缺硼对柑橘生理生化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每隔一天用含0、2.5、5、10和25μmol/L硼的营养液浇盆栽(基质为砂)雪柑[Citrus sinensis(L.)Osbeck]实生苗,14周后调查缺硼对柑橘生长、根系形态结构、矿质营养、光合作用、光合酶、碳水化合物和活性氧代谢的影响。
     1缺硼对柑橘实生苗生长及营养元素含量的影响
     除0μmol/L处理外,其他处理的柑橘实生苗均生长正常,不显示任何缺硼症状,叶片B含量也处于适宜范围。基于此,本试验把0μmol/L处理称为缺硼处理,其他处理均称为不缺硼处理。缺硼处理后9周柑橘实生苗出现缺硼症状,初期表现为新梢顶端生长点枯死,幼叶出现水渍状黄斑,叶片卷曲:后期叶增厚黄化,叶脉肿大、破裂和栓化,叶畸形,表现出典型的缺硼症状。缺硼柑橘根尖膨大,表面凹凸不平,细胞、组织结构变形,龟裂严重。因为缺硼对地上部生长的影响比对根系生长的影响大,故缺硼实生苗有较大的根冠比。
     缺硼降低柑橘叶片B、K、Ca和P含量,但对根系K、Ca和P含量的影响较小。缺硼并不影响柑橘根、茎和叶Mg元素含量。因为缺硼降低柑橘叶片N含量,而对C含量影响不大,故缺硼叶片有较高的C/N比。
     2缺硼对柑橘叶片光合作用的影响缺硼叶片有较低的Chla、Chlb、Chl、Car含量和Chla/b比显著下降,较高的Car/Chl比;较低的光合速率、气孔导度和光合酶(Rubisco,GAPDH和叶绿体基质FBPase)活性,较高的胞间CO_2浓度;较高的葡萄糖、果糖和淀粉含量,较低的蔗糖含量。总之,缺硼下柑橘叶片光合作用可能受到已糖(葡萄糖、果糖)和淀粉过度积累引发的反馈调节。
     3缺硼对柑橘叶片活性氧代谢的影响
     缺硼下,柑橘片超氧阴离子和H_2O_2产生速率,单位叶面积表示的APX、MDAR、GR、POD和SOD活性及单位Chl表示的AsA和GSH含量均显著增加,而单位叶面积表示的DHAR和CAT活性显著下降。与不缺硼叶片相比,缺硼叶片有显著增加的MDA含量和电解质渗漏。总之,缺硼下虽然柑橘叶片抗氧化系统被上调,但并不足以保护叶片在强光下免遭光氧化伤害。
Citrus (Citrus sinensis (L.) Osbeck) seedlings grown in pots containing sand were fertigated for 14 weeks with nutrient solution at a B concentration of 0, 2.5, 5, 10, or 25μmol/L every other day. Effects of boron deficiency growth, root morphology and structure, mineral nutrition, photosynthesis, photosynthetic enzymes, carbohydrates, and active oxygen metabolism were investigated in this study.
     1 Effects of B deficiency on growth and contents of nutrient elements in citrus seedlings
     All growth was normal in appearance and did not differ very much among different treatments except that 0μmol/L B treated trees showed visible symptoms of B deficiency. Also, leaf B levels were in the normal range except for the plants without supplying B. Based on these results, plants without supplying B and those treated with 2, 5, 10, or 25μmol/L B every other day are considered as B-deficient plants and B-sufficient ones, respectively. Boron deficiency symptoms in the shoots firstly appeared at the apex and in the actively growing leaves 9 weeks after B treatment. Boron deficiency symptoms included dieback of terminal growth, yellow, water-soaked spots in young leaves and deformation of these leaves, thickening and yellowing of mature and aging leaves, enlargement, splitting, and corking of leaf veins. Boron deficiency symptoms in roots included enlargement of tips, deformation of cells and tissues, unevenness and crack of surfaces. Because leaf and stem dry weights decreased to a larger extent than root dry weight in response to B deficiency, root/shoot ratio was greater in B-deficient plants than in B-sufficient ones.
