土壤团聚体中微生物群落的空间分布及其对耕作的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中的微生物居住在一个由土壤颗粒控制的环境里,这些土壤颗粒的特性、形状和大小各异,并且具有高度复杂的空间分布与组成。微生物活动不仅对N的矿化,反硝化,生物固N,C、N循环等生化过程有较大影响,而且影响土壤结构的稳定性以及土壤中有机污染物的降解。土壤水稳定性团聚体是最重要的土壤结构体,了解微生物在土壤团聚体中的分布对于预测这些过程的发生以及反应速率是至关重要的。
     不同气候和土壤条件下的研究表明,大小不同的团聚体中有机碳含量、微生物数量及种群有较大差异。由于土壤微生物生物量对土壤环境因子的变化极为敏感,农业中的耕作方式、轮作措施、有机残体的投入与施肥量都可能引起土壤微生物生物量的改变。因此需要更多在不同气候和土壤类型下的研究。
     本文以亚热带地区长期定位试验紫色水稻土为研究材料,涉及3个处理:垄作免耕(RNT)、冬水稻田(FPF)和常规平作(CT),在全面了解长期保护性耕作下亚热带地区紫色水稻土基础上,运用常规分析技术和方法表征土壤团聚体组成及团聚体的孔隙和水分、营养元素特征,并采用麦角固醇和胞壁酸标记法测定各级团聚体中真菌和细菌的生物量,同时运用氯仿熏蒸浸提法、平板培养法、PCR-DGGE法分析三种不同耕作方式对团聚体中微生物分布的影响。主要结果如下:
     (1)土壤不同耕作制度对土壤团聚体及团聚体水分和孔隙的影响:>2.0mm水稳定性团聚体的数量:垄作免耕>冬水稻田>常规平作;垄作免耕的土壤容重为1.18,小于冬水稻田的1.23和常规平作的1.28,土壤容重小,结构疏松,总孔度垄作免耕52.0%,大于冬水稻田的50.0%和常规平作的46.0%。在相同的土壤水势下,土壤的含水量相关系数r~2垄作免耕土壤为0.997,大于冬水稻田的0.903和常规平作的0.877,垄作免耕的含水量大于冬水稻田和常规平作土壤。
     (2)在同一耕作制度下,不同粒径的团聚体之间,0.053~0.25mm粒径的有机碳、全磷、全钾和全氮含量在各分布中最低(p<0.05):<0.25mm,团聚体直径愈小,交换性阳离子、有机碳、全磷、全钾和全氮含量愈高;团聚体粒径>0.25mm,,随团聚体直径改变,有机碳、全磷、全钾和全氮含量没有明显规律性。与冬水稻田和常规平作处理相比,垄作免耕可显著增加各级团聚体的养分储量。
     (3)微生物生物量碳、氮及可溶性有机碳在亚热带地区紫色水稻土水稳定性团聚体中的分布主要受团聚体结构本身的影响(p<0.05),而耕作措施对其分布模式的影响不显著(p>0.05);微生物生物量碳在土壤团聚体中分布均匀,微生物生物量氮与可溶性有机碳在<0.25mm微团聚体中含量最高。垄作免耕有利于提高土壤团聚体中的微生物生物量及可溶性有机碳含量。
     (4)采用麦角固醇和胞壁酸标记法测定各级团聚体中真菌和细菌的生物量。结果显示在垄作免耕、冬水稻田、常规平作土样中,真菌生物量与细菌生物量在<0.053mm的粘粒中含量最低;在0.053~0.25mm的土壤微团聚体中最高;在>0.25mm的大团聚体中真菌和细菌生物量随粒径的增大而增多,但细菌和真菌生物量在不同耕作方式的土样中的变化模式有一定的差异。垄作免耕的土壤真菌和细菌的生物量在三种耕作方式中最高,冬水稻田次之,常规平作最低。真菌生物量与细菌生物量的比率分布模式在不同耕作方式的土样中差异较大,垄作免耕的真菌生物量与细菌生物量的比率在三种耕作方式中最高,冬水稻田次之,常规平作最低,但除了在0.25mm~1.0mm、2.0mm~4.76mm的团聚体之间有明显差异外(p<0.05),其余粒径之间均无明显差异(p>0.05)。_十壤真菌生物量和细菌生物量在亚热带紫色水稻土水稳定性团聚体中的分布模式与团聚体的粒径和耕作方式有关,三种耕作方式中垄作免耕的影响最为明显。
     (5)<0.25mm的土壤团聚体,随着粒径的减小,真菌数量增加;粒级为0.053~0.25mm的土壤团聚体,真菌数量最低(p<0.05),垄作免耕、冬水稻田和常规平作分别为1.52、0.84、0.73(10~4个/g.干土)。>0.25 mm,团聚体粒径越大,真菌的多样性指数改变没有明显规律性。<0.25mm,团聚体粒径越小,真菌的多样性指数越高。真菌的丰富度垄作免耕>冬水稻用>常规平作。在垄作免耕土壤中存在大量的菌丝态真菌,表明免耕具有较稳态的土壤环境和较稳态的生物类群。
     (6)六种不同的DNA提取方法中,改良的DNA kit法效果最好。采用基因V3区具有特异性的引物对,对每个土壤样品中的微生物基因组进行特异性的扩增。均获得了长约230bp的产物。PCR产物经变性梯度凝胶电泳(DGGE)进行分离后得剑不同数目且分离效果较好的电泳条带。通过计算Shannon多样性指数,发现土壤细菌多样性在亚热带地区紫色水稻土水稳定性团聚体中的分布模式主要与耕作方式有关,团聚体的粒径大小有一定程度的影响。三种耕作方式细菌基因多样性变化规律为垄作免耕>冬水稻田>常规平作。
     因此,亚热带地区紫色水稻士的孔隙度及水分特征曲线受耕作方式的影响,垄作免耕可促进较大的孔隙度及含水量。团聚体中的营养元素分布受耕作方式和团聚体粒径大小的共同影响;不同粒径团聚体中微生物总生物量碳氮,细菌和真菌的生物量主要受团聚体粒径大小的影响,团聚体中各优势种属的多样性主要受耕作方式的影响。垄作免耕提高了细菌和真菌优势种属在不同大小团聚体中的丰富度。
     本文利用生物标记法和分子生物学方法从不同耕作制度和团聚体尺度研究亚热带地区紫色水稻土团聚体中细菌和真菌生物量及多样性的分布特征,探讨了与之相关的物理和化学营养元素机制,为从团聚体层面深入研究土壤细菌和真菌在土壤营养元素稳定、积累和转化过程中的重要作用,获得了相关基础信息。由于土壤营养元素在土壤团聚体中的发生与所在地块的土壤类型、地理位置、农耕措施、水文条件、土地利用、施肥管理等有关,目前农田土壤团聚体中的物理化学生物学变化的循环制约尚无统一的评价指标,开展相关研究,可对农田土壤施肥进行更精准的定量预测,为区域土壤肥力的宏观管理提供理论依据。
The soil microorganisms living in a controlled environment by the soil particles, has a highly complex spatial distribution and composition. In the field of agriculture and the environment, microbial activity has significant impact on the biochemical processes, such as: N mineralization, denitrification, bio-solid N, C, N cycle, the stability of soil structure and degradation of organic pollutants in soil and so on. The stability of soil aggregates is the most important factor on soil structure. It is essential for researching the distribution of micro-organisms in the soil aggregates to understand and predict the occurrence of these processes as well as the reaction rate.
     Under different climatic and soil conditions, research has shown that the organic carbon content, microbial population and community are quite different in different sizes of aggregates. The microbial biomass are extremely sensitive to the changes of agriculture farming methods, such as crop rotation measures, organic debris input and fertilizer can cause changes in soil microbial biomass. Therefore, more study in different climatic and soil types is needed.
     In this paper, The composition characterize of soil aggregates and aggregate porosity and moisture, The distribution patterns of nutrient and bacteria and fungi, The diversities of bacteria and fungi in different water-stable aggregates (WSA), and the effects of tillage methods on the number of nutrient and bacterial and fungal biomass, were investigated in a long-term field experiment. Tillage treatments examined in this study included Conventional Tillage (CT), Flooded Paddy Field (FPF), Combining Ridge and No-tillage (RNT). A wet sieving method was used to separate soil aggregates into six groups based on particle diameter: >4.76 mm, 2.0~4.76 mm, 1.0~2.0 mm, 0.25~1.0 mm, 0.053~0.25 mm and <0.053 mm. The techniques and methods such as the conventional analytical, the chloroform fumigation extraction method, plate culture method, and PCR-DGGE Analysis were used. Main results are as follows:
     (1) The affection of different cropping systems on composition of soil aggregates and the distribution of soil moisture and porosity: The composition of water-stable aggregates about > 2.0mm, combining ridge and no tillage (RNT)>flooded and paddy field (FPF)>conventional tillage (CT); The porosity of RNT is more bigger than the FPF and CT, The structure and the distribution of pore of RNT is better than the FPF and CT, and soil bulk density of RNT is small and soil structure is loose with a total porosity large, well to keep the soil moisture, can promote the formation of soil aggregates and could be better coordination of water status. In the same soil water potential, the soil moisture content of combining ridge and no tillage (RNT) is greater and more effectiveness than flooded and paddy field (FPF) and conventional tillage (CT).
