安徽铜陵典型尾矿库地球化学和环境地球化学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属矿山尾矿库是亟待开发利用的土地资源,也是潜在的环境污染源。如何开发利用尾矿库,减少环境污染,是目前国际上普遍关注的问题。本文对铜陵地区几个典型尾矿库的地球化学特征进行了研究,通过实地采样分析和实验室实验模拟,探讨了尾矿库重金属迁移和分布规律以及环境效应,并提出了尾矿库复垦的对策。为尾矿库的复垦提供理论根据。
     研究区铜尾矿的酸中和能力强。浸取水的初始pH对尾矿重金属的溶出几乎没有影响。金属元素的初始溶出速率有一定差异,一般为Zn>Pb>Mn>Cu>Ni>Cr>As>Hg。由于水中酸度被很快中和,pH值上升,使已溶出的重金属离子发生二次反应,生成金属氢氧化物或络合物沉淀析出,最终水中的离子总量趋于稳定。本次工作获得了不同重金属元素的浸出浓度变化的数学模型;
     风化后尾砂残余重金属含量的变化与堆积时间成正比。尾砂中金属矿物风化释放出的金属离子在自然降水作用下缓慢向下淋滤。由于不同层位尾砂的含氧量不同,尾砂的风化氧化程度不同。不同元素淋滤迁移速度不同。部分重金属元素可能会在50-60cm深度产生二次富集。相比较而言,尾砂中Cu、As、Hg、Cd、Pb的向下迁移速度较快。经过二十多年的淋滤,浅层尾砂中的这些元素明显下降;Zn、Cr的淋滤速度略慢于前四种元素;不论尾砂中Co、Ni的基本上是同步变化;Mn相对比较稳定;值得注意的是,虽然尾砂中孔隙水呈中性偏碱性,但是Pb的迁移速率比预期要快。
     长期风化氧化后尾矿库尾砂残余重金属含量的空间分布有明显差异。尾砂在风化氧化过程中释放出的金属离子不仅向下迁移,也随地表径流和潜水流动在水平方向产生一定迁移。金属离子的淋滤量及迁移速度与风化氧化程度、降水时间和降水量有关,也与浸水时间有着密切关系,处于径流通道上的表层尾砂金属含量明显降低;尾矿库边缘的尾砂粒度较粗,虽然堆积时间较长,各层位尾砂中的重金属含量还是明显高于其他点。而地势最低的点,Zn、As、Cd等在尾砂表层二次沉积,形成局部富集,下层尾砂中也出现了二次向下迁移的峰值。
     杨山冲尾矿库尾砂经过20多年的风化氧化和淋滤作用,110cm以内尾砂中的重金属元素的易于淋滤部分大多被淋失,Cu、Mn、Pb、As、Hg、N5、Co、Cr以残渣态为主要赋存形式,所占比例均>35%;其次为铁锰氧化态;Zn、Cd则以铁锰还原态为主,其次为残渣态。表层尾砂中元素的铁锰氧化态的含量均较高;Ni、Co的强有机态所占比例较高。相对而言,林冲尾矿库尾砂经过更长时间的风化淋滤和植物改造,除表层尾砂由于植物富集造成少数元素含量增高,以及60cm处少数元素出现二次富集现象以外,150cm以上大多数金属元素含量已经趋于稳定,变化幅度很小;正在使用中的相思谷尾矿库尾砂元素含量垂向变化大。可见尾矿库尾砂经长期堆存后和复垦后,重金属含量下降幅度大,残留的重金属元素多以铁锰氧化态、强有机态和残渣态形式存在,对环境的危害大幅度减小。
     尾矿库复垦对重金属元素分布和迁移的影响十分明显,仅仅恢复植被的杨山冲尾矿库,由于草基本上不采收,影响的是其根系能够到达的区域,一部分元素被草吸收,最后随着草枯萎残留在表层,造成表层尾砂中该元素的异常升高;对于大规模耕作复垦的林冲尾矿库,经过多年翻耕、施肥,尾砂中含氧量增加,有机质含量增加,微生物活动增强,尾砂的风化氧化速度提高。重金属元素含量也明显下降,只是作物落叶造成个别元素表层元素含量相对于下层略微升高。因此,大规模耕作对尾矿库尾砂的改性作用很大,而仅表面植草只能减少扬沙危害,并不能从根本上改变尾砂性状,还可能造成部分元素表面富集,影响尾矿库的进一步改造和复垦。
     研究表明:相思谷尾矿库泄露的水和尾砂对相思河水质没有产生大的影响,相思河水质仍能满足地表水环境质量标准(GB3838-88)中Ⅳ类水的要求,可以用于农灌。但必须澄清后再灌溉,淤积在河底的大量尾砂在汛期可能对沿河低洼地区的土壤产生一定影响。凤凰山尾矿库下风向500m范围内的土壤均不同程度的受到尾矿库扬尘的影响。离尾矿库距离越近,其受到的影响也就越大,即土壤中重金属总量越高。
     尾矿库泄露水和露采区扬尘共同影响区域,各污染源对土壤重金属含量增加的贡献可以根据其扩散规律进行理论模拟和分离,计算出各自的贡献。计算结果表明:该露采区扬尘影响明显的范围约为半径300米,二者对不同金属元素的贡献有所不同。该区域在汛期有时处于淹没状态,洪水和携带的尾砂对该区域土壤有一定影响。通过对不同位置土壤中重金属赋存状态的分析,发现重金属元素的离子交换态含量随着离露采区的距离增加而明显降低。处于离子状态较易随水迁移,所以残留在土壤中的含量很少;腐殖酸结合态含量同样普遍偏低;各点金属的铁锰氧化态占了较大比重。
     实验证明:在连续酸性降雨条件下,尾砂覆盖土壤中尾砂释放的重金属可以影响到70cm深度。金属离子在土壤中的迁移速率不同。迁移过程中部分金属离子被吸附在土壤中,故短期对地下水的影响并不是很大,但是Hg、Pb的影响不可忽视。对淋出液和不同部位土壤中重金属含量的比较分析可知,不同金属在土壤中迁移、吸附的量差别很大。尾矿中含量较高的Cu的溶出量和迁移的速度并不大;Pb、Hg的迁移能力则相对较强,能够大部分被淋滤迁移出来,可能引起地下水环境的污染,应予以重视。Cr的迁移能力比较弱,不容易下渗到浅层地下水中,但易造成土壤Cr污染。Zn的迁移能力较强,土壤对其吸附作用也较强,导致土壤和淋出液中的Zn含量普遍升高。
     种子发芽毒性试验结果表明:尾砂中重金属元素对叶类蔬菜种子的发芽率影响也不大,均能取得较好发芽率,尾矿砂上种植林木和经济作物是可行的。在尾矿砂中加入土壤、EDTA或PAM改良后,能够改变尾砂层的结构,提高其保水、保肥能力。试验配土添加EDTA或PAM后,植物生长状态良好。经对比测试,PAM性能较好,能够有效抑制植物对Cu、Pb、Zn的吸收。而且保水保肥性能良好。
     尾矿库的复垦工作应分阶段逐步进行。首先采取一定工程措施强化重金属元素的氧化淋滤;然后由边缘向中心逐步推进进行初期植被恢复;在尾矿库闭库的前5—10年以种植草本和木本植物为主,目的的抑制扬沙,改良土壤;10年以后根据土壤中重金属含量的变化可以逐步种植经济作物。尾矿库边缘区域尾砂粒径较大,金属矿物风化氧化速度较慢,要适当采取掺土改良。如果工程措施适当及时的话,可大大缩短复垦时间。
The metal mine tailings impoundments are a kind of land resource which should be rehabilitated and utilized urgently, and they are also a potential contamination source. How to rehabilitate and utilize the tailings impoundments and reduce environmental contamination is a problem which attracts people's attention all over the world. In this paper, the geochemical characters of several representative tailings impoundments in the region of Tongling are studied. The heavy metal transfer rule and environmental effect are researched by sample analyzing and making simulation laboratory experiment, and technological measures for utilizing of tailings impoundments are put forward. The study results provide a theoretic basis for utilizing of tailings impoundments. The conclusions are as follows.
     In the study area, acid-neutralization capacity of copper tailings is stronger. The initiatory pH of water exerts little effect on the lixiviation of the elements. The initial lixiviation rate of metallic elements were different, commonly, Zn>Pb>Mn>Cu>Ni>Cr>As>Hg. For the reason that acid in water was neutralized rapidly, heavy metal ions lixiviated were able to take part in the second reaction, and metal hydroxides produced were deposited. When lixiviating was in dynamic equilibrium with depositing, the quantity of total ions became a constant. The mathematic models for describing the lixiviation of different heavy metals were obtained in this work.
     The contents of remaining metals in tailings weathered are in direct proportion to accumulating time. When metallic minerals of tailings have been weathered, metal ions were eluviated down slowly by rainfall. Because the oxygen content in different layers of the tailings dump is not same, the degree of weathering of tailings is different. The transfer rate of different elements in a layer of tailings was dissimilar. Some heavy metal elements might get secondarily enriched in 50. The transfer rates of Cu, As, Hg, Cd, and Pb were faster comparatively. After eluviating over a 20-year period, the contents of these elements in the shallow tailings have decreased obviously. The eluviating rates of Zn and Cr were slower than the above elements. The contents of Co and Ni have changed simultaneously. The content of Mn was steady relatively. It is noteworthy that the transfer rate of Pb was faster in tailings layers than in soils though pH of the pore water was alkalescent.
     The distribution of remaining heavy metal contents in the space is different due to a long period of weathering. The metal ions transferred not only in the perpendicular direction but also in the horizontal direction with the flow of surface runoff and underflow. The quantity of metal ions and their transfer rates are related to the weathering process, precipitation time, and rainfall, and also related closely to the inundating time. At the route-way of runoff, the metal contents in surface tailings decreased obviously. At points in the edge of tailings impoundments, tailings particle sizes were bigger relatively, and although it has been a long time of weathering, the heavy metal contents in each layer of tailings were greater than other points obviously. At the low-lying area, Zn, As, and Cd deposited at the surface of tailings secondly, resulting in metal ions enrichment; and the peak values of some elements due to secondary transfer also appeared at some positions of lower layers.
