丹参栽培土壤适宜性微生物群落结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹参来源于唇形科Labiatae植物丹参Salvia miltiorrhiza Bunge的干燥根及根茎,是常用的大宗中药材。具有活血化瘀,通经止痛,清心除烦,凉血消痈的功效。但该药材在生产种植中产生的连作障碍严重危害到丹参的品质与产量,威胁到丹参种植产区的持续发展,对当地经济带来巨大损失。基于连作障碍理论,通过丹参产地土壤微生物研究,对丹参产地土壤适宜性微生物结构特征进行评价,结果如下。
     对中江丹参产地休地土壤微生物研究,首次表明随着休地年限的增加,土壤细菌数量增加,真菌数量减少,土壤缓慢地细菌化。聚类分析表明,休地2年前后,微生物主要菌群数目变化明显。中江丹参产地土壤功能微生物群落在不同休地年限的差异显著。因休地年限不同,功能微生物群落数目改变显著;且多样性指数增加。中江丹参产地在休地2、3年间,土壤微生物生物量磷含量有着显著的变化。中江丹参产地休地不同年限的两批土壤样品的细菌与真菌群落遗传多样性聚类分析表明,2005年、2006年栽培过丹参即休地4年、3年的土壤微生物群落遗传距离较小,群落遗传多样性较为相似,聚类为第一支;而2008年、2009年栽培过丹参即休地1年、0年的土壤微生物群落遗传距离较小,遗传多样性较为相似,聚类为第二支;2007年栽培过丹参即休地2年的土壤微生物群落遗传多样性则分散于这二类中,似乎是这二类之间的过渡。这与土壤可培养微生物分析的结果基本一致。中江休地年限越长的土壤细菌DGGE条带丰富度越大,真菌DGGE条带丰富度越小。
     丹参区域空白土壤真菌数量显著少于丹参根际土壤真菌数量。从功能微生物群落看,丹参根际土壤的厌氧纤维素分解菌、亚硝化细菌和反硫化细菌数量均显著多于区域空白土壤的,其它功能菌群与土壤功能微生物多样性指数差异未达到统计意义水平。对全国的丹参产地土壤样品分析表明丹参根际土壤与区域空白土壤的微生物生物量磷含量差异不显著。全国丹参产地土壤的细菌与真菌群落遗传多样性较为复杂。聚类分析显示,丹参土壤微生物群落遗传距离较小,丹参根际之间的群落遗传距离差异较大,规律不明显。
     测序后与GENBANK序列数据库对比结果表明,细菌主要分布在alphproteobacterium,Sphingomonas,Arthrobacter属。真菌主要分布在Termitaria,Agaricus Cercozoan,Cordyceps,Geomyces,Penicillium,Iodophanus属。
     将根际土壤的功能微生物群落与丹参有效成分含量作逐步回归分析,结果表明丹参中咖啡酸含量与C循环功能菌相关,丹参酮IIA含量与N循环功能菌相关,丹酚酸A含量与N/P,N/S相关功能菌的比值相关。首次将土壤微生物群落结构与丹参有效成分相联系。
     通过对根际土壤与区域空白土壤的功能微生物群落作逐步LOGIT回归分析.首次从功能微生物数量角度以方程的形式对丹参产区土壤适宜性评价以及判断是否受连作障碍影响。Y=e(-1.4560191nyx-0.63422181nfs-5.300482)-0.4(e为自然数,2.71828).综上所述,导致丹参连作障碍的微生物因素是土壤微生物群落结构被破坏;丹参休地过程就是土壤微生物群落结构重新构建、恢复的过程,休地2-3年是月参产地土壤微生物群落结构重构恢复的关键时期。
Radix Salviae Miltiorrhizae, Chinese herbal medicinal frequently used, was dry radix and rhizoma of Salvia miltiorrhiza Bunge, promoting blood circulation, menstrual pain, pure heart and arrest restless, cooling elimination effectiveness of carbuncle. Continuous cropping of Salvia miltiorrhiza seriously harms to the quality of Radix and Rhizoma Salviae Miltiorrhizae in cultivation process, a threat to the development of its economic, causing huge economic loss. This research article, based on the theory of continuous cropping obstacles, throngh the soil microbial research in the producing Salvia miltiorrhiza regions, evaluated microbial structure characteristic of soil suitability. Results were as follow.