     Boron deficiency decreased B, K, Ca, and P contents of citrus leaves, but had less effect on K, Ca, and P contents of roots. Boron deficiency did not affect Mg content of citrus roots, stems, and leaves. Because B deficiency decreased N content of citrus leaves and had little effect on their C content, C/N ratio was higher in B-deficient leaves than in B-sufficient leaves.
     2 Effects of B deficiency on photosynthesis in citrus leaves
     Contents of Chl a, Chl b, Chl, and Car, and Chl a/b ratio were higher in B-deficient leaves than in B-sufficient ones, whereas Car/Chl ratio was higher in B-deficient leaves than in B-sufficient ones. Boron-deficient leaves had decreased CO_2 assimilation, stomatal conductance, and activities of photosynthetic enzymes (Rubisco, GAPDH, stromal FBPase), but increased intercellular CO_2 concentration compared with B-sufficient ones. Boron-deficient leaves had increased hexoses (glucose, fructose) and starch contents, but decreased sucrose content compared with B-sufficient ones. It is consluded that CO_2 assimilation may have been feedback-regulated by the excessive accumulation of hexoses (glucose, fructose) and starch in B-deficient leaves.
     3 Effects of B deficiency on active oxygen species metabolism in citrus leaves
     Boron-deficient leaves had increased superoxide anion and H_2O_2 profuction rates, APX, MDAR, GR, POD, and SOD activities expressed on a leaf basis, and AsA and GSH contents expressed on a leaf Chl, whereas leaf-area based activities of MDAR and CAT activities were lower in B-deficient leaves than in B-sufficient ones. Compared with B-sufficient leaves, B-deficient leaves had higher MDA content and electrolye leakage. In conclusion, although antioxidant systems are up-regulated in B-deficient citrus leaves, this up-regulation can not provide enough protection to B-deficient leaves against photooxidative damage under hight light.
引文
[1] SHORROCKS V M. The occurrence and correction of boron deficiency[J]. Plant Soil, 1997, 193: 121-148.
    [2] 耿明建,朱建华,吴礼树,等.硼对不同硼效率棉花品种苗期叶片膜脂过氧化和多胺含量的影响[J].植物营养与肥料学,2003,9:337-341.
    [3] DELL B, HUANG L. Physiological response of plants to low boron[J]. Plant Soil,1997, 193: 103-120.
    [4] 徐强,焦晓燕,王云中,等.硼对绿豆植株生长发育及矿质营养状况的影响[J].华北农学报,2004,19:89-92.
    [5] CAMACHO-CRISTOBAL J J, GONZALEZ-FONTES A. Boron deficiency cause a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants[J]. Planta, 1999, 209: 528-536.
    [6] DEAR BS, LIPSETT J. The effect of boron supply on the growth and seed production of subterranean clover (Trifolium subterraneum L.)[J]. Aust J Agri Res,1987, 38: 537-546.
    [7] DORDAS C, BROWN P H. Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures[J]. Plant Soil, 2005, 268: 293-301.
    [8] 王淑芬.硼对油菜生长发育及产量的影响[J].安徽农业科技,2003,131(2):318-319.
    [9] 朱建华,耿明建,曹享云,等.缺硼反应不同的棉花品种苗期对B、P、K、Ca、Mg的吸收和分配[J].华中农业大学学报,2001,20(2):134-137.
    [10] 黄益宗.植物对硼素不足的反应及其成因探讨[J].土壤与环境,2004,11(4):434-438.
    [11] ISHII T, MATSUNAGA T. Isolation and characterization of a boron-hamnogalacturonan-Ⅱ complex from cell walls of sugar beet pulp[J]. Carbohydr Res, 1996, 284: 1-9.