     Through weathering and eluviating over a 20-year period, the easily eluviating fraction of most heavy metals in the tailings above 110 cm in depth have eluviated in the Yangshanchong impoundment. The major existing state of Cu, Pb, Mn, As, Hg, Ni, Co, and Cr was the residual state with the fraction being greater than 35%, and the second was the oxidation state of both iron and manganese. The major existing state of Zn and Cd was the oxidation state of both iron and manganese. In the surface tailings, the contents of the metals in the oxidation state of both iron and manganese were higher, while the fraction of the organic-bound state that Ni and Co existed was bigger. Comparatively, the copper tailings of the Linchong impoundment experienced weathering, eluviating and reclaiming with plants for a much longer time, the contents of metal elements have been changed obviously. Except that the contents of minority elements have risen due to plants enrichment and some elements got secondarily enriched at the 60 cm layer, most metal contents of tailings above 150 cm became steady. In the Xiangsigu impoundment which is being used, metal elements contents in the tailings have changed in perpendicular. It is obvious that heavy metal contents in tailings can be reduced evidently after the tailings were piled and rehabilitated over a long period of time. The existing states of remaining metal elements were the residual state, the oxidation state of both iron and manganese, and the organic-bound state, and the harm to environment was reduced obviously.
     Impoundment rehabilitation influences the distribution and transfer of heavy metals obviously. For the Yangshanchong impoundment where vegetation came back only, the effect depth is that grass roots can arrive at. Some elements could be absorbed by grasses, and remained on the surface of tailings as grasses perished, so the contents of some elements in surface tailings rose singularly. For the Linchong impoundment which has been rehabilitated and cultured in full scale for years, the oxygen content in the tailings layers has increased, the content of organic substance has been increased, the activity of microorganism is enhanced, and the rate of tailings weathering has increased. Therefore heavy metal contents in tailings were reduced clearly except that the content of one or two elements rose slightly as compared with the lower layer, which may be a result of defoliation. Thus full scale culturing is important for improving the characters of tailings, while surface planting of grass can just decrease dust flying upwards, but the characters of tailings can not be improved fleetly, and even some elements may get enriched again in the surface of tailings, which may produce bad influence on the rehabilitation of tailings impoundments.
     The investigation proved that leaked water and tailings did not influence obviously the quality of water in the Xiangsi river. The quality of water in the Xiangsi river satisfies the requirement of IV class water in the environmental quality standard of surface water (GB3838-88), and the water can be used to irrigate, but should be clarified. A quantity of tailings depositing at the bottom of the river may influence the soil in the low-lying area along the river. The soil in the area bounded with 500 m leeward of the Xiangsigu impoundment has been influenced by flying dust. The less the distance, the greater the influence, that is, the heavy metal contents in the soil is higher than others.
     For the area influenced by both leaking water of tailings impoundments and flying dust of opencast working, the emission source's contribution to increasing metal contents in soils can be simulated and separated according to its diffusion rule. Investigation proved that the area bound influenced by flying dust of opencast working was 300 m. Each factor's contribution to every metal element was different. The area has been submerged during the raining season. Flooding and the tailings carried by the river water could influence the soil in that area. By analyzing the existing state of metal elements in soil samples of different points, it was found that the contents of metal elements in the exchangeable state decreased with lessening of the distance. Because metals in the ion state could be easily transferred, the remaining contents in soil were less. The contents of metal elements in the humic acid combined state were also lower. At all points, the contents of metal elements in the oxidation state of both iron and manganese were major.
     The results of eluviating experiment prove that in the soil which was covered with tailings, the metals leached from tailings could influence 70 cm in depth under the continuous acid rainfall condition. Different elements have different rates of transfer. Some elements were adsorbed by soils in the course of transfer, and these elements had less influence on groundwater in a short term, but it is important that the effect of Hg and Pb should not neglected. By comparing the metal contents in the eluviating water sampled at different time with those in the soils at different sections, it is found that the quantity of metal elements leached and adsorbed was different distinctively. The Cu the content of which is higher in tailings eluviated and transfered less. The transferring ability of Pb and Hg in soil was biggish, and most of them eluviated, so attention should be paid to that Pb and Hg may cause groundwater contamination. The transferring ability of Cr was feeblish, and it can not easily move to groundwater, but can cause soil contamination. The transferring ability of Zn in soil was biggish, and the sorption of Zn by soil was also bigger, so the Zn content in soils and eluviating water had risen.