     The research on soil microbial at the uncropping Salvia miltiorrhiza areas of Zhongjiang county indicated that soil bacteria was increasing, but soil fungi was slow with the years off. Cluster analysis showed that that population of soil microbial mainly changed after continuous uncropping Salvia miltiorrhiza 2 years. The functional microbial population of Zhongjiang county was obviously different among uncropping Salvia miltiorrhiza years. With years off, cellulytic bacteria and aromatic compound decomposed bacteria were significantly increasing while other microbial population tended to decrease. And biodiversity index was increasing. MBP contents were significantly different among years uncropping Salvia miltiorrhiza at Zhongjiang county, and MBP contents obviously changedafter uncropping Salvia miltiorrhiza, which was consistent with the results of culturable microbial. With the years on of uncropping Salvia miltiorrhiza, DGGE bands rechness of bacteria genetic diversity was decreasing, but DGGE bands rechness of fungi genetic diversity was increasing.
     The number of culturable microbial in the suitably producing Salvia miltiorrhiza areas was significant difference with number of culturable microbial in the insuitably producing Salvia miltiorrhiza areas. The number of fungi at the areas of suitably producing Salvia miltiorrhiza was obviously greater than that of insuitably producing. The numbers of anaerobic cellulytic bacteria, nitrification bacteria and anti-surfur bacteria at the areas of suitably producing Salvia miltiorrhiza were significantly more than that of insuitably producing Salvia miltiorrhiza. Other functional microbial population difference was not to the level of statistical significance, and as to biodiversity index, which was relevant to environmental factors in the regions of producing Salvia miltiorrhiza all over the country. MBP contents at the areas of suitably producing Salvia miltiorrhiza were significantly higher than that at the areas of insuitably producing Salvia miltiorrhiza, which was inconsistent with the research results of culturable microbial population. PCR-DGGE molecular analysis technology can be a good tool to analyse culturable and unculturable microbial community genetic structure, and complement and support the traditional analysis method. Fungi and bacteria genetic diversity cluster analysis showed that soil microbial genetic distance of cropping Salvia miltiorrhiza in 2005 and 2006 was smaller than that of other years, and similar, gathered each other; soil microbial genetic distance of cropping Salvia miltiorrhiza in 2008 and 2009 was smaller than that of 2005 and 2006, and similar, gathered each other, while soil microbial genetic diversity of cropping Salvia miltiorrhiza in 2007 distributed in the two categories, seeming transition between the two categories. This was consistent on the results of culturable microbial research. Soil microbial genetic diversity was complex all over the country. But cluster analysis showed that the genetic distance of the suitably producing Salvia miltiorrhiza areas was relatively smaller than that of others. The genetic distance of the insuitably producing Salvia miltiorrhiza areas was quite different.
     Sequencing, comparison with the GENEBANK sequence database, the results showed that bacteria was in the genus of alpha proteobacterium, Sphingomonas, Arthrobacter, and fungi was in the genus of Termitaria, Agaricus, Cercozoan, Cordyceps, Geomyces, Penicillium, Uncultured Iodophanus.
     Functional microbial population of rhizosphere and the chemical components of Salvia miltiorrhiza Bunge for stepwise regression analysis showed that caffeic acid comtent was associated with the population of C circulation, tanshinone IIA content was associated with the population of N circulation, salvianolic acid A was associated with the population of N/P, N/S circulation.It was the first time that microbial community structure associate with active ingredients of Salvia miltirrhiza Bunge.