     (2) The nutrient content of top soil aggregate size: In the same farming system, different aggregates size, the organic carbon, total phosphorus, total potassium and nitrogen content in the size of 0.053~0.25mm is the lowest distribution (p<0.05); while in the diameter of <0.25 mm, the smaller aggregates size, the higher content of organic carbon, total phosphorus, total potassium and total nitrogen. No regularity of the content of total organic carbon, total phosphorus, total potassium and total nitrogen (p<0.05) in aggregate size of >0.25mm. And combining ridge and no tillage (RNT), can significantly increase the levels of nutrients reserves in aggregates.
     (3) Microbial biomass carbon, nitrogen distribution: microbial biomass carbon, nitrogen, and dissolved organic carbon in subtropical areas of purple paddy soil aggregate water stability in the distribution of mainly affected by the impact of aggregate structure itself (p<0.05), The effects of tillage was not significant (p> 0.05); microbial biomass carbon in soil aggregates distributed evenly, microbial biomass nitrogen and dissolved organic carbon in the <0.25mm micro-aggregates of the highest concentrations. Combining ridge and no tillage (RNT) will help to improve soil aggregates in the microbial biomass and soluble organic carbon content.
     (4) Fungal and bacterial biomass was estimated by measuring the amount of ergosterol and muramic acid, respectively, in the samples. Both bacterial and fungal biomass were lowest in the smallest soil particles (<0.053 mm) and highest in the 0.053~0.25 mm fraction. As the size of the soil micro-aggregate increased, the associated bacterial or fungal biomass also rose, however, there were notable response differences between the two taxonomic groups. Of the three tillage methods examined, maximum bacterial and fungal biomass was found in the Combining Ridge and No-tillage (RNT) treatment; minimum biomass occurred under Conventional Tillage (CT). There were significant (p<0.05) differences in fungal and bacterial biomass in the 0.25 mm~1.0 mm and 2.0 mm~4.76 mm particle-size groups among the three tillage methods; there were no significant differences(p>0.05) in the remaining size groups.
     (5) The diversity of Soil fungi and the advantages of the fungi in different tillage methods: In the diameter of >0.25mm, with the size of soil aggregates increases, No regularity change of fungi; <0.25mm, with the decreasing size of soil aggregates, fungi increase in the number; the size of 0.053~0.25 mm of soil aggregates, the lowest number of fungi (p<0.05). The distribution of fungi is characterized by in the diameter of <0.25 mm. the smaller the aggregate size, the higher the diversity index. The most richness of fungal diversity exist in the combining ridge and no tillage (RNT), there is a large number of fungal hyphae, indicating that the combining ridge and no tillage (RNT) can improve soil fungi in K-response biological, and show a more steady state of no-tillage with soil environment and a more steady state of biological taxa.,
     (6) Extract the microbial genome of rice soil using kits in different soil aggregate size, and us the genome as a template, using the majority of bacteria and archaea genes V3 area with specific primers, for each soil samples of the microbial genome-specific amplification. The product of about 230bp by denaturing gradient gel electrophoresis (PCR-DGGE) to separate and obtain a better separation effect of different amounts and electrophoretic bands by calculating the Shannon diversity index and found that soil bacteria diversity in the subtropical areas of purple paddy soil aggregate water stability in the distribution patterns of tillage mainly related to the particle size aggregates a certain extent. Bacterial genetic diversity of three kinds of tillage:combining ridge and no tillage (RNT)> flooded and paddy field (FPF) and conventional tillage (CT).
     Therefore, the porosity numbers of soil and water availability were best in combining ridge and no tillage (RNT). Aggregate size of <0.25mm, soil nutrients with the aggregate reduce the size of the reserves increase. Aggregates of different total microbial biomass C and N, bacterial and fungal biomass and the number of dominant species of the genus, diversity affected by farming methods and the particle size of the aggregates. The combining ridge and no tillage (RNT) increased dominant species of bacteria and fungi,Aggregates of different sizes are in the richness and the evenness of the distribution.
     In this paper, biomass and diversity of fungal and bacterial in different aggregate size and different tillage on paddy soil of subtropical areas were estimated by bio-labeling and molecular biological methods. This research provided some information for predicting the important role of soil bacteria and fungi in soil nutrient stability、accumulation and transformation processes. Because the occurrence of soil nutrient elements in soil aggregates was related to the location of land、soil type、geographic、tillage practice、the hydrological conditions、land use、fertilizer management, the interrelated research can provided more accurate quantitative prediction for tillage fertilizing, and provided the macro-management theory about the region's soil fertility.
引文
Abdelaal S., Muhammad E., Michael J. S., et al. An Rapid identification and discrimination among Egyptian genotypes of Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti nodulating faba bean (Vicia faba L.) by analysis of nod C, ARDRA, and rDNA sequence analysis[J].Soil Biology and Biochemistry,2009, 41:45-53
    