     The result of experiment on the toxic effect of metal elements on seed germination proved that metal elements in tailings have less influence on the germination rate of greenstuffs. It is possible to grow trees and economic crops on copper tailings. After the tailings were mixed with soil, EDTA, or PAM, the structure of tailings layers would be improved, and their ability of keeping water and fertilizer was raised. After the tailings were mixed with EDTA or PAM, plants grew well. Comparative analysis shows that both EDTA and PAM can restrain plants from absorbing certain metal elements. Comparatively, the capability of PAM was better, and it could restrain plants from absorbing three metal elements availably, and its capability of keeping water and fertilizer was better.
     The work of tailings impoundment rehabilitating should be carried out step by step. First some technological measures can be used to strengthen oxidating and eluviating of heavy metal elements, and to accelerate improving of soil in tailings impoundment. Second, initial vegetation rehabilitating can be made progressively from the edge to the center of tailings impoundments. Trees and grasses can be planted mainly to restrain flying dust and improve tailings during the initial 5-10 years. According to the change of heavy metal contents in tailings, economic crops can be planted after 10 years. The tailings particle sizes are bigger in the edge of tailings impoundments for the rate of metallic mineral weathering and oxidating is slower, so it is necessary that tailings should be mixed with soils for improving. If the technological measures are appropriate and just in time, the time of rehabilitating can be shortened.
引文
A.Akcil.A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine,Turkey.Minerals Engineering,2002,15(12):1193-1197
    A.Carrillo-Ch(?)ivez,O.Morton-Bermea,E.Gonz(?)lez-Partida,et al.Environmental geochemistry of the Guanajuato Mining District,Mexico.Ore Geology Reviews,2003,23(3-4):277-297
    A.Kelepertsis,D.Alexakis,I.kita.Environmental geochemistry of soils and waters of Susaki aera,Korinthos,Greece.Environmental Geochemistry and Health,2001,23:117-135
    A.Carrillo-Ch(?)tvez,O.Morton-Bermea,E.Gonz lez-Partida,et al.Environmental geochemistry of the Guanajuato Mining District,Mexico.Ore Geology Reviews,2003,23:277-297
    A.Concas,C.Ardau,A.Cristini,et al.Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site.Chemosphere,2006,63:244-253
    A.J.Martin,S.E.Calvert.Hydrological and geochemical controls governing the distribution of trace metals in a mine-impacted lake.Environmental Geology,2003,43:408-418
    A.Nagaraju and S.Karimulla.Geobotany and biogeochemistry of Gymnosporia montana-a case study from Nellore Mica Belt,Andhra Pradesh.Environmental Geology,2001,41(1-2):167-173
    A.R.Pratt,H.W.Nesbitt,J.R.Mycroft.The increased reactivity of pyrrhotite and magnetite phases in sulphide mine tailings.Journal of Geochemical Exploration,1996,56(1):1-11
    A.S.Sheoran,V.Sheoran.Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review.Minerals Engineering,2006,19(2):105-116
    A.S(?)inz,J.A.Grande,M.L.de la Torre,et al.Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers..Journal of Environmental Management,2002,64(4):345-353
    A.Samecka-Cymerman,A.J.Kempers,B.Winter.Metal and macroelement concentration and effect of nutrient addition in terrestrial bryophytes growing on serpentine massifs in Lower Silesia,Poland.Environmental Geology,2002,43:79-86
    Aimpoundmento P,Dudka S,Wilson M J,et al.Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region,Canada.EnvirPollution,1996,91(1):11-19
    B.G.Rawlins,T.R.Lister,A.C.Mackenzie.Trace-metal pollution of soils in northern England.Environmental Geology,2002,42:612-620
    Barbara Muller,Mikael D.Axelsson,Bj(o|¨)rn(o|¨)hlander.Adsorption of trace elements on pyrite surfaces in sulfidic mine tailings from Kristineberg(Sweden) a few years after remediation.The Science of the Total Environment,2002,298:1-16
    Bernhard Dold,Lluis Fontbot(?).A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt,northern Chile.Chemical Geology,2002,189(3-4):135-163
    Bernhard Dold,Lluis Fontbot(?).Element cycling and mineralogy in porphyry copper tailings as a function of climate,primary mineralogy,and mineral proessing.Journal of geochemical exploration,2004,74:3-55
    Bernhard,A.Zarcinas,Stephen L,Rogers.Copper,Lead and Zinc mobility and bio -availability in a river sediment contaminated with paint stripping residue.Environmental Geochemistry and Health,2003,24:191-203
    Bj(?)rn Christensen, Morten Laake, Torleiv Lien. Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment .Water Research, 1996,30(7): 1617-1624
    Bo Elberling, Axel Schippers, Wolfgang Sand. Bacterial and chemical oxidation of pyritic mine tailings at low temperatures. Journal of Contaminant Hydrology, 2000,41: 225-238
    C. J. Ptacek, D. W. Blowes, J. L. Jambor. The potential for metal release by reductive dissolution of weathered mine tailings. Journal of Contaminant Hydrology, 1995,17(3):239-273
    D.W. Blowes, W.D. Robertson, C.J. Ptacek, C. Merkley Removal of agricultural nitrate from tile- drainage effluent water using in-line bioreactors. Journal of Contaminant Hydrology, 1994, 15(3):207- 221
    