     Through LOGIT stepwise regression analysis on the rhizosphere soil microbial and the control soil microbial, results showed that equations were used to determine whether soil suitability for implanting Salvia miltiorrhiza Bunge the first time. Y=e (-1.4560191nyx-0.6342218lnfs-5.300482)-0.4
     The main factor causing continuous cropping obstacle of Salvia miltiorrhiza was that the soil microbial community was destroyed. And uncontinuous cropping Salvia miltiorrhiza was to rebuild and restore soil microbial population balance. Continuous 2-3 years uncropping Salvia miltiorrhiza was the key period of soil microbial communitiy reconstruction and restoration.
引文
[1]张辰露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034.
    [2]郭兰萍,黄璐琦,蒋有绪,等.栽培苍术土壤微生物变化[J].中国中药杂志,2007,32(12):1131-1133.
    [3]陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18(12):2755-2759.
    [4]李芳琼.不同连作年限麦冬根际微生物区系动态研究[J].土壤学报,2006,37(3):563-566.
    [5]翟玉玲,蒋燕,刘小燕,等.半夏连作地土壤消毒试验总结[J].安徽农业科学,2007,35(26):8264.
    [6]刘清香,崔堂兵,程方叙.土壤微生物对桔梗产量与品质的影响[J].广东农业科学,2009,2:36-39.
    [7]官会林,陈昱君,刘士清,等.三七种植土壤微生物类群动态与根腐病的关系[J].西南农业大学学报,2006,28(5):706-710.
    [8]张小玲,潘振刚,周晓锋,等.自毒作用与连作障碍[J].土壤通报,2007,38(4):781-785.
    [9]郑良永,胡剑非,林昌华,等.作物连作障碍的产生及防治[J].热带农业科学,2005,25(2):58-62.
    [10]姜超英,潘文杰.作物连作的土壤障碍因子综述[J].作物栽培,2007,3:26-28.
    [11]郑艳.中药材的地道性与根际土壤微生物[J].现代中药研究与实践,2007,21(6)60-64.
    [12]L. E.CASIDA, J.R.. Abundant microorganism in soil[J]. Applied microbiology,1965,13(3): 327-333.
    [13]Chi Nam Seong, Ji Heok Choi,and Keun-Shik Baik. An inproved slective isolationof rare actinomyetes from forest soil[J]. the journal of microbiology,2001,39(1):17-23.
    [14]J.N.Porter, J.J.Wilhelm, and H.D.Tresener. Method for the preferential isolation of actinomycetes from soil [J]. J.Gen.Microbiol.,1960,175-178.
    [15]C.F.Hirsch,and D.L.Christensen. Novel method for selective isolation of actinomycetes [J]. Applied and environmental microbiology,1983,46(4):925-929.
    [16]Moustafa A.El-Nakeeb and Hubert A.Lechevalier. Selective isolation of aerobic actinomycetes [J]. Applied and environmental microbiology,1962,75-77.
    [17]Antonella Anastasi, Giovanan Cristina Varise, Valeria Filipello Marchisio. Isolation and identification of fungal communities in compost and vermicompost [J]. Mycologia,2005.19(1):33-34.
    [18]Abdul Jalil Kader,Othman Omar.and Loo Shu Feng. Isolantion of cellulolytic fungi from the Bario highlands,Sarawak. [J]. ASEAN Review of biodiversity and environmental conservation,1999,12:3-6.
    [19]H Moallaei, F. Zaini, M Pihet, M. Mahmoudi, J. Hashemi. Isolation of keratinophilic fungi from soil samples of forests and farm yards [J]. Iranian J Publ Health,2006,35(4):62-69.
    [20]姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006:162.
    [21]Thomas N. Gamble, Michael R.. Betlach, and James M. Tiedje. Numerically domiant denitrifying bacteria from world soil [J]. Applied and environmengal microbiology, 1977,33(4):926-939.