    [12] KANEKO S, ISHII T, MATSUNAGA T. A boron-rhamnoga-lacturonan-Ⅱ complex from bamboo shoot cell walls [J]. Phytoehemistry, 1997, 44: 243-248.
    [13] ROBERTSON G A, LOUGHMAN B C. Rubidium uptake and boron deficiency in Vicia faba [J]. J Exp Bot, 1973, 38:193-200.
    [14] CAKMAK I, KURZ H, MAARSCHNER H. Short-term effects of boron germanium and high light intensity on membrane permeability in boron deficient leaves but not in phosphorus-deficient leaves of sunflower [J]. Physiol Plant,1995, 95: 11-18.
    [15] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. San Diego: Academic Press, 1995, 379-396.
    [16] EL-SHINTINAWY F. Structural and functional damage caused by boron deficiency in sunflower leaves [J]. Photosynthetica, 1999, 36: 565-573.
    [17] GOLDBACH HE, BLASER-GRILL J, LINDERMAN N, et al. Influence of boron on net proton release and its relation to other metabolic process [A]. Current Topics in Plant Biochemistry and Physiology: Proceedings of the Plant Biochemistry and Physiology Symposium Held at the University of Missouri—Columbia, 1991, 10:195-220.
    [18] KASTORI R, PLESNICAR M, PANKOVIC D, et al. Photosynthesis, chlorophyll fluorescence and soluble carbohydrates in sunflower leaves as affected by boron deficiency. J Plant Nutr, 1995, 18: 1751-1763.
    [19] LIAKOPOULOS G, STAVRIANAKOU S, FILIPPOU M, et al. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations. Tree Physiol, 2005, 25: 57-165.
    [20] GARCIA-GONZALEZ M, MATEO P, BONILLA I. Effect of boron deficiency on photosynthesis and reductant sources and their relationship with nitrogenase activity in Anabaena PCC7119 [J]. Plant Physiol, 1990, 93:560-565.
    [21] NOPPAKOONWONG R N, BELL R W, DELL B, et al. An effect of shade on boron requirement for leaf blade elongation in black gram (Vigna mungo L.Hepper)[J]. Plant Soil, 1993, 155/156: 317-330.
    [22] SHARMA P N, RAMCHANDRA T. Water relations and photosynthesis in mustard plants subjected to boron deficiency [J]. Indian J Plant Physiol, 1990, 33:150-154.
    [23] 陆旺金,沈康,沈振国.硼素胁迫影响油菜~(14)CO_2同化及其产物运输的研究[J].作物研究,1992,6(2):33-36.
    [24] PLESNICAR M, KASTORI R, SAKAC Z, et al. Boron as limiting factor in photosynthesis and growth of sunflower plants in relation to phosphate supply[J]. Agroehimiea, 1997, 41(3-4): 144-154.
    [25] DUGGER W M. Boron in plant metabolism. In: Lauchli A, Bieleski RL eds. Encyclopedia of Plant Physiology (new series) [M], 1983, 15: 626-650.
    [26] Shelp BJ. Physiology and biochemistry of boron in plants[A]. In: Gupta UC ed. Boron and Its Role in Crop Production [D]. Boca Raton: CRC Press, 1993, 53-85.
    [27] CAMACHO-CRISTOBAL J J, LUNAR L, LAFONT F, et al. Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves[J]. J Plant Physiol, 2004, 161: 879-881.
    [28] ZHAO D, OOSTERHUIS, D M. Cotton carbon exchange, nonstructural carbohydrates, and boron distribution in tissues during development of boron deficiency [J]. Field Crops Res, 2002, 78: 75-87.
    [29] CHEN L-S, QI, Y-P, LIU X-H. Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves [J]. Ann Bot, 2005, 96: 35-41.
    [30] CHEN L-S, CHENG L. Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation [J]. J Exp Bot, 2003, 54:2165-2175.