    Adu J k, Lades J M. Utilization of organic materials in soil aggregation by bacteria and fungi[J]. Soil Biology and Biochemistry, 1978, 10: 117-122.
    
    Ainsworth G C, Sparrow F K, Sussman A S. A taxonomic review with keys : Ascomycetes and Fungi Imperfecti [M] . New York :Academic Press ,1973: 121-126
    
    Alceu Pedrotti, Eloy Antonio Pauletto, Silvio Crestan et al.Evaluation of bulk density of Albaqualf soil under different tillage systems using the volumetric ring and computerized tomography methods[J].Soil & Tillage Research, 2005,80: 115-123
    
    Alexopoulos C J , Mims C W, Blackwell M. Introductory Mycology(4th ed. ) [M] . New York etc :John Wiley &Sons ,INC. ,1996 : 128-169.
    
    Amann R I, Lud W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995, 59:143-169
    
    Anderson IC ,Campbell CD ,Prosser J I. Potential bias of fungal 18S and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil[J]. Envi ron Microbiol 2003,5 :36-47
    
    Anderson, R.V. J.A. Trofymow, D.C. Coleman, C.P.P. Reid Phosphorus mineralization by a soil pseudomonad in spent oil shale as affected by a rhabditid nematode[J].Soil Biology and Biochemistry, 1982,14:365-371
    
    Andeson TH, Dormsch KH.The metabolic quotient for CO_2(qCO_2) as a specific activity parameter to assess the effects of environmental conditions,such as pH,on the microbial biomass of forest soils[J].Soil Biol & Biochem,1993,25:393-395
    
    Angers DA, Bissonnette N, Le'ge're A, et al. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production [J]. Can. J. Soil Sci.1993, 73, 39-50.
    Appuhn R G, Joergensen M, Raubuch E, et al.The automated determination of glucosamine, galactosamine, muramic acid and mannosamine in soil and root hydrolysates by HPLC[J]. Journal of Plant Nutrition and Soil Science, 2004, 167: 17-21.
    
    Arduino EE, Barberis V. Boero Iron oxides and particle aggregation in B horizons of some Italian soils[J]. Geoderma, 1989,45:319-329
    
    Arya LM, Paris JF. Reply to "Comments on a physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data" [J]. Soil Sci. Soc. Am. J, 1982,46: 1348-1349
    
    Aylmore LAG. Use of Computer-Assisted Tomography in Studying Water Movement Around Plant Roots[J].Advances in Agronomy, 1993, 49: 1-54
    
    Shi B, Murakami Yb, Wu ZC, et al. Inyang Monitoring of internal failure evolution in soils usingcomputerization X-ray tomography [J]. Engineering Geology 1999,54:321-328
    
    Balkwill DL, Leach FR, Wilson JT, et al. Equivalence of microbial biomass measures based on membranelipid and cell-wall components, adenosine-triphosphate, and direct counts in subsurface aquifer sediments [J]. Microbial Ecol,1988,16:73-84
    
    Barlett JR. Doner HE. Decomposition of lysine and leucine in soil aggregates: adsorption and compartmentalization [J]. Soil Biol.Biochem. 1988, 20: 755.
    
    Bartoli F, R. Philippy M, Dorisse S, et al. Structure and Self-Similarity in silty and Sandy Soil: the Fractal Approach[J]. J. Soil Sci. 1991, 42:152-167.
    
    Baveye P, Parlange JY, Stewart BA. Fractal in Soil Science [M]. CRC Press, New York. 1998
    
    Beare M H, Hendrix P F, Coleman D C. Water-stable aggregates and organic matter fractions in conventional and no tillage soils [J]. Soil Science Society of America Journal, 1994, 58:777-786
    
    Bodding CL ,Bassett EE ,Jacobsen 1, et al. Comparison of technique for the extraction and quantification of extra radical mycelium of arbuscular mycorrhizal fungi in soil [J]. Soil Biology and Biochemistry, 1999, 31:479-482.
    
    Boix-Fayos CA. Calvo-Cases, AC. Imeson MD,et al. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators[J]. CATENA, 2001,44:47-67
    
    Borneman J, Hartin RJ. PCR primers that amplify fungal rDNA genes from environmental samples [J]. A ppl Envi ron Microbiol, 2000,66 :4356-4360
    
    Borneman J, Skroch PW, Sullivan KMO, et al. Molecular microbial diversity of an agricultural soil in Wisconsin [J]. A ppl Envi ron Microbiol, 1996.62 :1935-1943
    
    Bornemann J.Culture-independent identification of microorganisms that respond to specified stimuli [J]. Appl Environ Microbiol 1999, 65:3398-3400.
    
    Bronick, CJ, Lal R. Soil structure and management: a review [J]. Geoderma, 2005, 124:3-22
    
    Brookes PC,Andrea L,Pruden G, et al.Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil Biology and Biochemistry,1985,17:837-842
    
    Bruckner A, Kandeler E, Kampichler C. Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest [J]. Geoderma, 1999,93:207-223.
    
    Bull ID, Parekh NR, Hall GH. Detection and classification of atmospheric methane oxidizing bacteria in soil [J]. Nature .2000, 405:175-178.
    
    Buyanovsky G A, Aslam M, Wagner G H. Carbon turnover in soil physical fractions[J|. Soil Science Society of America Journal [J]. 1994, 58:1167-1173.
    
    Campbell C D, Cameron C M, Bastias B A, et al. Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates [J]. Soil Biology and Biochemistry, 2008 , 40: 2246-2252
    
    Carrigg C, Rice O, Kavanag h S.et al.DNA extraction method affects microbial community profiles from soils and sediment [J]. Applied Microbial Biotechnology, 2007, 77: 955-964.
    
    Castro-Filho C, Lourenc,OA, Guimara ES,et al. Aggregate stability under different management systems in a red Latosol in the State of Parana Brazil[J]. Soil Tillage Res, 2002. 65, 45-51.
    
    Chan KY, Heenan DP. Microbial-induced soil aggregate stability under different crop rotations[J]. Biology and Fertility of Soils, 1999, 30: 29-32
    
    Chelius MK, Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L[J]. Microb Ecol .2001, 41:252-263.
    
    Chen J S, Chiu CY.Characterization of soil organic matter in different particle size fractions in humid subalpine soils by CP/MAS 13C NMR[J]. Geoderma, 2003, 117:129-141.
    
    Chenu C,Stotzky G. Interactions between microorganisms and soil particles: an overview. (IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Volume 8) [Book chapter] Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem[M]. John Wiley & Sons Ltd,Chichester, UK: 2002. 3.
    
    Chiu CY, Chen TH, Imberger K, et al. Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils[J]. Geoderma, 2006, 130:265-271
    
    Christopher BB, Curtis JD, Alvin J MS,et al. Eubacterial communities in different soil macroaggregate environments and cropping systems[J]. Soil Biology & Biochemistry, 2006, 38: 720-728
    
    Crawford JW, Verrall S, Young I M. The origin and loss of fractal scaling in simulated soil aggregates [J]. European Journal of Soil Sconce, 1997, 48: 643-650
    
    Daims H, Nielsen JL, Nielsen PH, et al. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants [J]. Appl Environ Microbiol ,2001, 67:5273-5284.
    
    De Fede KL, Sexstone AJ.Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOGR community-level physiological profiles and restriction analysis of 16S rRNA genes [J]. Soil Biol Biochem, 2001, 33:1555-1562.
    
    Dechesne AC, Pallud D, Debouzie M,et al. A novel method for characterizing the microscale 3D spatial distribution of bacteria in soilfJ]. Soil Biology and Biochemistry, 2003, 35:1537-1546
    
    Degens BP, Schipper LA, Sparling GP, et al.Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? [J] Soil Biol Biochem, 2001, 33:1143-1153.
    
    Dexter AR. Advances in characterization of soil structure [J]. Soil & Tillage Research, 1988, 11: 199-238
    
    Diego Sanchez de Lozada, Baveye P, Riha S.Heat and moisture dynamics in raised field systems of the Lake Titicaca region (Bolivia) [J]. Agricultural and Forest Meteorology, 1998,92: 251-265
    
    Domsch K H, Gams W, Anderson T H. Compendium of soil fungi [M]. London &New York :Academic Press LTD ,1980:27-84
    Karlen DL, Tomer MD, Neppel J, et al. A preliminary watershed scale soil quality assessment in north central Iowa, USA [J]. Soil and Tillage Research, 2008, 99(2):291-299
    
    Drazzkiewicz, M. Distribution of microorganisms in soil aggregates: effect of aggregate size[.T]. Folia Microbiologica, 1994, 39: 276-282.
    