    [22]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:5.
    [23]李钧敏,金则新.一种高效可直接用于PCR分析的土壤总微生物DNA抽提方法[J].应用生态学报,2006,17(11):2107-2111.
    [24]陈旭玉,周亚奎,余贤美,等.一种直接用于PCR的土壤微生物DNA提取方法[J].中国农学通报,2008,24(4):33-35.
    [25]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [26]C.Yeates, M.R.Gillings, A.D.Davison,N.Altavilla, D.A.Veal. Methods for microbial DNA extraction from soil for PCR amplification [J]. Biological procedures online,1998,1(1): 40-46.
    [27]徐晓字,闵航,刘和,等.土壤微生物总DNA提取方法的比较[J].农业生物技术学报,2005,13(3):377-381.
    [28]Mitali Das, Todd V. Royer, and Laura G. Leff. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream [J]. Applied and environmental microbiology,2007,73(3):756-767.
    [29]Ying Wu, Vanessa M. Hayes, Jan Osinga, Inge M.Mulder, et al. Improvement of fragment and primer selection for muatation detection by denaturing gradient gel electorphoresis [J]. nuceic acids research,1998,26(23):5432-5440.
    [30]胡元森,吴坤,李翠香,等.黄瓜连作对土壤微生物区系影响Ⅱ-基于DGGE方法对微生物群落遗传的变化分析[J].中国农业科学,2007,4(10):2267-2273.
    [31]李卫东,孟详文,李伟,等.一种从银染后聚丙烯酰胺凝胶中回收、克隆DNA的方法[J].中华医学遗传学杂志,1997,14(6):380.
    [32]Doran J.W., Zeiss M. R. Soil health and sustainability:managing the biotic component of soil quality [J]. Appied Soil Ecology,2000,15:3-11.
    [33]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311
    [34]李晓,王迎春.土壤微生物多样性与植被多样性[J].内蒙古大学学报,2006,37(6):708-714.
    [35]王健,刁治民,张静,等.土壤微生物在促进植物生长方面的作用与发展前景[J].青海草业,2006,15(4):20-27.
    [36]吴建峰,林先贵.土壤微生物在促进植物生长放面的作用[J].土壤,2003,1:18-21.
    [37]郭瑞英,陈清,李晓林.土壤微生物—抑病性与土壤健康[J].中国蔬菜,2005(增刊):78-82.
    [38]Ching-hong Yang, and David E. Crowley. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J]. Applied andenvironmental microbiology,2000,66(1):345-351.
    [39]P. Lavelle. Diversity of soil fauna and ecosystem function[J]. Biology international N°33,1996,3-14.
    [40]龚明福,贺江舟,孙晓棠,等.土壤微生物与土壤抑病性形成关系研究进展[J].新疆农业科学,2007,44(6):814-820.
    [41]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162-171.
    [42]C. Pankhurst, B. M. Doube, V.V.S.R.Gupta. Biological indicators of soil health [M].1997, 9-23.
    [43]赵其国,张桃林,鲁如坤,等.中国东部红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社,2002:59-65.
    [44]吕晓男,孟赐福,麻万诸,等.土壤质量及其演变[J].浙江农业学报,2004,16(2):105-109.
    [45]Ditzler C.A.,Tugel A.J. Soil quality field tools:Experiences of USDA-NRCS soil quality institute[J]. Agronomy Jouranal,2002,94(1):33-38.
    [46]Morari F.,Lugato E.,Luigi G. Olsen phosphorus, exchangeablecations and salinity in two long-term experiments of north-eastern Itly and assessment of soil quality evolution[J].Agriculture, ecosystems and environment,2007,08:1.
    [47]Kibblewhite M. G. Soil quality assessment and management[C]. Nertherlands:Waneningen Academic Publishers,2005:219-226.