    Claudia Herr and N.F. Gray. Metal contamination of riverine sediments below the Avoca mines, south east Ireland. Environmental Geochemistry and Health, 1997,19: 73±82
    
    Connie G. Romano, K. Ulrich Mayer, David R. Jones, et al. Effectiveness of various cover scenarios on the rate of sulflde oxidation of mine tailings. Journal of Hydrology. 2003, 271: 171-187
    D.W. Blowes, Eric J Reardon, John L Jambor, John A Cherry. The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochimica et Cosmochimica Acta, 1991,55(4):965-978
    
    E. Dinelli and F.Tateo. Factors controlling heavy-metal dispersion in mining areas: the case of Vigonzano (northern Italy), a Fe-Cu sulfide deposit associated with ophiolitic rocks. Environmental Geology, 2001,40(9): 1138-1150
    
    E. Dinelli, Federico Lucchini, Miriam Fabbri, et al. Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy). Journal of Geochemical Exploration, 2001,74(1-3): 141-152
    
    Enrico Dinelli, Alessandra Lombini. Metal distributions in plants growing on copper mine spoils in Northern Apennines, Italy: the evaluation of seasonal variations. Applied Geochemistry, 1996, 11:375-385
    
    Eva Stoltz and Maria Greger. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 2002, 4(3):271-280
    