    [31] ASADA K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J]. Annn Rev Plant Physiol Plant Mol Biol, 1999, 50: 601-639.
    [32] 吕成群,黄宝灵.低温下硼对巨尾桉叶片膜脂过氧化及体内保护系统的影响[J].热带亚热带植物学报,2003,11:217-222.
    [33] 刘鹏,杨玉爱.钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响[J].植物学报,2002,42:461-466.
    [34] 喻敏,陈跃进,萧洪东,等.硼钼对低温下草坪海滨雀稗活性氧代谢的影响[J].作物学报,2000,31:755-759.
    [35] 杨暹,陈晓燕,刘志才.硼钼营养对花椰菜花球产量及活性氧代谢的影响[J].园艺学报,2000.27:112-116.
    [36] 梁诗.硼对大白菜生长发育及若干生理生化指标的影响[J].亚热带植物科学,2002,31(3):19-22.
    [37] MOHAMED A A, SHAABAN M M. Nutrient stares and enzyme activity alteration in cucumber seedlings as a response to boron deficiency [J]. Acta Agri Hungariea, 2004, 52(1): 9-17
    [38] 牛义,张盛林.植物硼素营养研究的现状及展望[J].中国农学通报,2003,19(2):101-104.
    [39] 杨琼,刘武定,皮美美.不同硼浓度对棉花磷的吸收和分配利用的影响[J].植物生理学通讯,1995,31(6):424-426.
    [40] 刘鹏,杨玉爱.油菜在低硼胁迫下的生理反应研究进展[J].中国油料作物学报,1999,21:74-78.
    [41] MOUHTARIDOU G N, SOTIROPOULOS T E, DIMASSI K N, et al. Effects of boron growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM_(106) cultured in vitro [J]. Biol Plant, 2004, 48: 617-619.
    [42] 罗安程,周焱.“花而不实”油菜体内氮、钾、镁和钙关系的研究[J].土壤肥料,1995,2:39-41.
    [43] 田霄鸿,王朝辉,李生秀.氮钾锰硼的供应水平对莴笋植株累积矿质元素的影响[J].干旱地区农业研究,1999,17(2):53-58.
    [44] LOOMIS W D, DURST R W. Chemistry and biology of boron [J]. BIOFACTORS, 1992, 3: 229-339.
    [45] HASS A R C. Effect of boron on growth of citrus [J]. Calif Citrog,1929, 14: 355.
    [46] 庄伊美.柑橘营养与施肥[M].北京:中国农业出版社,1994:37-38.
    [47] 刘高新,邓平,郭碧云.金柚缺硼病的发生特点及防治技术[J].植保技术与推广,2003,23(10):26-27.
    [48] 刘特开,刘宇辉.沙田柚缺硼症状的诊断与矫治[J].广东农业科学,1995,1:25-26.
    [49] 吴正琴,甘霖.柑橘缺硼及矫正技术[J].农业科技通讯,1994,1:32-33.
    [50] 梁和,马国瑞,石伟勇,等.硼钙营养对不同品种柑橘糖代谢的影响[J].土壤通报,2002,33:377-340.
    [51] 陈志华.重视柑橘缺硼症的矫治[J].中国南方果树,2001,30(1):19-20.
    [52] 陈神禧,肖振林.福建硼的地球化学特征与红壤果园硼的管理[J].福建农牧业科技,2003,(4):25-26.
    [53] 黄育宗,黄坤洋.王官溪蜜柚缺硼症及其矫治技术[J].福建果树,1995,(4):30-31.
    [54] 黄钧如,黄立新.柑橘缺硼病发生加重原因和应对措施[J].中国植保导刊,2005,4:24-24,38.
    [55] 周家容,廖益,秦煊南.钙硼营养对柠檬幼苗光合生理及根系活力的影响[J].西南农业大学学报,1998,20:315-320.
