [119]吴开芬等.超滤法处理印钞厂擦板液的研究[J].环境科学,1994,14(4):34-37.
    [120]蒋燕,陶冠红.膜生物反应器短程硝化脱氮处理生活污水的研究[J].环境科学与技术,2007,30(11):95-97.
    [121]杨琦,尚海涛,杨春等.A/O—MBR工艺处理城市污水的研究[J].中国给水排水,2006,22(7):1-4.
    [122]仝攀瑞,朱振亚,王琼瑶.MBR处理印染废水的膜污染及清洗研究[J].中国给水排水,2006,22(5):106-108.
    [123]韩怀芬,金漫彤.膜生物反应技术处理造纸废水试验[J].水处理技术,2001,27(2):96-98.
    [124]封莉,张立秋,吕炳南等.淹没式MBR处理啤酒废水的净化效能研究[J].水处理技术,2005,31(5):46-50.
    [125]鲍建国,卢学实.一体式膜生物反应器处理港口污水及回用[J].中国给水排水,2002,18(9):37-38.
    [126]李志东,李娜,张洪林等.一体式膜生物反应器处理屠宰废水[J].环境工程,2007,25(3):27-28.
    [127]臧倩,孙宝盛,魏青.膜生物反应器用于医院废水处理[J].水处理技术,2006,32(9):85-87.
    [128]Daijun Zhang, Peili Lu, Tengrui Long and Willy Verstraete. The integration of methanogensis with simultaneous nitrification and denitrification in a membrane bioreactor[J]. Process Biochemistry,2005,40(2):541-547.
    [129]Mengchun Gao, Min Yang, Hongyan Li, Yanming Wang and Feng Pan. Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic inorganic wastewater[J]. Desalination,2004,170(2):177-185.
    [130]Cicek N., Franco J.P., Suidan M.T., Urbain V and Manem J. Characterization and comparison of a membrane bioreactor and a conventional activated sludge system in the treatment of wastewater containing high-molecular-weight compounds[J]. Wal. Environ. Res.,1999,71:64-70.
    [131]Francesco Fatone, David Bolzonella, Paolo Battistoni and Franco Cecchi. Removal of nutrients and micropollutants treating low loaded wastewaters in a membrane bioreactor operating the automatic alternate-cycles process[J]. Desalination,2005, 183(1-3):395-405.
    [132]Chang LS., Clech PL., Jefferson B. and Judd S. Membrane fouling in membrane bioreactors for wastewater treatment[J]. J. Environ. Eng. Sci.,2002, 128(11):1018-1029.
    [133]Cote P., Buisson H. Pound C. and Arakaki G. Immersed membrane activated sludge for the reuse of municipal waste water [J]. Desalination,1997,113(2-3):189-196.
    [134]Cote P, Buisson H Praderie M. Immersed membrane activated sludge process applied to the treatment of municipal wastewater[J]. Sci. Tech.,1998,38(4-5): 437-442.
    [135]Rosenberger S., Kruger U., Witzig R., manz W., Szewzyk U. and Kraume M. performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water[J]. Wat. Res.,2002,36:413-420.
    [136]Lesjean B, Gnirss R. and Adam C. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal [J]. Desalination,2002,149:217-224.
    [137]Yamamoto K. and Win K.M. Tannery wastewater treatment using a sequencing batch membrane reactor[J]. Wat. Sci. Tech.,1991,23(7-9):1639-1648.
    [138]Goltara A., Martinez J. and Mendez R. Carbon and nitrogen removal from tannery wastewater with a membrane bioreactor [J]. Wat. Sci. Tech.,2003,48(1):207-214.
    [139]Ahn K.H., Song K.G., Cho E., Cho J.W., Yun H.J., Lee S. and Kim J.Y. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor(SAM) process[J]. Desalination,2003,157:345-352.
    [140]Nagaokaka H. Nitrogen removal by a submerged membrane separation activated sludge process[J]. Wat. Sci. Tech.1999,39(81:107-114.
    [141]姜应和,张发根,叶舟等.武汉市城市污水水质特征及其处理对策[J].武汉理工大学学报,2002,24(5):29-31.
    [142]方茜,张可方,张朝升等.SBR法处理低碳城市污水的除磷规律[J].中国给水排水,2004,20(8):43-45.
    [143]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [144]方茜,韦朝海,张朝升等.碳氮磷比例失调城市污水的同步脱氮除磷[J].环境污染治理技术与设备,2005,6(11):46-50.
    [145]万金保,王建永.基于短程硝化反硝化的SHARON工艺原理及技术要点[J].工业水处理,2008,28(4):13-15.
    [146]袁林江,彭党聪等.短程硝化反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [147]孙洪伟,彭永臻,王淑莹等.厌氧氨氧化生物脱氮技术的演变、机理及研究进展[J].工业用水与废水,2008,39(1):7-11.