    F. Goodarzi, H. Sanei, R.G. Garrett, W.F. Duncan. Accumulation of trace elements on the surface soil around the Trail smelter, British Columbia, Canada. Environmental Geology, 2002,43: 29-38
    
    H.K. T. Wong, A. Gauthier, J. O. Nriagu. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. The Science of The Total Environment, 1999, 228(1):35-47
    
    Hector M. Conesa, Angel Faz, Raquel Arnaldos. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Uni6n mining district (SE Spain). Science of the Total Environment, Available online 24 February 2006
    
    Hennning Holmstom, Ursula J. Salmon, Erik Carlsson,et al. Geochemical investigations of sulfide- bearing tailings at Kristineberg, northern Sweden, a few years after remediation. The Science of the Total Environment, 2001. 273:111-133
    
    Iain Thornton. Impacts of mining on the environment; some local, regional and global issues. Applied Geochemistry, 1996,11( 1-2): 355-361
    
    J.Aguilar, C. Dorronsoro, E. Fernandez, et al. Soil pollution by a pyrite mine spill in Spain: evolution in time. Environmental Pollution, 2004, 132(3):395-401
    
    J.L. Femandez-Turiel, P. Acenolaza, M.E. Medina, J.F. Llorens and F. Sardi. Assessment of a smelter impact area using surface soils and plants.Environmental Geochemistry and Health,2001,23:65-78
    J.M.Azcue,A.Mudroch,F.Rosa,et al.Trace elements in water,sediments,porewater,and biota polluted by tailings from an abandoned gold mine in British Columbia,Canada.Journal of Geochemical Exploration,1995,52(1-2):25-34
    J.M.Azcue,Mudroch,A.Rosa,F.,Hall,G.E.M.,Jackson,T.A.,Reynoldson,T.,Trace elements in water,sediments,porewater,and biota polluted by tailings from an abandoned gold mine in British Columbia,Canada.Geochem.Explor.1995.52,25-34
    Jennifer A.Coston,Christopher C.Fuller,James A.Davis.Pb~(2+) and Zn~(2+) adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand.Geochimica et Cosmochimica Acta,1995,59(17):3535-3547
    Jennifer Harrison,Hendrik Heijnis,Graziella Caprarelli.Historical pollution variability from abandoned mine sites,Greater Blue Mountains World Heritage Area,New South Walse,Australia.Environ Geol.,2003,43:680-687
    Johan Ljungberg,Bj(o|¨)m(o|¨)blander.The geochemical dynamics of oxidising mine tailings at Laver,northern Sweden.Journal of Geochemical Exploration,2001,74(1-3):57-72
    John E.Gray,Ian A.Greaves,Dorina M.Bustos,David P.Krabbenhoft.Mercury and methyl mercury contents in mine-waste calcine,water,and sediment collected from the Palawan Quicksilver Mine,Philippines.Environmental Geology,2003,43:298-307
    John E.Gray,Ian A.Greaves,Dorina M.Bustos,et al.Mercury and methylmercury contents in mine-waste calcine,water,and sediment collected from the Palawan Quicksilver Mine,Philippines.Environmental Geology,2003,43:298-307
    John Maskall,Keith Whitehead,Clare Gee,Iain Thornton.Long-term migration of metals at historical smelting sites.Applied Geochemistry,1996,11(1-2):43-51
    Kedziorek M A M,Dupuy A,etal.Leaching of Cd and Pb from a polluted soil during the percolation of EDTA:Laboratory column experiments modeled with a non-equilibrium solubilization step.Environ Sci Technol.,1998,32:1609-1614
    Kissao,Gnandi and H.J.Tobschall.Heavy metal release from phosphorite tailings into seawater:a simulated laboratory study.The Science of The Total Environment,1999,236(1-3):181-190
    Krista D.Page,J.Brendan Murphy.The geological sources of Hg contamination in Kejimkujik National Park,Nova Scotia,Canada:a GIS approach.Environmental Geology,43:882-891
    Lin Z.Mineralogical and chemical characterization of wastes from the sulfuric acid industry in Falum Sweden.Environ.Geol,1997,30(3/4):152-162
    Lin Z..Leachate chemistry and precipitatts mineralogy of Rudolfsgruvan minewaste dump in central Sweden.Water Sci.,1996,33:163-171.
    Lisa Johansson,Constantinos Xydas,Nikos Messios,et al.Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus.Applied Geochemistry,2005,20:101-107
    Lovisa Stjernman Forsberg,Stig Ledin.Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings.Science of the Total Environment,2006,358:21-35
    M.A.Yukselen.Characterization of heavy metal contaminated soils Northern Cyprus.Environ Geol.,2002,42:597-603
    M.Boni,S.Costabile,B.De Vivo,et al.Potential environmental hazard in the mining district of southern Iglesiente(SW Sardinia,Italy).Journal of Geochemical Exploration,1999,67(1-3):417-430
    M.W.Clark,S.R.Walsh and J.V.Smith.The distribution of heavy metals in an abandoned mining area;a case study of Strauss Pit,the Drake mining area,Australia:implications for the environmental management of mine sites. Environmental Geology,2001, 40(6): 655-663
    