    [56] 国家林业局.森林土壤分析方法(中华人民共和国林业行业标准).北京:中国标准出版社,1999,279-294.
    [57] 白宝璋,汤学军.植物生理学测试技术[M].北京:中国科学技术出版社,1993,26.
    [58] EATON S V. Effects of boron deficiency and excess on plants [J]. Plant Physiol, 1940, 15: 95-107.
    [59] STAVRIANAKOU S, LIAKOPOULOS G, KARABOURNIOTIS G. Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscose (Asteraceae) [J]. Environ Exp Bot, 2006, 56: 293-300.
    [60] ROSOLEM C A, COSTA A. Cotton growth and boron distribution in the plant as affected by a temporary deficiency of boron [J]. J Plant Nutr, 2000, 23:815-825.
    [61] KOUCHI H. AND KUMAZAWA K. Anatomical responses of roots tips to boron deficiency. Ⅱ. Effect of boron deficiency on cellular growth and development in toop tips [J]. Soil Sci Plant Nutr, 1975, 21: 137-150.
    [62] 宋世文,曹享云,耿明建,等.对缺硼反应不同的油菜品种根系生长特性研究[J].植物营养与肥料学报,2000,6:202-206.
    [63] HU H, BROWN P H. Localization of boron in cell walls of squash and tobacco and its association with pectin [J]. Plant Physiol, 1994, 105:681-689.
    [64] 普里亚尼施尼柯夫.普里亚尼施尼柯夫院士选集第一卷 农业化学 中国科学院土壤研 究所译[M].北京:高等教育出版社,1955,149-151.
    [65] 刘鹏.硼胁迫对植物的影响及硼与其它元素关系的研究进展[J].农业环境保护,2002,21:372-374.
    [66] 屈红征,王丽萍,吴国良.植物硼素营养研究进展[J].山西农业大学学报,2001,21:173-176.
    [67] LICHTENTHALER, H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes [J]. Methods Enzymol, 1987, 148: 350-382.
    [68] CHEN L-S, QI Y-P, SMITH B R, et al. Aluminum-induced decrease in CO_2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO_2 assimilation [J]. Tree Physiol, 2005, 25:317-324.
    [69] CHENG L, FUCHIGAMI L H. Rubisco activation state decreases with increasing nitrogen content in apple leaves [J]. J Exp Bot, 2000, 51:1687-1694.
    [70] CHEN L-S, CHENG L. CO_2 assimilation, carbohydrate metabolism, xanthophyll cycle, and the antioxidant system of 'Honeycrisp' apple leaves with zonal chlorosis [J].J Amer Soc Hort Sci, 2004, 129: 729-737.
    [71] CHEN L-S, LIN Q, NOSE A. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism(CAM)species, Ananas comosus, Kalanchoe daigremontiana and K.pinnata [J]. J Exp Bot, 2002, 53: 341-350.
    [72] CHEN L-S, QI Y-P, NOSE A. Diurnal changes in metabolite levels in the chlorenchyma and the water storage parenchyma of Ananas comosus leaves. Acta Phytophysinl Sin, 2001, 27: 253-260.
    [73] JONES MGK.OUTLAW WJ. LOWERY OH. Enzymic assay of 10~(-7) to 10~(-14) moles of sucrose in plant tissues [J]. Plant Physinl, 1977, 60: 379-383.
    [74] GOLDSCHMIDT E E, GOLOMB A. The carbohydrate balance of alternate bearing citrus trees and the significance of reserves for flowering and fruiting. J Amer Soc Hort Sci, 1982, 107: 206-208.
    [75] IGLESIAS D J, LLISO L, TADEO F R, et al. Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves [J]. Physiol Plant, 2002, 116: 563-572.
    [76] KHURANA N, CHATTERJEE C. Low sulfur alters boron metabolism of mustard [J]. J Plant Nutr, 2002, 25,679-687.