    [48]Logsdon S. D., Karlen D. L. Bulk dersity as a soil quality indicator during conversion to no-tillage[J].Soil and Tillage Research,2004,78(2):143-149.
    [49]Govaerts B., Sayre K. D., Deckers J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico [J].Soil and Tillage Research,2006,87(2):163-174.
    [50]Dumanskia J, Piere C. Land quality indicators:research plan[J]. Agriculture, ecosystems and environment,2000,81:93-102.
    [51]Carter M. R. Soil quality for sustainable land management:organic matter and aggregation interactions that maintain soil functions[J]. Agronomy Journal,2002,94:38-47.
    [52]Doran J. W., Sarrantonio M., Liebig M. A. Soil health and sustainability[J]. Advances in Agriculture,1996,56:1-54.
    [53]Kerlen D.L., Gardener J. C., Rosek M. J. A soil quality framework for evaluationg the impact of CRP[J]. Journal of Production Agriculture,1998,11(1):56-60.
    [54]Jordan D, Kerner R.J, Bergfied W. A, et al. Evaluation of microbial methods as potential indicators of soil quality in historical agriculture fields [J]. Biological Fertilizer and Soils, 1995,19(4):297-302.
    [55]吕洪飞.绿色中药材的栽培及其环境质量评价[J].中国中药杂志,1999,24(8):499-502.
    [56]薛立,陈红跃,邝立刚.湿地松混交林地土壤养分、微生物和酶活性的研究[J].应用生态学报,2003,14(1):157-159.
    [57]Colvan S.R.,Syer J.K.,O'Donnell A.GEfect of long-term fertilizer use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland[J]. Biology and fertilizer of Soils,2001,34(4):285-263.
    [58]Kenndy Z.J.,Rangarajan M. Biomass production root colonization and phosphatase activity by six VA-mycorrhizal fungi in papaya[J]. Indian Phytopathology,2001,54(1):72-77.
    [59]KURAKOV Alexander V., ZVYAGINTSEV Dmitri G., UMAROV Marat M. etc. Evaluation of an international based approach to assess soil quality by biological methods: Russian experiences. Scientific registration n°2362.
    [60]P. Lavelle. Diversity of soil fauna and ecosystem function[J]. Biology international N°33, 1996:3-14.
    [61]Mette Nerendam Nielsen, Anne Winding. Microorganism as indicators of soil health. ministry of the environment, national environmental research institute.2002:14-15.
    [62]唐玉姝,魏朝富,颜廷梅,等.土壤质量生物指标研究进展[J].土壤,2007,39(2):157-163.
    [63]Mette Neiendam Nielsen, Anne Winding. Microorganisms as indicators of soil health [M]. National environmental research institute ministry of the environment,2002,11-61.
    [64]Kennedy,A.C., R.J.Papendick. Microbial characteristics of soil quality[J]. Journal of Soil and Warter Conservation,1995,50:243-248.
    [65]Dick R. P. Soil enzyme activities as indicators of soil quality. In:Doran J.W., Coleman D. C., Bezdicek D. F. and Stewart B. A., Editors, Defining soil quality for a sustainable environment,SSSA, Mdison,1994,107-124.
    [66]Dick R. P. Soil enzyme activities and biodiversity measurements as integrating biological indcators. In:Doran J.W., Jones Editors,Handbook of Methods for Assessment of soil quality, SSSA, Mdison,1994,107-124.
    [67]熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展,2005,27(1):72-74.
    [68]吴晓芙,胡曰利.土壤微生物生物量作为土壤质量指标的研究[J].中南林学院学报,2002,22(3):51-53.
    [69]俞慎,何振立,张光荣,等.红壤茶树根层土壤基础呼吸作用和酶活性[J].应用生态学报,2003,14(2):179-183.
    [70]孙波,赵其国,赵桃林,等.土壤质量与持续环境.Ⅲ:土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    [71]杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展[J].甘肃农业大学报,2004,39(1): 88.