    Drazzkiewicz, M. Distribution of microorgnisms in soil aggregates: effect of aggregate size[J]Folia Microbiol, 1994, 39:276.
    
    Dunbar J, White S, Forney LJ. Genetic diversity through the looking glass: effect of enrichment bias[J]. Appl Environ Microbiol, 1997, 63:1326-1333
    
    Edgcomb VP,McDonald J H,Devereux R,et al. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA [J] Applied Microbial Biotechnology, 1999, 65: 1516-1523.
    
    Efect E, Kay B D. Applications of fractals in soil and tillage research: a review [J]. Soil & Tillage Research, 1995, 36: 1-20
    
    Eichner C A, Erb R W, Timmis K N,et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community [J]. Applied Microbial Biotechnology, 1999, 65:102-109.
    
    Elliot ET. Aggregate structure and carbon nitrogen and phosphorus in native and cultivated soils [J]. Soils Science. Am. J, 1986, 50: 627-633
    
    Elliott ET,Coleman D C.Let the soil work for us[J].Ecol,1988,39:23-32
    
    Elmholt S,Schj(?)nning P,Munkholm L J,et al.Soil management effects on aggregate stability and biological binding[J].Geoderma,2008,144:455-467
    
    Faegri A V, Torsvik L , Goksoyr J . Bacterial and fungi activities in soil :Separation of bacterial and fungi by a rapid fractionated centrifugation technique [J]. Soil Biology and Biochemistry, 1977, 9:105-112.
    
    Filgueira, RR, Pachepsky YA, Fournier LL. Comparison of Fractal Dimensions Estimated from Aggregate Mass-Size Distribution and Water Retention Scaling[J]. Soil Sci. 1999,64:217-226
    
    Fost, R.C. Microenvironments of soil microorganisms [J]. Bio .Fertil. Soils, 1988,6, 189-121
    
    Fox A, Rosario RMT. Quantification of muramic acid, a marker for bacterial peptidoglycan, in dust collected from hospital and home air-conditioning filters using gas chromatography-mass spectrometry [J]. Indoor Air, 1994,4:239-247
    
    Franzluebbers A J,Arshad M A.Soil organic matter pools with conventional and zero tillage in a cold,semi-arid climate[J].Soil and Tillage Research,1996,15:1-11
    
    Frey SD, Elliott ET, Paustian K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients[J]. Soil Biology and Biochemistry, 1999, 31(4 ):573-585
    
    Fuentes D,Vanclin M,Parlange J. A note on the soil-water conductivity of a fractal soil[J].Transp Porous Media, 1996,23:31-36
    
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts [J]. Mol Ecol, 1993. 48 :455-483
    
    Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community-level sole-carbon-source utilization [J]. Appli Environ Microbiol, 1991,57:2351-2359
    
    Gestel M,Van R, Vlassak MK. Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying[J]. Soil Biology and Biochemistry, 1996, 28:503-510
    
    Gevers D, Cohan F M, Lawrence J C, et al.Opinion: Re-evaluating prokaryotic species[J]. Nat Rev Microbiol, 2005, 3:733-739
    
    Gilbart J, Fox A, Whiton RS, et al. Rhamnose and muramic acid: chemical markers for bacterial cell walls in mammalian tissues[J]. J Microbiol Meth, 1986,5:271-282
    
    GillianDC,Speksnijder A G,Zwart G,et al.Genetic diversity of the biofilm covering Montacuta ferruginosa(Mollusca,Bivalvia)as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR amplified gene fragment coding for 16S rDNA.Applied and Environmental Microbiology, 1998,64:3464-3472
    
    Gimenez D, Karfmon J L, Posadas A, et al. Fractal dimensions of mass estimated from intact and eroded soil aggregates [J]. Soil & Tillage Research, 2002, 64: 165-172
    
    Girlanda M , Perotto S ,Moenne LY, et al . Impact of biocontrol Pseudomonas f luorescens and a genetically modified derivative an the diversity of culturable fungi in the cucumber rhizosphere[J]. A ppl Envi ron Microbiol, 2001,67 :1851-1864
    
    Gomes NCM, Fagbola O ,Costa R , et al . Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J]. A ppl Envi ron Microbiol, 2003,69 :3758-3766
    
    Gray ND, Head IM.Linking genetic identity and function in communities of uncultured bacteria[J]. Environ Microbiol. 2001,3:481-492.
    
    Gray ND, Howarth R, Pickup RW,et al. Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium[J]. Appl Environ Microbiol 2000, 66:4518-4522.
    
    Grayston Susan J. Grayston, Cindy E. Prescott Microbial communities in forest floors under four tree species in coastal British Columbia[J]. Soil Biology and Biochemistry, 2005, 37:1157-1167
    
    Green D C, Vilarino A, Newsam R, et al. Quantification of mycelial development of arbuscular mycorrhizal fungi using image analysis [J] .Mycorrhiza ,1994,5 :102-113.
    
    Grundmann GL, Debouzie D. Geostatistical analysis of the distribution of NH4+and NO2--oxidizing bacteria and serotypes at the millimeter scale along a soil transect [J]. FEMS Microbiology Ecology, 2000,34(1): 57-62
    
    Grundmann GL.Spatial scales of soil bacterial diversity - the size of a clone [J]. FEMS Microbiology Ecology, 2004,48: 119-127
    
    Guckert JB, White DC. Phospholipid, esther-linked fatty acid analysis in microbial ecology[A]. In: Megusar F, Gantar G, eds. Perspectives in Microbial Ecology: Proceedings of the 4th International Symposium on Microbial Ecology[C]. Ljubljana, Slovenia, 1986: 455-459.
    
    Guggenberger G, Frey S D,Six J, et al.Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems [J]. Soil Science Society of America Jouma,1999,63:1188-1198
    
    Guggenberger G. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch[J].Soil Biology & Biochemistry. 1999,31:407-419
    
    Gupa VVS,Germida J J.Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J].Soil Biology and Biochemistry, 1988,20:777-786
    
    Gutell R R, Larsen N, Woese C R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective[J]. Microbiol Rev, 1994, 58: 10-26.
    
    Hajabbasi MAA. Hemmat Tillage impacts on aggregate stability and crop productivity in a clay-loam soil in central Iran[J]. Soil and Tillage Research, 2000,56:205-212
    
    Hamblin Ann P. The Influence of Soil Structure on Water Movement, Crop Root Growth, and Water Uptake [J]. Advances in Agronomy, 1986, 38:95-158
    
    Hassink J, Bouwman J,Brussaard,L.B. Relationships between habitable pore space, soil biota and mineralization rates in grassland soils[J]. Soil Biol.Biochem. 1993,25:47-59
    
    Hatzinger, PB, AlexanderM. Biodegradation of organic compounds sequestered in organic solids or in nanopores within silicaparticles[J]. Environ.Tolicol.Chem.1997, 16:15-22.
    
    Hawksworth DL, Sutton BC, Ainsworth GC,et al. Ainsworth and bisby's dictionary of the fungi (7thed.) [M]. Huddersfield, England: H.Charlesworth &Co.Ltd, 1983:12-45.
    
    Hawksworth D L. The magnitude of fungal diversity: the 1.5 million species estimate revisited [J] . Mycological Research, 2001, 105:1422-1432.
    