    Marcos G, Monroy F, Chritian M, et al. Occurences at mineral bacteria interface during oxidation of arsennopyrite by Thiobacillus Ferrooxidans.Biotechnology and Bioengineering, 1995,46:13-21.
    Maria E. Malmstrom, Magdalena Gleisner, Roger B. Herbert. Element discharge from pyritic mine tailings at limited oxygen availability in column experiments. Applied Geochemistry, 2006,21(1):184-202
    
    Martin L. Smith and Roy E. Williams. Examination of methods for evaluating remining a mine waste site. Part I. Geostatistical characterization methodology. Engineering Geology, 1996,43(1): 11-21
    Martin L. Smith, Roy E. Williams. Examination of methods for evaluating remining a mine waste site. Part II. Indicator kriging for selective remediation. Engineering Geology, 1996,43(1): 23-30
    Mats Astrom. Partitioning of transition metals in oxidised and reduced zones of sulphide-bearing finegrained sediments. Applied Geochemistry, 1998,13(5): 607-617
    
    Merington G, Aloway B J. The transfer and fate of Cd, Pb and Zn from two historic metalliferous mine sites in the U.K. Applied Geochemistry, 1994,9: 677-687
    
    Michelle P, boulet, Adriene C.L, etal. A comparative mineralogical and geochemicals study of sulfide mine tailing at two sites in New Mexico, USA.Environ.Geol., 1998,33(2/3): 130-142
    Milena Horvat, Branko Kontic, Joze Kotnik,et al. Remediation of Mercury Polluted Sites Due to Mining Activities. Critical Reviews in Analytical Chemistry, 2003, 33( 4): 291-296
    
    Myoung Chae Jung, Iain Thornton, Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry 1996,11 (1 -2):53-59
    
    Myoung-Jin Kim, Kyu-Hong Ann, Yejin Jung. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere, 2002,49(3): 307-312
    
    Nina Zupancic. Lead contamination in the roadside soils of Slovenia. Environmental Geochemistry and Health, 1999,21:37-50
    
    P.K.Govil, G.LN.Reddy, A.K. Krishna. Contamination of soil due to heavy metals in the Patancheru industrial development area,Andhra Pradesh,India. Environmental Geology,2001,41:461-469
    Pratt A R, Muir I J, Nesbitt H W. X-ray photo electron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim Cosmochim Acta, 1994,58: 827- 841 Pyeong-Koo,1997
    
    R.G. McGregor, D.W.Blowes, J.L.Jambor, et al. The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. Journal of Contaminant Hydrology, 1998,33:247-271
    
    R.P.Borba, B.R.Figueiredo, J.Matschullat. Geochemical distribution of arsenic in water, sediments and weathered gold mineralised rocks from Iron Quadrangle, Brazil. Environ Geol., 2003,44: 39-52
    Richard K. Borden. Environmental geochemistry of the Bingham Canyon porphyry copper deposit, Utah. Environmental Geology ,2003,43:752-758
    
    S.O.Fakayde, P.C.Onianwa. Heavy metal contamination of soil, and bioaccumulation in Guinea gras(Panicum maxinum) around Dceja Industrial Estate, Lagos Nijeria. Environ Geol., 2002,43: 145-150
    Schilling, M. Kolling and H. D. Schulz. The potential formation of acid mine drainage in pyrite-bearing hard-coal tailings under water-saturated conditions: an experimental approach. Environmental Geology, 1997,31(1-2):59-65
    