    [72]Zelles L. Fatty acid pattern of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil:A review[J]. Biology and Fertility of Soils,1999,29: 11-29.
    [73]龙健,李娟,腾应,等.贵州高原卡斯特环境退化过程土壤质量的生物学特性研究[J].水土保持学报,2003,17(2):47-50.
    [74]张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    [751郑华,欧阳志云,王效科,等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1995-2000.
    [76]Tiquia S.M., Lloyd J., Herms D.A. et al. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes [J]. Applied Soil Ecology,2002,21:31-48.
    [77]焦如珍,杨承栋,屠星南,等.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化[J].林业科学研究,1997,10(4):373-379.
    [78]庞学勇,刘庆,刘世全,等.川西亚高山云杉人工林土壤质量性状演变[J].生态学报,2004,24(2):261-266.
    [79]张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].土壤学报,2005,42(1):116.
    [80]孙瑞莲,朱鲁生,赵秉强,等.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报,2004,15(10):1907-1910.
    [81]杜相革,董民,曲再红,等.有机农业和土壤生物多样性[J].中国农学通报,2004,20(4):80-81.
    [82]Balota E. L., Colozzi-Filho A., Andrade D. S. et al. Microbial biomass in soils under different tillage and crop rotation systems[J]. Biology and Fertility of Soil,2003,38:15-20.
    [83]周丽霞,蚁伟民,易志刚,等.霍山退化生态系统恢复过程中土壤微生物特性[J].热带亚热带植物学报,2004,12(3):202-206.
    [84]龙健,黄昌勇,腾应,等.矿区重金属污染对土壤环境质量为生物学指标的影响[J].农业环境科学学报,2003,22(1):60-63.
    [85]Insam H. Are the soil microbial biomass and basal respiration governed by the climatic regime? [J]. Soil Biology and Biochemistry,1990,22(4):525-532.
    [86]王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复[J].环境污染治理技术与设备,2004,5(11):1-5.
    [87]贾学文,闫伟,白淑兰,等.根际土壤微生物最佳分离条件筛选研究[J].华北农学报,2007,22(6):147-151.
    [88]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789.
    [89]谭兆赞,刘可星,廖宗文. 土壤微生物BIOLOG分析中特征碳源的判别[J].华南农业大学学报,2006,27(4):10-14.
    [90]白震,何红波,张威,等.磷脂脂肪酸技术及其在土壤微生物研究中的应用[J].生态学报,2006,26(7):2387-2395.
    [91]祁建军,姚槐应,李先恩,等.磷脂脂肪酸分析地黄根际土壤微生物多样性[J].土壤,2008,40(3):448-454.
    [92]张海燕,张旭东,李军,等.土壤微生物测定方法概述[J].微生物学杂志,2005,25(4):95-99.
    [93]吴金水,肖和艾,陈桂秋,等.旱地土壤微生物磷测定方法研究[J].土壤学报,2003,40(1):70-78.
    [94]刘守龙,肖和艾,童成立,等.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J].农业现代化研究,2003,24(4):279.
    [95]彭佩钦,吴金水,黄道友,等.洞庭湖不同利用方式对土壤微生物生物量碳氮磷的影响[J].生态学报,2006,26(7):2262-2263.
    [96]崔纪超,毛艳玲,杨智杰,等.土壤微生物生物量磷的研究进展[J].亚热带资源与环境 学报,2008,3(4):80-88.
    [97]龚伟,胡庭兴,宫渊波,等.土壤微生物量磷研究综述[J].四川林勘设计,2005,2:1-4.
    [98]NubeI,U.,B.Engelen,A.Felske,J.Snaidr,et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis[J]. J. Bacteriol.,1996,178:5636-5643.
    [99]Heuer. H., M. Krsek, P. Baker,et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Appl. Environ. Microbiol.1997,63:3233-3241.
    [100]Ampe, F.,N. ben Omar, C.Moizan, et al. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol.1999,65:5464-5473.