    Haynes RJ. Labile organic matter fractions and aggregate stability under short-term, grass-based leys [J]. Soil Biology and Biochemistry, 1999,31:1821-1830
    
    Haynes, R.J, Beare MH. Influence of six crop species on aggregate stability and some labile organic matter fractions [J]. Soil Biology and Biochemistry, 1997,29:1647-1653
    
    Headim J, Saunders J R, Picku PRW. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganism s [J]. Microbiol Ecol,1998,35: 1-21.
    
    Heleen Bossuyt, Johan Six, Paul F. Hendrix, Protection of soil carbon by microaggregates within earthworm casts [J]. Soil Biology and Biochemistry, 2005, 37:251-258
    
    Hernandez R M.Microbial biomass ,mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage[J].Soil Biology and Biochemistry,2002,34:1563- 1570
    
    Hille, D. Fundamentals of Soil Physics, Academic Press, New York, 1980, 413.
    
    HowardT. Explanations of ecological relationships with energy systems concepts[J] .Ecological Modelling, 2002,158:201-211
    
    Imberger K T, Chiu C Y. Spatial change of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region[J]. Biol Fertil Soils, 2001, 33:105-110.
    
    Imberger K T, Chiu CY. Topographical and seasonaleffects on soil fungal and bacterial activity in subtropical, perhumid, primary and regenerated montane forests[J]. Soil Biol.Biochem , 2002, 34:711-720.
    
    
    Insam H, Mitchell C C, Dormaar J F. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols[J]. Soil Biology and Biochemistry, 1991, 23: 459-464.
    
    Insam H. A new set of substrates proposed for community characterization in environmental samples [Z]. 1997:42-61
    
    Jacobsen I, Abbott L K, Tobon A D. External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterra neumL. 1. spread of hyphae and phosphorus inflow into roots[J]. New Phytologist, 1992, 120:371-380.
    
    Jaiyeoba IA.Changes in soil properties due to continuous cultivation in Nigerian semiarid Savannah [J]. Soil and Tillage Research, 2003, 70:91-98
    
    Jansa J,Mozafar A, Anken T,et al . Diversity and structure of AMF communities as affected by tillage in a temperate soil[J]. Mycorrhiza, 2002,12 :225-234
    
    Jastrow J D.Soil aggregate formation and the accrual of particulate Organic matter[J].Soil Biology and Biochemistry, 1996,28:665-676
    
    Jenkinson D S,Ladd J N.Microbial biomass in soil measurement and turnover[J].Soil Biochemistry, 1981,5:415-471
    
    Jenkinson DS. The effects of biocidal treatments on metabolism in soil: IV. The decomposition of fumigated organisms in soil [J]. Soil Biol Biochem, 1976, 8: 203-208.
    
    Jocteur Monrozier, L, Ladd JN, Fitzpatrick RW, et al. Physical properties, mineral and organic components and microbial biomass content of size fraction in soil of contrasting aggregation [J]. Geoderma, 1991,49:37.
    
    Johnsen K, Jacobsen CS, Torsvik V, et al.Pesticide effects on bacterial diversity in agricultural soils: a review[J]. Biol Fertil Soils 2001, 33:443-453.
    
    Jones MD, Durall DM, Cairney WG. Ectomycorrhizal fungal communities in young forest stand regenerating after clearcut logging[J]. New Phytol, 2003,157:399-422
    
    Kabir, M, Chotte, JL, Rahman M,et al. Distribution of soil fractions and location of soil bacteria in vertisol under cultivation and perenial grass [J]. Plant Soil, 1994, 37:163-243.
    Kanazawa S, Filip Z.Distribution of microrganisms, total biomass,and enzyme activities in different particles of brown soil[J]. Microbial Ecology. 1986, 12:205-215.
    
    Karolien Denef, Johan Six, Keith Paustian, Roel Merckx Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles Soil Biology and Biochemistry, 2001, 33:2145-2153
    
    Kay B D. Rates of change of soil structure under different cropping systems [J]. Advance in Soil Science, 1990,12:1-2
    
    Kendrick WB. The Fifth Kingdom All About Fungi [M] . (Disc) ,British Columbia ,Canada :Mycologue Publications by the Author ,Sidney by the Sea ,2003:120-131
    Kirk P M, Cannon P F , David J C , et al . Ainsworth and bisby's dictionary of the fungi (9th ed. ) [M] . UK: Biddies Ltd. ,2001:36-52
    
    Klamer M, Roberts MS, Levine LH, et al. Influence of elevated CO_2 on the fungal community in a coastal scrub oak forest soil investigated with terminal restriction fragment length polymorphism analysis[J]. A ppl Environ Microbiol, 2002,68 :4370-4376
    
    Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes[J]. Proc Natl Acad Sci 2005, 102:2567-2572
    
    Kozar MP, Krahmer MT, Fox A, et al. Lunar dust: a negative control for biomarker analyses of extraterrestrial samples[J]. Geochim Cosmochim Ac, 2001,65:3307-3317
    
    Kozdroj J, van Elsas JD. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches[J]. J Microbiol Methods,2001, 43:197-212.
    
    Kuske C R, Banton K L , Adorada D L , et al. Small scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil [J]. Applied and Environmental Microbiology, 1998, 64:2463-2472
    
    La Montagne MG, Holden PA, Reddy CA, et al. Evaluation of extraction and purification methods for obtaining PCR amplifiable DNA from compost for microbial community analysis [ J ]. Microbiol Methods, 2002, 49 :255-264.
    
    Ladd JN, Amato M, Zhou LK.Differential effects of rotation plant residues and nitrogen fertilizer on microbial biomass and organic in Australian Alflsol[J].Soil Biol & Biochem,1994,26: 821-831
    
    Lal R. Water management in various crop production systems related to soil tillage[J]. Soil and Tillage Research, 1994, 30:169-185
    
    Lauber CL, Strickland MS, Bradford M A, et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40:2407-2415
    
    Lee N, Nielsen PH, Andreasen KH, et al. Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure-function analyses in microbial ecology[J]. Appl Environ Microbiol, 1999, 65:1289-1297.
    
    Liang BC,Mackenzie AF,et al.Management induced change in labile soil organic matter under continuous corn in eastern Canadian soil[J].Biology and Fertility of soils, 1998,26:88-94
    
    Liang C, Read HW, Balser TC. Reliability of Muramic Acid as a Bacterial Biomarker is Influenced by Methodological Artifacts from Streptomycin [J]. Microb Ecol,2008,56:l 120-1127
    
    Lipthay J R, Enginger C, Johnsen K, et al.Impact of DNA extraction method on bacterial communitycomposition measured by denaturing gradient gel electrophoresis[J]. SoilBiology & Biochemistry 2004, 36: 1607-1614
    
    Lord NS , Kaplan CW,Shank P, et al . Assessment of fungal diversity using terminal restriction fragment ( TRF) pattern analysis :comparison of 18S and ITS ribosomal regions[J]. FEMS Microbiol Ecol, 2002,42 :327-337
    
    Lugo MA, Cabello MN. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland(C6rdoba,Argentina)I. Seasonal variation of fungal spore diversity[J]. Mycologia, 2002,94 :579-586
    
    Luna G M, Dell'A A, Danovaro R. DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments [J]. Environmental Microbiology, 2006, 8: 308-320.
    
    Mandelbrot B B. How long is the coast of Britain? Statistical Self-Similarity and Fractional Dimension [J]. Science, 156: 636-638
    
    Mandelbrot B, Passaja DE. and Paulley AJ. Fractal Character of Fracture Surfaces of Metals. Nature. 1984,308:21.
    