    Sherlock E J,Lawrence R W, Poulin P. On the neutralization of acid rock drainage by caibonate and silicate minerals.Environmental Geology,1995,25:43-54.
    Tom A. Al, Chris J. Martin, David W. Blowes. Carbonate-mineral/water interactions in sulfide-rich mine tailings.Geochimica et Cosmochimica Acta,2000,23:3933-3948
    T.A.Al,D.W Blowes,C.J.Martin,et aL Aqueous geochemistry and analysis of pyrite surfaces in sulfide-rich mine tailings。Geochimica et Cosmochimica Acta,1997,61(12):2353-2366
    Walder I F,Chavez w X Jr.Mincralogical and geochemical behavior of mill tailing material produced from Lead-Zinc skarn mincraliztion,Hanover,GreatCounty,New Mexico,USA..Environmental Geology,1995,26:1-18
    Zhixun Lin,Roger B,Herbert Jr.Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil,Dalarna,Sweden.environ.geol,1997,33(1):1-12
    Zhixun Lin.Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines。Sweden.Science of The Total Environment,1997,19(1,9):13-31
    卜英宏.凤凰山铜矿土地复垦现状及对策[J].中国钼业,1999,23(3):17-18
    蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理[J].中国工程科学,2000,2(4):89-92
    陈德兴,邵器行.环境地球化学研究进展[J].地学前缘,1996,3(1-2):119-126
    陈芳.安徽铜陵相思河及其周边重金属元素污染研究.硕士论文,2006.5
    陈怀满主编.土壤.植物系统中重金属污染[M].北京:科学出版社,1996
    陈顺方,钟文远。应用细菌浸出技术回收利用低品位铜矿资源[J].湿法冶金,1999,2:5-8
    陈天虎,冯军会,徐晓春等.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志,2002,21(3):298-302
    陈天虎.矿山尾矿矿物学研究进展[J].安徽地质,2001,11(1):64-70
    储国正.安徽铜陵地区成矿控制因素的探讨[J].安徽地质,1995,5(1):47-57
    丛志远,赵峰华.酸性矿山废水研究的现状及展望[J].中国矿业,2003,12(3):15-18
    代宏文,王春来,汪庚火等.杨山冲尾矿库复垦建立植被技术研究[J].土地资源,2000,7:26-29
    戴树桂,岳贵春,王晓蓉等。环境化学[M].高等教育出版社,1997.3:258-266
    党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):86-91
    丁佳红,刘登义,李影等.狮子山铜尾矿植物对铜的吸收及土壤特性的影响[J].生物学杂志,2004,21(3):20-22
    丁疆华,温琰茂,舒强.土壤环境中镉、锌形态转化的探讨[].城市环境与城市生态,2001,14(2):47-49
    方凤满,王起超。土壤汞污染研究进展[J].土壤与环境,2000,9(4):326-329
    关晓辉,赵以恒,刘海宁等.硫化物(矿石)的生物氧化机制研究[J].东北电力学院学报,1999,19(2):1-9
    顾继光,林秋奇,胡韧等.土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133
    蒋以超.土壤化学的物理化学[M].北京:中国科技出版杜,1993.2
    蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性[J].中国环境科学,1996,16(6):461-465
    李红阳,牛树银.常见硫化物的氧化作用及其环境效应[J].北京地质,2001,13(2):6-11
    李健,郑春江,郭希利等.环境背景值数据手册[M].北京:中国环境科学出版社,1989
    李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003,1:24-26
    李克斌,刘维屏,邵颖。重金属离子在腐殖酸上吸附的研究[J].环境污染与防治,1997,19(1):9-11
    李宽良,周俊一,于乃诱等.锶、钴、铯溶质的竞争吸附与锶的迁移动态机理[J].环境科学学报,1994,14(3):330-334
    李天杰.土壤环境学[M].北京:高等教育出版社,1996.13
    李瑛,李洪军,张桂银等。几种电解质对土壤吸附Cu~(2+)的影响[J].生态环境,2003,12(1):8-11
    李玉红,宗良纲,黄耀.螯合剂在污染土壤植物修复中的应用[J].土壤与环境,2002,11(3):303-306
    廖宗文,王卫红,江东荣,欧伟雄.污泥混合基质栽培生菜重金属含量的影响因素研究[J].环境科学,1994,15(2):49-52
    林春野.重金属Cu Cd Zn的陆生植物毒性比较研究[J].农业环境保护,1996,15(6):266-267
    林景星.恢复生态学-矿山环境修复中的一门新兴学科[J].中国地质,2000,7:22-23
    林玉锁.土壤对重金属缓冲性能的研究研究[J]。环境科学学报,1995,15(3):289-294
    卢龙,王汝成,薛纪越等。硫化物矿物的表面反应及其在矿山环境研究中的应用[J].岩石矿物学杂志,2001,20(4):387-394
    吕保玉,白海强,喻泽斌.蔬菜重金属污染的研究现状与防治措施[J].安徽农业科学,2008,36(4):1566-1568
    南京大学地质学系.地球化学[M],科学出版社,1979:335-336
    彭冲,李法虎,潘兴瑶。聚丙烯酰胺施用对碱土和非碱土水力传导度的影响[J].土壤学报,2006,43(5):835-841
    饶运章,侯运炳,潘建平等.尾矿库废水pH值对重金属污染的影响及治理技术研究[J].中国矿业,2003,12(12):36-38
    戎秋涛,翁焕新.环境地球化学[M],地质出版社,1990:77-217
    尚爱安,党志.漆亮等.两类典型重金属土壤污染研究[J].环境科学学报,200l,21(4):501-503
    沈振国,刘友良,陈怀满。超积累重金属植物研究进展[J].植物生理学通讯,1998,34(2):133-139
    石贵勇,周永章,杨志军等.广东河台金矿尾矿库金属硫化物环境地球化学效应[J].矿产与地质,2004,18(6):579-582