    [101]Muyzer, G,E. C. de Waal,and A. G. Uitterlinden. Profiling of complex microbial population by denaturing gradient gel eletrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.1993,59:659-700.
    [102]Ferris, M. J.,G Muyzer, and D. M. Ward. Denaturing gradient gel electrophoresis profiles of 16S r RNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Mcirobiol.1996,62:340-346.
    [103]Walter, J.,G. W. Tannock, A. Tilsala-Timisjarvi, et al. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis andspecies-specific PCR primers. Appl. Environ. Microbiol.2000,66:297-303.
    [104]Zoetendal, E. G, A. D. L. Akkermans, and W. M. de Vos. Temperature gradient gel electrophoresis analysis of 16S r RNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol.1998,64:3854-3859.
    [105]Klijin, N., A. H. Weerkamp, and W. M. de Vos. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplied variable region of 16S r RNA and specific DNA probes. Appl. Environ. Microbiol.1991,57:3390-3393.
    [106]SOOYOUN LEE,JOHN BOLLINGER,DAVID BEZDICEK, et al. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitive PCR method[J]. Appl.and Environ. Microbiol.1996,62(10):3738-3783.
    [1071罗青,宋亚娜,郑伟文.PCR-DGGE法研究福建省稻田土壤微生物地区多态性[J].中国生态农业学报,2008,16(3)669-674.
    [108]Godon J.J.,Zumstein E, Dabert P, et al. Molecular microbial diversity of an anaerobic digestor as determined by small-subuit r DNA sequence analysis[J]. Appl. Environ. Microbiol,1997,63:2802-2813.
    [109]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789-792.
    [110]David M. W., Michael J. F., Stephen C. N. et al. A nature view of microbial biodiversity within hot spring cyanobacterial mat communities[J]. Microbiol. Mol. Biol. Rev, 1998,62:1353-1370.
    [111]Erik J. van Hannen.,Gabriel Zwart, Miranda P. van Agterveld. et al. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses[J]. Appl. and Environ. Microbiol.1999,65(2):795-801.
    [112]George A. Kowalchuk, Saskia Gerards, and Jan W. Woldendorp. Detection and characterization of fungal infections of Ammophila arenaria root by DGGE of specifically amplified 18 S r DNA [J]. Appl. and Environ. Microbiol.1997,63(10):3858-3865.
    [113]White, T. J.,T. Bruns, S. Lee. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [M], New York, Academic Press, Inc.,1990:315-322
    [114]May L. A., B. Smiley, and M. G. Sxhmidt. Comparative denaturing gradient gel electrophoresis of fungal communities associated with whole plant corn silage[J]. Can. J. Microbiol.2001,47:829-841
    [115]Mitali Das, Todd V. Royer, and Laura G. Leff. Diversity of fungi, bacteria and actinomycetes on leaves decomposing in a stream[J]. Appl. and Environ. Microbiol.2007, 73(3):756-767.
    [116]Newton C. Marcial Gomes, Olajire Fagbola, Rodrigo Costa. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J]. Appl. and Environ. Microbiol.2003,69(7):3758-3766.
    [117]Arenz, B. E., B. W. Held, J. A. Jurgens., R. L. Farrell. et al. Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol. Biochem.2006,38:3057-3064.
    [118]Zheng Gao, Binglin Li, Chengchao Zheng et al. Molecular detection of fungal communities in the Hawaiian marine sponges Subertes zteki and Mycale armata[J].Appl. and Environ. Microbiol.2008,74(19):6091-6101.
    [119]肖凯,曹理想,陆勇军,等.广东金山温泉沉积物中原核与真核微生物多样性初步分析[J].微生物学报,2008,48(6):717-724.
    [120]王莹,万欢,吴根福.环境微生态研究中的分子生物学新技术[J].环境污染与防治,2006,28(6):457-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700