    Marhan S, Kandeler E, Scheu S. Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L(Oligochaeta, Lumbricidae) [J]. Applied Soil Ecology, 2007, 35: 412-422
    
    Martin-Laurent F, Phillipot, Hallet,et al. DNA extraction from soils: old bias for new microbial diversity analysis methods [J]. Applied and Environmental Microbiology, 2001,67: 2354-2359.
    
    Mayden R L. A hierarchy of species concepts: the denouement in the saga of the species problem.In: Claridge M F, Dawah H A, Wilson M R eds. Species: The Unit of Biodiversity. London:Chapman&Hall, 1997,24:381
    
    Mbagwu JSC,Piccolo A. Carbon, nitrogen and phosphorus concentration in aggregates of organic waste-amended soils[J].Biol.Wastes,1990,31:97-111
    
    McCaig A E, Glover L A, Prosser J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures[J].Appl Environ Microbiol 1999, 65:1721-1730
    
    McCaig AE, Glover LA, Prosser JI.Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns[J]. Appl Environ Microbiol 2001, 67:4554-4559.
    
    Mendes I C,Bandick A K,Dick R P,et al.Microbial biomass and activities in soil aggregates affected by winter cover crops[J].Soil Science Society of America Journal, 1999,63:873-881
    
    Mendes, IC, Bottomley, PJ. Distribution of population of Rhizobium leguninosarum by trifolii among different size classes of soil aggregates[J]. Appl. Microbiol, 1998,64:958-970
    
    Mertz C, Kleber M, Reinhold J. Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation[J]. Organic Geochemistry, 2005,36: 1311-1322。
    
    Montgomery H J, Monreal C M, Young J C, et al. Determination of soil fungal biomass from soil ergosterol analyses[J]. Soil Biology and Biochemistry, 2000, 32: 1207-1217
    
    Miller M, Dick RP. Dynamics of soil C and microbial biomass in whole soil and aggregates in two cropping systems[J]. Applied Soil Ecology,1995, 2:253-261
    
    Murray A E,Hollibaugh JT,Orrego C.Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturing gradient gel eletrophoresis of 16S rDNA fragments[J].Applied and Environmental Microbiology, 1996,62:2676-2680
    Murrell JC, Radajewski S.Cultivation-independent techniques for studying methanotroph ecology[J]. Res Microbiol .2000, 151:807-814.
    
    Muyzer G, de Wall E, Uitterlinden A. Profiling of complex microbial populations by DGGE of PCR-amplified genes coding for 16S rRNA [J]. Appl Env Microbiol, 1993, 59: 695-700.
    
    Nam, K.and Alexander M. Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids [J].Environ.Soil Sci.Technol. 1998, 32:71.
    
    Nannipieri P, Ascher J, Ceccherini MT,et al. Microbial diversity and soil functions [J]. European Journal of Soil Science. 2003,54:655-670.
    
    Odum E P. The strategy of ecosystem development [J]. Science. 1969, 164: 262-270.
    
    Jacobs P, Sevens E, Kunnen M. Principles of computerised X-ray tomography and applications to building materials [J].The Science of the Total Environment. 1995,167: 161-170
    
    Ellingsoe P, Johnsen K.Influence of soil sample sizes on the assessment of bacterial community structure [J].Soil Biology and Biochemistry, 2002, 34:1701-1707
    
    Petersen S O, Debosz K, Schjonning P,et al. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils [J]. Geoderma. 1997,78: 181-196.
    
    Plassart P, Vinceslas M A, Gangneux C, et al. Molecular and functional responses of soil microbial communities under grassland restoration Agriculture. Ecosystems & Environment. 2008, 127:286-293
    
    Powlson D S, Jenkinson DS. A comparison of the organic matter,biomass, adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils[J].Journal of Agricultural Science.l981,97:713-721
    
    Pugh, G.J, Blakeman FJP, Morgan-Jones G, et al.Studies on fungi in coastal soils: IV. Cellulose decomposing species in sand dunes Transactions of the British [J]. Mycological Society. 1963, 46:565-571
    
    Radajewski S, Ineson P, Parekh NR, et al.Stable-isotope probing as a tool in microbial ecology [J]. Nature .2000, 403:646-649.
    
    Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communities using culture-indep-endent molecular techniques: application to soil environment. [J] Res Microbiol.2000, 151:167-177
    
    Ranjard L ,Lejon DP ,Mougel C, et al. Sampling strategy inmolecular ecology : Influence of soil sample size on DNA fingerprinting analysis of fungal and bacteria communities [J]. Envi ron Microbiol ,2003.,5 :1111-1120
    
    Ranjard L, Poly F, Lata JC, et al.Characterization of bacterial and fungal soil communities by automated ribosomal intergenicspacer analysis fingerprints :biological and methodogical variability [J]. Appl Envi ron Microbiol.2001,67 :4479-4487
    
    Rasiah V, Aylmore LAG, RasianV,et al. Estimating microscale spatial distribution of conductivity Temporal dynamics of microbial biomass- and mineral-N in legume amended soils from a spatially variable landscape[J]. Geoderma, 1999, 92: 239-256.
    
    Rasiah V. and Aylmore L. A. G. Estimating microscale spatial distribution of conductivity and pore continuity using computed tomography [J]. Soil Sci. Soc. Am. J, 1998, 62:11-27
    
    Roscoe R.Buurman P,Velthorst E J,et al.Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol[J].Geoderma,2001, 4:185-202
    
    Rosello-Mora R, Amann R.The species concept for prokaryotes [J]. FEMS Microbiol Rev 2001, 25:39-67.
    
    Roy S,Singh J S.Consequences on habitat heterogeneity for availability of nutrients in a dry tropical forest[J]. Journal of Ecology, 1994,82:503-509
    
    Ruzicka s, Edgerton D, Norman M, Hill T. The utility of ergosterol as a bioindicator of fungi in temperature soils [J]. Soil Biol Biochem, 2000, 32: 989-1006.
    
    Salako, FK., Babalola, O, Hauser S, et al. Soil macroaggregate stability under different fallow management systems and cropping intensities in southwestern Nigeria [J]. Geoderma, 1999.91:103-123.
    
    Sandaa RA, Torsvik V, Enger O.Influence of long-term heavy-metal contamination on microbial communities in soil [J]. Soil Biol Biochem.2001, 33:287-295.
    
    Scheu, S, Maraun M, Mand B. Microbial biomass and respiratory activity in soil aggregates of different sizes from three beechwood sites on a basalt hill [J]. Biol.Fertil.Soils, 1996, 21: 69.
    
    Schipper LA, Degens BP, Sparling GP, et al.Changes in microbial heterotrophic diversity along five plant successional sequences [J]. Soil Biol Biochem.2001, 33:2093-2103.
    
    Scow KM, Alexander M. Effect of diffusion on the kinetics of biodegradation: Experiment results with synthetic aggregates [J]. Soil Sci. Soc.Am.J, 1992, 56:128-139.
    
    Seech A.G, Beauchamp E G. Denitrification in soil aggregates of different sizes[J].Soil Society of America Journal, 1988,52:1616-1621
    
    Sekiguchi Y, Kamagata Y, Syutsubo K, et al. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis [J]. Microbiology, 1998, 144:2655-2665
    
    Sessitsch A, Weilharter A, Gerzabek MH, et al. Rapid identification and discrimination among Egyptian genotypes of Rhizobium leguminosarum bv viciae and Sinorhizobium meliloti nodulating faba bean (Vicia faba L.) by analysis of nod C, ARDRA, and rDNA sequence analysis[J] .Soil Biology and Biochemistry, 2009, 41: 45-513
    
    Singh, S. and Singh, J, S. Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soil of a seasonally dry tyopical region, India [J]. Soil Biol.Biochem, 1995, 27: 1027.
    