    [77] RAMCHANDRA T, BISHT S S, SHARMA P N. Effect of boron supply on the activity of certain hydrolytic enzymes in mustard [J]. Plant Physiol Bioehem (India), 1987, 14(1): 95-102.
    [78] HOFFMANN-BEMMING S, WILLMITZER L, FISAHN L. Analysis of growth, composition and thickness of the cell walls of transgenic tobacco plants expressing a yeast-derived invertase [J]. Protoplasma, 1997,200: 146-153.
    [79] MA H M .Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells [J]. Austr J Plant Physiol, 2000,27: 1021-1030.
    [80] ZHAO D, OOSTERHUIS D M. Cotton growth and physiological responses to boron deficiency [J]. J Plant Nutr, 2003,26: 855-867.
    [81] BOTTRILL D E, POSSINGHAM J V, KRIEDEMANN P E. The effect of nutrient deficiencies on photosynthesis and respiration in spinach [J]. Plant Soil, 1970, 32: 424-438.
    [82] KEUTGEN N, CHEN K, LENZ F. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO_2 [J]. J Plant Physiol, 1997, 150: 395-400.
    [83] MIEROWSKA A, KEUTGEN N, HUYSAMER M, et al. Photosynthetic acclimation of apple spur leaves to summer-pruning [J]. Sci Hort, 2002, 92: 9-27.
    [84] ARO E-M, MCCAFFERY S, ANDERSON J M. Photoinhibition and D, protein degradation in peas acclimated to different growth irradiances [J]. Plant Physiol,1993, 103: 835-843.
    [85] ANDERSON J.M., CHOW WS. Structural and functional dynamics of plant photosystem II [J]. Philosoph Transact Roy Soc London Series B, 2002, 357: 1421-1430.
    [86] KNOX J P, DODGE AD. Singlet oxygen and plants [J]. Phytochemistry, 1985, 24: 889-896.
    [87] YOUNG A, BRITTON C. Carotenoids and tress. In: Alscher T G, Cummings J R Eds., Stress Responses in Plants: Adaptation and Acclimation Mechanisms [M]. New York: Wiley-Liss, 1990,87-112.
    [88] CAVE G, TOLLEY L C, STRAIN B R. Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in Trifolium subteraneum leaves [J]. Physiol Plant, 1981, 51: 171-174.
    [89] GOLDSCHMIDT E E, HUBER S C. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars [J]. Plant Physiol, 1992, 99: 1443-1448.
    [90] GOLDSCHMIDT E E, KOCH K E. Citrus. In: Zaminski, B., Schaffer A A. (Eds.), Photoassimilate Distribution in Plants and Crops: Source-Sink Relation [M]. New York: Marcel Dekker, 1996, 797-823.
    [91] YAMANISHI O K, NAKAJIMA Y, HASEGAWA K. Effect of trunk strangulation degrees in late season on return bloom, fruit quality and yield of pumelo trees grown in a plastic house [J]. J Jpn Soc Hort Sci, 1995, 64: 31-40.
    [92] FOYER C H. The basis for source-sink interaction in leaves [J]. Plant Physiol Biochem, 1987, 25: 946-957.
    [93] JEANNETTE E, REYSS A., GREGORY N, et al. Carbohydrate metabolism in a heat-girdled maize source leaf [J]. Plant Cell Environ, 2000, 23: 61-69.
    [94] JANG J C, SHEEN J. Sugar sensing in higher plants [J]. Plant Cell, 1994, 6: 1665-1679.
    [95] JANG J C, LEON P, ZHOU L, et al. Hexokinase as a sugar sensor in higher plants [J]. Plant Cell, 1997, 9: 5-19.
    [96] KIM J Y, MAHE A, BRANGEON J, et al. A maize vacuolar invertase, Ivr2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression [J]. Plant Physiol, 2000, 124: 71-84.
    [97] KRAPP A, HOFMANN B, SCHAFER C, et al. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the 'sink' regulation of photosynthesis [J]. Plant J, 1993, 3:817-828.