    孙庆业,刘付程。铜陵铜矿尾矿理化性质的变化对植被重建的影响[J].农村生态环境,1998,14(1):21-23
    吕保玉,白海强,喻泽斌.蔬菜重金属污染的研究现状与防治措施[J].安徽农业科学,2008,36(4):1566.1568
    谭红,何锦林,花金兰等.汞矿区大气汞的流通量与汞千湿沉降研究[J].环境化学,1999,18(1):34-38
    唐永成,吴言昌,储国正等著.安徽沿江地区铜金多金属矿床地质[M].地质出版社,1998.
    陶玲,任均,祝广华.重金属对植物种子萌发的影响研究进展[J].农业环境科学学报2007,26(增刊):52-57
    田胜尼,孙庆业,王铮峰等。铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93
    田胜尼,刘登义,彭少麟等。5种豆科植物对铜尾矿的适应性研究[J].环境科学,2004,25(3):138-143
    仝磊,朱圣陶.土壤与蔬菜中重金属含量及其相关性[J].黑龙江科技信息,2008,4:123
    涂从,郑春荣,陈怀满.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学,1997,17(6):526-529
    王波,叶新才,程从坤等.铜陵地区矿山生态环境综合治理途径[J].长江流域资源与环境,2004,13(5):494-498
    王凤艳,徐秀梅.矿山采选工程尾矿库选矿废水的水质特征分析[J].北方环境,2001,3:57-58
    王钢军,张永志,徐明飞等.土壤重金属污染对蔬菜食用安全影响的研究[J].浙江农业科学,2008,2:134-136
    王丽平,章明奎.不同来源重金属污染土壤中重金属的释放行为[J].环境科学研究,2007,20(4):134- 138
    王新,梁仁禄.土壤-水稻系统中重金属复合污染物交互作用及生态效应的研究[J].生态学杂志,2000,19(4):38-42.
    王新,吴燕玉,梁仁禄等.各种改性剂对重金属迁移、积累影响的研究[J]。应用生态学报,1994,5(1):89-94
    王亚平,鲍征宇,侯书恩.尾矿库周围土壤中重金属存在形态特征研究[J].岩矿测试,2000,19(1):7-13
    王亚平,鲍征宇,王苏明.矿山固体废物的环境地球化学研究进展[J].矿产综合利用,1998,3:30-34
    王永华,刘文荣编.矿物学[M].地质出版社,1985
    王友保,张莉,刘登义等.铜陵铜尾矿库植被状况分析[J].生态学杂志,2004,23(1):135-139
    王友保,张丽琴,刘登义.铜尾矿区土壤与凤丹植株重金属富集研究[J].应用生态学报,2004,15(12):2351-2354
    王军.铜陵相思河流域采矿活动中重金属的迁移和分布及其对生态环境的影响.硕士论文,2005.5
    王中生.吉林镍业公司尾矿库复垦治理技术初探[J].有色矿冶,2001,17(2):37-40
    吴大清,刁桂仪,彭金莲等.环境矿物界面反应动力学[J].岩石矿物学杂志,2001,20(4):395-398
    吴攀,刘丛强,杨元根等.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报,2001,21(2):213-218
    夏立江,温小乐.垃圾滲滤液对土壤铁锰有效性及地下水质的影响[J].土壤与环境,2002,11(1):6-9:
    谢正苗,卡里德,黄昌勇等.镉铅锌污染对红壤中微生物生物量碳氮磷的影响[J].植物营养与肥料学报,2000,6(01):69-74
    熊报国。铜矿山开采对环境的影响[J]。环境与开发,1994,9(3):324-329
    熊礼明.土壤溶液中镉的化学形态及化学平衡研究[J].环境科学学报,1993,13(2):150-156
    徐晓春,王军,李援等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J]。岩石矿物学杂志,2003,22(4):432-436
    颜学宏.尾矿库复垦利用方式初探[J].冶金矿山设计与建设,1998,30(2):3
    殷捷,陈玉成.土壤重金属污染的全过程控制[J].四川环境,2000,19(1):27-30
    殷捷,周竹渝.超积累植物的研究进展[J].重庆环境科学,2003,25(11):150-152
    余国营,吴燕玉.土壤环境中重金属元素的相互作用及其对吸持特性的影响[J].环境化学,1997,16(1):30-36
    袁见齐,朱上庆,翟裕生主编.矿床学[M].地质出版社,1985
    员学锋,吴普特,冯浩.聚丙烯酰胺(rAM)在土壤改良中的应用进展[J].水土保持研究,2002,(02)
    曾清如,周细红,铁柏清等。三种尾矿砂颗粒物对Pb(Ⅱ)和Cd(Ⅱ)的吸附行为[J].湖南农业大学学报,1998,24(5):360-364
    曾清如,周细红,杨仁斌等。不同来源重金属在土壤中的形态分布差异[J],农村生态环境,1994,10(3):48-51
    曾荣树。国内外环境矿物学发展述评[J]。矿物岩石地球化学通报,2002,21(4):286-288
    占伟,吴文忠,徐盈.有机有毒污染物在土壤及底泥系统中的吸附/解析行为研究进展[J].环境科学进展,1998,6(3):1-13
    张海星,姚丽文,熊报国等.德兴铜矿1号尾矿库废弃土地生态恢复试验研究[J].环境与开发,1999,14(1):10-11
    张莲宝,管志炜.21世纪的新型资源--尾矿资源的开发[J].江西地质,2000,14(3):176-179
    张辉,马东升.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学,1998,17(6):564- 568
    张敏,江建华,徐洁.铜矿尾矿库复垦种植牡丹可行性研究[J].上海环境科学,2000,19(12):585-587
    张书海,林树生.交通干线铅污染对两侧土壤和蔬菜的影响[J].环境监测管理与技术,2000,12(3):27-28
    张志权,束文圣,廖文波等.豆科植物与矿业废弃地植被恢复[J].生态学杂志,2002,21(2):47-52
    张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究。博士论文,2005.5
    招国栋,吴超,伍衡山.含铜尾砂的浸出及其动力学研究[J].矿业研究与开发,2006,26(5):30-33
    郑世英.重金属污染对农田土壤生态的影响[J].聊城师院学报,2002,15(4):48-50
    中国环境监测总站编.美国土壤环境背景值调查研究[M].北京:1988.15
    周东美,王玉军,郝秀珍等.铜矿区重金属污染分异规律初步研究[J].农业环境保护,2002,21(3):225-227
    周连碧,代宏文,吴亚君等.胡家峪铜矿尾矿库复垦农作物种植研究[J]。采矿技术,2002,2(2):54-56
    邹献中,徐建民,赵安珍等.可变电荷土壤中铜离子的解吸[J].土壤学报,2004,41(1):68-73
    邹献中,徐建民,赵安珍等.离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J].土壤学报,2003,40(6):845-851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700