    Six J, Bossuyt B, Degryze H, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 2004, 79: 7-31
    
    Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and micro-aggregate formation: A mechanism for C sequestration under notillage agriculture [J]. Soil Biology and Biochemistry, 2000,32:2099-2103.
    
    Slavikova E, Vadkertiova R. The diversity of yeasts in the agricultural soil [J]. J Basic Microbiol, 2003,43 :430-436
    
    Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods [J]. Appl Environ Microbiol, 2001, 67:2284-2291.
    
    Smith E ,Leeflang P ,Glandorf B , et al . Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis [J]. A ppl Envi ron Microbiol, 1999,65 :2614-2621
    
    Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology [J]. Int J syst Bacteriol, 1994,44:846-849
    
    Stenberg B, Pell M, Torstensson L. Integrated evaluation of variation in biological, chemical and physical soil properties[J]. Ambio, 1998, 27: 9-15.
    
    Dedysh SN., Dunfield PF., Derakshani M, et al.Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes [J]. FEMS Microbiology Ecology, 2003,43:299-308
    
    Tabatabai M A, Bremner J M. Assay of urease activity in soil [J]. Soil Biol Biochem, 1972, 4:479-487.
    
    Tisdal J M.Possible role of soil microorganisms in aggregation in soil[J].Soil Science,1993, 1:115-121
    
    Torsvik V L. Isolation of bacterial DNA from soil [J]. Soil Biol Biochem, 1980, 12: 15-21.
    
    Trasar-cepeda C, Leiros C, Gilsotres F, et al. Towards a biochemical quality index for soils-an expression relating several biological and biochemical properties [J]. Biol Fertil Soils, 1998, 26: 100-106.
    
    Trevors J. Dehydrogenase activity in soil: a comparison between the INT and TTC assay [J]. Soil Biol Biochem, 1984, 16: 673-674.
    
    Urbach E, Vergin KL, Giovannoni SJ.Immunochemical detection and isolation of DNA from metabolically active bacteria [J]. Appl Environ Microbiol, 1999, 65:1207-1213.
    
    Valinsky L ,Vedova GD Jiang T , et al . Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition [J]. A ppl Envi ron Microbiol.2002.,68 :5999-6004
    
    Van de PY, Chapelle S, Wachter DR. A quantitative map of nucleotide substitution rates in bacterial rRNA [J]. Nucleic Acids Res, 1996, 24; 3381-3391
    
    Van Doren DMJ, Henry JE, Linden DR. Influence of prior and current land management on corn production and selected soil properties[J]. Soil and Tillage Research, 1986, 8:331-342
    