    [98] MOORE B, ZHOU L, ROLLAND F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling [J]. Science, 2003, 300: 332-336.
    [99] SHEEN J. Metabolic repression of transcription in higher plants [J]. Plant Cell, 1990, 2: 1027-1038.
    [100] VON SCHAEWEN A. Expression of a yeast-derived invertase in the cell wall of tobacco and arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants [J]. EMBO J, 1990, 9: 3033-3044.
    [101] HERBERS K, MEUWLY P, FROMMER W B, et al. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway [J]. Plant Cell, 1996, 8: 793-803.
    [102] HODGES D M, DELONG J M, FORNEY C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds [J]. Planta, 1999, 207:604-611.
    [103] BRADFORD M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    [104] GIANNOPPOLITIS C N, RICE SK. Superoxide dimutase: occurrence in higher plants [J]. Plant Physiol, 1977, 59: 309-314.
    [105] 华东师范大学生物系主编.植物生理学实验指导[M].北京:人民教育出版社, 143-144.
    [106] CAKMAK I, ROMHELD V. Boron deficiency induced impairments of cellular functions in plant [J]. Plant Soil, 1997, 193: 71-83.
    [107] FOYER CH, NOCTOR G. Oxygen processing in photosynthesis: regulation and signaling [J]. New Phytol, 2000, 146: 359-388.
    [108] WILLEKENS H, INZE D, VAN MONTAGU M, et al. Catalase in plants [J]. Mol Breeding 1995, 1: 207-228.
    [109] FEIERABEND J, SCHAAN C, HERTWIG B. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem Ⅱ [J]. Plant Physiol, 1992, 100: 1554-1561.
    [110] STREB P, FEIERABEND J. Oxidative stress responses accompanying photoinactivation of catalase in NaCl-treated rye leaves [J]. Bot Acta, 1996, 109:125-132.
    [111] STREB P, JOSSE E-V, GALLOUET E, et al. Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis [J]. Plant Cell Environ, 1999, 28:1123-1136.
    [112] SCHMIDT M, DEHNE S, FEIERABEND J. Post-transcriptional mechanisms control catalase synthesis during its light-induced remover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA [J]. Plant J, 2002, 31: 601-613.
    [113] SHANG W, FEIERABEND J. Dependence of catalase photoinactivation in rye leaves on light intensity and quality and characterization of a chloroplast-mediated inactivation in red light [J]. Photosyn Res, 1999, 59: 201-213.
    [114] DUBE B K, SINHA P, CHATTRJEE C. Boron stress affect metabolism and seed quality of sunflower[J]. Trop Agri, 2000, 77: 89-92.
    [115] AZEVEDO R A, ALAS R M, SMITH R J, et al. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley [J]. Physiol Plant, 1998, 104: 280-292.
    [116] PALATNIK JF, VALLE EM, FEDERICO M L, et al. Status of antioxidant metabolites and enzymes in a catalase-deficient mutant of barley (Hordeum vulgare L.) [J]. Plant Sci, 2002, 162: 363-371.
    [117] WILLEKENS H, CHAMNONGPOL S, DAVEY M\, et al. Catalase is a sink for H2O2 and is indispensable for stress defense in C_3 plants [J]. EMBO J, 1997, 16:4806-4816.
    [118] FARIA T, GARCIA-PLAZAOLA J I, ABADIAA, et al. Diurnal changers in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer [J].Tree Physiol, 1996, 16: 115-123.
    [119] AMOR N B, JIMENEZB A, LUNDQVISTB M, et al. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritime [J]. Physiol Plant, 2006, 126: 446-457.
    [120] BADIANI M, DANNIBALE A, PAOLACCI A R, et al. The antioxidant status of soybean(Glycine max)leaves grown under natural CO_2 enrichment in the field [J]. Austr J Plant Physiol, 1993, 20: 275-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700