    [148]万金保,王敬斌.同步硝化反硝化脱氮机理分析及影响因素研究[J].江西科学,2008,26(2):345-350.
    [149]Owen W F.污水处理能效与能耗[M].章北平,车武译.河北:能源出版社,1989.38-70.
    [150]国家环保总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002.
    [151]刘礼祥,章北平,周红燕等.一体化CIBR反应器的低温脱氮除磷中试[J].中国给水排水,2006,22(19):21-24.
    [152]Fernandes L, Sartaj M. Comparative Study of Static Pile Composting Using Natural, Forced and Passive Aeration Methods[J]. Compost Science & Utilization,1997, 5(4):65-77.
    [153]Vassos T. D. Future directions in instrumentation, control and automation in the water and wastewater industry[J]. Wat Sci Tech,1994,28(11-12):9-14.
    [154]Ra C S, Lo K V, Mavinic D S. Control of a swine manure treatment process using a specific feature of oxidation-reduction potential [J]. Bioresource Technology,1999, 70:117-127.
    [155]Lock Y W, Tam N Y, Traynor S. Enhanced nutrient vemoval by oxidation-redution potental (ORP) controlled aeration in a labaratorary scale extended aeration t reatment system[J]. Wat Res,1994,28(10):2087-2094.
    [156]Chang C N, Yu R F, Chao A C, et al. On-line monitoring and control of the textile wastewater color removal process[J]. Wat Sci Tech,1994,30(3):265-270.
    [157]Yu R F, Liaw S L, Cheng W Y, et al. Performance enhancement of SBR applying real-time control[J]. Journal of Environmental Engineering,2000,126(8):943-948.
    [158]Chen K C, Chen C Y, Peng J W, et al. Real-time control of animmobilized-cell reactor for wastewater treatment using ORP[J]. Wat Res,2002,36:230-238.
    [159]Cho B C, Chang C N, Liaw S L, et al. The feasible sequential control strategy of treating high strengt horganic nitrogen wastewater with sequencing batch biofilm reactor[J]. Wat Sci Tech,2001,43(3):115-122.
    [160]Charpentier J, Martin G, Wacheux H, et al. ORP regulation and activated sludge:15 years of experience [J]. Wat Sci Tech,1998,38(3):197-208.
    [161]Paul E, Plisson S S, Mauret M, et al. Process state evaluation of alternative oxic-anoxic activated sludge using ORP, pH and DO[J]. Wat Sci Tech,1998, 38(3):299-306.
    [162]高景峰,彭永臻,王淑莹等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11.
    [163]Hao O., Huang J. Alternating aerobic-anoxic process for nitrogen removal:Process evaluation[J]. Water Environ. Res.,1996,68(1):83-93.
    [164]蒋山泉,郑泽根,肖海文等.序批式生物膜(SBBR)同步硝化反硝化特性研究[J].安全与环境学报,2008,8(4):68-72.
    [165]Third K A, Burnett N, Cord-Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology and Bioengineering,2003,83(6):706-720.
    [166]闫骏,王淑莹,高守有等.低溶氧下低C/N值生活污水的同步硝化反硝化[J].中国给水排水,2007,23(3):44-48.
    [167]Pochana K, Keller. J. Study of Factors Affecting Simultaneous Nitrification and Denitrification(SND)[J]. Water Sci Tech.,1999,36(6):61-68.
    [168]Xinhui Xing, et al. Effect of C/N Values on Microbial Simultaneous Removal of Carbonaceous and Nitrogenous Substances in Wastewater by single Continuous-Flow Fluidized-bed Bio-reactor Containing Porous Carrier Particles[J]. Biochemical Engineering,2000,5:29-37.
    [169]Collivignare C, Bertanza G. Simultaneous Nitrification-Denitrification process in Activated sludge plants performance and Applicability [J]. Water Sci Tech,1999,40 (45):187-194.
    [170]S. Wijeyekoon, T. Mino, H. Satoh, et al. Growth and Novel Structural Features of Tubular Biofilms Produced Under Different Hydronamic Conditions[J].Wat. Sci. Tech.2000,41(4-5):129-138.
    [171]顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1993.
    [172]方茜,荣宏伟,张立秋等.同步硝化反硝化脱氮模型及动力学分析[J].广州大学学报(自然科学版),2009,8(2):60-65.
    [173]国家城市给水排水工程技术研究中心译.污水生物与化学处理技术[M].北京:中国建筑工业出版社,2002.
    [174]陈文威,李沪萍等.热力学分析与节能.北京:科学出版社,1999.
    [175]高旭.城市污水处理工艺能量平衡分析研究与应用[D].重庆大学,2002.
    [176]刘礼祥.城市污水处理连续流一体化生物反应器工艺研究与能效分析[D].华中科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700