    Gestel V, Merckx M R, Vlassak K. Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and their relation with the resistance of microorganisms to soil drying[J]. Soil Biol.Biochem,1996, 28:503.
    Vance ED,Brookes PC,Jenkison DS.An extraction method for measuring soil microbial biomass C[J].Soil Biology and Biochemistry,1987.19:703-707
    Viaud M,Pasquier A,Brygoo Y.Diversity of soil fungi studied by PCR-RFLP of ITS[J].Mycol Res,2000.104:1027-1032
    Vilarino A,Arinel J,Schuepp H.Extraction of vesicular arbuscular mycorrhizal mycelium from sand samples[J].Soil Biology and Biochemistry,1993,25:99-100.
    West A W,Grant w D,Sparling G P.Use of ergosterol,diaminopimelic acid and glucosamine content of soils to monitor changes in microbial populations[J].Soil Biol Biochem,1987,19:607-612.
    Whitman WB,Coleman DC,Wiebe WJ.Prokaryotes:the unseen majority[J].Proc Natl Acad Sci USA,1998,95:6578-6583
    Wilson IG.Inhibition and facilitation of nucleic acid amplification[J].Applied Microbial Biotechnotogy,1997,63:3741-3751。
    Wright A L,Hons F M.Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes[J].Soil Science Society America,2005,169:141-148
    Wu L,Thompson DK,Li G,et al.Development and evaluation of functional gene arrays for detection of selected genes in the environment[J].Appl Environ Microbiol 2001,67:5780-5790.
    Yoder RE.A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses[J].Journal of the American Society of Agronomy,1936,28:337-351
    Young IM,Crawford JW,Rappoldt C.New methods and models for characterizing structural heterogeneity of soil[J].Soil & Tillage Research,2001,61:33-45
    Young IM,Crawford JW.The fractal structure of soil aggregates:its measurement and interpretation[J].Journal of Soil Science,1991,42:187-192
    Zelles L.Methods in Applied Soil Microbiology and Biochemistry[C].London:Academic Press,1995:422-439.
    Zelles L,Bai QY,Beck T,et al.Signature fatty acidsin phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J].Soil Biology Biochemistry,1992,24:317-323.
    Zhang T,Fang H.Phylogenetic diversity of a SRB-rich marine bioBlm[J].Appl Microbiol Biotechnol,2001,57:437-440
    Zhou J,Bruns M A,Tiedje J M.DNA recovery from soils of diverse composition[J].Applied and Environmental Microbiology,1996,62:316-322.
    曹良元,张磊,石杰,等.通过麦角固醇的含量检测土壤中不同团聚体的真菌生物量[J].土壤学报.2008,45:41-44
    陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J].农业环境科学学报,2005.24:1094-1099
    陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义[J].土壤学报,1994,31:18-25
    陈伟群,张天宇.十字花科上的链格孢属真菌同工酶凝胶电泳分析[J].真菌学报,1994,13:295-302.
    陈智,蒋先军,罗红燕,等.土壤微生物生物量在团聚体中的分布以及耕作的影响[J].生态学报.2008,28:5964-5969
    丁文峰,丁登山.黄土高原植被破坏前后土壤团粒结构分型特征[J].地理研究,2002,21:700-706
    高明,李阳兵,魏朝富,等.稻田长期垄作免耕对土壤肥力性状的影响研究[J]..水土保持学报.2005,19:29-33
    高云超,朱文珊,陈文新.秸秆覆盖免耕土壤真菌群落结构与生态特征研究.生态学报.2001,21:1704-1710
    辜运富,张小平,涂仕华,等.长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响[J].生态学报,2008,28:2123-2130.
    郭继勋,祝廷成,马文明,等.东北羊草草原土壤微生物与生态环境的关系.草地学报.1996,4:240-245.
    侯光炯.土壤学论文选集[M].成都:四川科学技术出版社,1990:328-416
    黄昌勇.土壤学.中国农业出版社,1999:89-92.
    黄勇平,朱湘雄.分子生态学-生命科学领域的新学科[J].中国科学院院刊,2003,22:84-88.
    来剑斌,王全九.土壤水分特征曲线模型比较分析[J]西安理工大学,水土保持学报2003,17:56-59
    冷石林,韩仕峰.中国北方早地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996:98-101
    李保国.分形理论在土壤科学中的应用及展望[J].土壤学进展,1994,1:1-10
    李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9:263-265
    李辉信,袁颖红,黄欠如,等.不同施肥处理红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,44:422-429
    李恋卿,潘根兴,张旭辉,等.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化[J].土壤通报,2000,31:193-195
    李小刚,影响水分特征曲线的因素[J].甘肃农业大学学报,1994,9:273-278
    李阳兵,邵景安,魏朝富,等.岩溶山区不同土地利用方式下土壤质量指标响应[J].生态与农村环境学报,2007,23:12-15.
    李阳兵,魏朝富,谢德体,等.岩溶山区植被破坏前后土壤团聚体分形特征研究[J].土壤通报,2006.37:51-55
    蔺海明;陈垣;李有忠;胡恒觉半干旱地区少免耕对土壤水分动态的影响.甘肃农业大学学报1996,11:32-35
    刘恩科;不同施肥制度土壤团聚体微生物学特性及其与土壤肥力的关系(D)中国农业科学院;2007
    刘凤枝,刘潇威.土壤和固体废弃物监测分析技术.化学工业出版社.2007:403-467
    刘广深;许中坚;徐冬梅;酸沉降对土壤团聚体及土壤可蚀性的影响.水士保持通报 2001,(4):422-429
    刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程-Ⅱ植被恢复对土壤腐殖质物质及水稳性团聚体的影响.土壤侵蚀与水土保持学报,1998,4:93-96
    刘慧,刘建立.估计土壤水分特征曲线的简化分形方法.土壤.2004.36:672-674
    刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用[J].土壤学报,2003,40(1):46-51
    刘金福,洪伟.不同起源格氏栲林地的土壤分形特征[J].山地学报,2001,19(6):565-570
    刘京,常庆瑞,李岗,等.连续不同施肥对土壤团聚性影响的研究.水土保持通报2000.20:24-26
    刘守龙,肖和艾,童成立,等.亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J].农业现代化研究,2003,24:279-283
    刘毅,李世清,李生秀.黄土高原不同类型土壤团聚体中氮库分布的研究[J].中国农业科学,2007,40:304-313.
    刘毅,李世清,邵明安,等.黄土高原不同土壤结构体有机碳库的分布[J].应用生态学报,2006,17:1003-1008.
    鲁植雄,张维强,潘君拯,等.分形理论及其在农业土壤中的应用[J].土壤学进展,1994,22:40-45
    鲁智雄 潘君拯.分维与土壤特性时空变异研究进展[J].农业工程学报,1994,10:14-19
    罗海峰,齐鸿雁,张洪勋.乙草胺对农田土壤细菌多样性的影响[J].微生物学报.2004,44:519-522
    罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J];生态学报;2003.23:1570-1575
    骆东奇,侯春霞,谢德体,等.旱地紫色土团聚体特征的指标比较[J].山地学报,2003,21:348-353
    骆东奇,侯春霞,谢德体,等.不同母质发育紫色土团粒结构的分形特征研究[J].水土保持学报,2003,70:131-133
    马世五,高雪松,邓良基,等.不同母质发育的紫色水稻土腐殖质分布特征[J].山地学报,2008,26:45-52.
    庞欣;张福锁;王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养与肥料学报2000,6:476-480
    彭佩钦,吴金水,黄道友,等.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响[J].生态学报,2006,26:2261-2267
    彭新华;张斌;赵其国;红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23:2176-2183
    山东农学院.作物栽培学[M].北京:农业出版社,1980,45-49
    邵景安,唐晓红,魏朝富,等.保护性耕作对稻田土壤有机质的影响(英文).生态学报.2007,21:4434-4442.
    施占领,蒋先军,张维,等.稻田垄作免耕对土壤的中小团聚体孔隙分布的影响.西南农业学报.2008,21:30-34.
    苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24:71-74
    唐晓红,邵景安,高明,等.保护性耕作对紫色水稻土团聚体组成利有机碳储量的影响[J].应用生态学报,2007,18:1027-1032.
    唐晓红,邵景安,黄雪夏,等.垄作免耕下紫色水稻土有机碳的分布特征[J].土壤学报,2007,44(2):235-243.
    田春杰,陈家宽,钟扬.微生物系统发育多样性及其保护生物学意义[J].应用生态学报,2003,14:609-612
    王平,胡正嘉.发光酶标记基因在微生物分子生态研究中的应用[J].生态学杂志,1996,15:26-34.
    王素娜,吕军.分形及其在土壤科学中的应用[J].土壤通报,2005,36(2):249-252
    王小彬,蔡典雄.土壤颗粒大小对水肥保持和运移的影响[J].干旱地区农业研究,1997,15:64-68
    魏朝富,高明.垄作免耕下稻田土壤团聚体和水热状况变化的研究[J].土壤学报,1990.27:172-178
    魏朝富,高明,车福才,等.垄作免耕水稻土团聚体的研究[J].西南农业大学学报,1989,11:1-4
    魏景超.真菌鉴定手册.上海科学技术出版社.1979
    文倩,赵小蓉,陈焕伟,等.半干旱地区不同土壤团聚体中微生物量氮的分布特征.中国农业科学,2005,38:91-95
    吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究。士壤学报,1999.36:162.
    吴冠芸,潘华珍,吴恽.生物化学与分子生物学实验常用数据手册[M].北京:科学出版社,2000:249-250.
    吴金水,林启美,黄巧云,等.土壤微生物生物最测定方法及其应用[M].北京.气象出版社.2006:35-36
    向万胜,吴金水,肖和艾,等.土壤微生物的分离、提取与纯化研究进展[J].应用生态学报,2003,14:453-456.
    肖剑英,张磊,谢德体,等.长期免耕稻田的土壤微生物与肥力关系研究[J].西南农业大学学报,2002,24:82-85
    邢雪荣,李洁云.有机物料对白浆土徽团聚体组成及其养分含量的影响[J].应用生态学报,1999,10:42-44
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳氮磷的影响[J].土壤学报,2002,39:89-96
    阎冰.红树林土壤细菌和古菌的16S rDNA多样性研究(D).华中农业大学.2006:18-24
    阎俊华,周国逸,陈忠毅.鼎湖山三种演替群落与其土壤结构及某些水稳效应耦合研究.生态环境2000 11:6-11
    杨劲峰,韩晓日,阴红彬,等.不同施肥条件对玉米生长季耕层土壤微生物量碳的影响[J].中国农学通报,2006,22:173-176
    杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38:
    1896-1899
    
    尹瑞龄.微生物与土壤团聚体[J].土壤学进展,1985.4:24-29
    张宝林,陈阜.晋西旱塬地覆盖耕作农田土壤水分有效性研究.华北农学报,2005,20:57-61
    张季如,朱瑞赓,祝文化用粒径的数量分布表征的土壤分形特征[J].水利学报2004,4:67-71
    张磊,肖剑英,谢德体,等.长期免耕水稻田土壤的生物特征研究[J].水土保持学报,2002,16:111-114
    张瑞福;曹慧;崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报2003,43:276-282
    张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报.2002,39:221
    张维,蒋先军,胡宇等.微生物群落在团聚体中的分布及耕作的影响[J].西南大学学报:自然科学版.2009,31:131-135
    张晓君,马晓军,姚檀栋,等.马兰冰芯16s rDNA的多样性与影响冰芯中微生物的环境因素[J].科学通报,2003,48:947-951.
    张旭辉;李恋卿;潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20:16-19
    章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000.9:253-256
    章明奎,何振立.成土母质对土壤微团聚体形成的影响[J].热带亚热带土壤科学,1997,6:198-202
    赵文智,刘志民,程国栋.土地沙质化过程的土壤分形维数特征[J].土壤学报,2002,39:877-881.
    中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985:54-58.
    钟继洪 谭军.南亚热带不同植被下丘陵赤红壤结构特征比较研究[J].应用生态学报,1998,9:359-364
    朱捍华,黄道友,刘守龙,等.稻草易地还土对丘陵红壤有机质和主要物理性质的影响.应用生态学报.2007,18:2497-2502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700