镧钴钙钛矿催化剂制备及去除氮氧化物和碳烟性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用溶液燃烧法和柠檬酸络合法制备了系列镧钴钙钛矿催化剂,使用XRD、FT-IR、H2-TPR、XPS、BET、SEM-EDS及TEM等多种分析手段对催化剂进行了表征,并利用程序升温反应技术,在模拟柴油机尾气的情况下对同时催化去除氮氧化物(NOx)和碳烟的反应进行了实验研究。
     首先,采用溶液燃烧法合成了La1-xKxCoO3(x = 0~0.5)镧钴钙钛矿催化剂,所合成的催化剂均属于菱方晶系钙钛矿晶型,样品表面具有十分丰富的类似蜂窝状的孔道结构。K+部分取代La3+,催化剂表面氧空位数目增加,同时形成Co3+-Co4+共存体系,从而使得催化剂的性能得到显著改善。La0.7K0.3CoO3催化剂的碳烟起燃温度为262°C,NO向N2的最大转化率为27.5%。
     其次,采用改进的溶液燃烧法成功地制备了系列LaCo1-xPdxO3(x = 0~0.03)钙钛矿催化剂。研究发现,Pd以Pd3+或Pd4+价态存在于钙钛矿晶格中。添加贵金属Pd能够显著提高LaCo1-xPdxO3催化剂同时去除NOx和碳烟的活性。其中LaCo0.97Pd0.03O3催化剂碳烟起燃温度为265°C,NO向N2的最大转化率为32.8%。
     再次,对La1-xMexCo1-yPdyO3(Me=K、Sr、Ce x = 0,0.2, y=0,0.05)系列新型复合金属氧化物催化剂研究结果表明,用Sr或K取代LaCoO3中的La,催化剂的性能得到改善,而Ce取代不能提高催化剂的活性;进一步用贵金属Pd取代La1-xMexCoO3中的Co ,催化剂的性能得到进一步的提高。La0.8Sr0.2Co0.95Pd0.05O3呈现最佳的催化活性,其碳烟的起燃温度为258°C,而NO向N2的最大转化率达到31.6%。
     最后,对三种活性较好催化剂La0.8Sr0.2Co0.95Pd0.05O3、La0.8K0.2Co0.95Pd0.05O3及La0.8K0.2CoO3,进一步考察了不同反应条件的影响,并结合前人研究结果分析了反应机理。结果表明碳颗粒的存在促进了NO的催化还原,同时NO也对碳颗粒燃烧有一定影响。O2浓度的增加促进了碳烟的燃烧,三种催化剂碳烟起燃温度都随着O2浓度增加而下降,La0.8Sr0.2Co0.95Pd0.05O3催化剂的N2选择性明显增加。三种催化剂的碳烟起燃温度受气体总流量影响较小,在流速较宽范围内25mL/min~50mL/min,La0.8Sr0.2Co0.95Pd0.05O3都表现出对NO催化分解较高活性。
A number of catalysts based on the lanthanum cobaltite perovskite type oxides were prepared by solution combustion synthesis or citric acid complexation. The catalysts were characterized using XRD, FT-IR, H2-TPR, XPS, BET, SEM-EDS and TEM. The catalytic activities simultaneously removed soot and NOx were evaluated using a technique of temperature programmed reaction (TPR) under the modeled diesel engine exhaust circumstance.
     Firstly, the La1-xKxCoO3 (x=0~0.5) perovskite-type oxides were prepared by solution combustion synthesis. The results showed that all prepared catalysts possessed ABO3 perovskite-type structures with porous sponge-like structure, corresponding to a rhombohedral system. For the La1-xKxCoO3 catalysts, since the partial substitution of K for La at A-site resulted in the increase of oxygen vacancy and Co3+-Co4+ system, it enhanced the catalytic performance. La0.7K0.3CoO3 catalyst with the highest catalytic activity was observed, and the maximum NO conversion into N2 and the ignition temperature of soot were 27.5%and 262°C, respectively.
     Secondly, a number of nan-perovskite catalysts LaCo1-xPdxO3(x=0~0.03) were prepared via solution combustion synthesis. The noble metal Pd in the form of Pd3+ or Pd4+ was successfully deposited onto the LaCoO3 perovskite lattices, leading to improve the catalytic performance significantly . The maximum NO conversion into N2 and the temperature of were 32.8% and 265°C, respectively.
     Thirdly, the novel La1-xMexCo1-yPdyO3(Me=K, Sr, Ce x = 0,0.2 y=0,0.05) catalysts with ABO3-type structure were prepared using the citric acid complexation. For the LaCoO3 catalyst, the partial substitution of K or Sr at A-site enhancing the catalytic performance was found, while no improve the catalytic activity from the Ce-substituted catalysts was observed. Moreover, the catalytic activities of all the Pd-substituted catalyst further increased and La0.8Sr0.2Co0.95Pd0.05O3 showed the highest activity. The maximum conversion of nitrogen oxide to N2 and the ignition temperature were 31.6% and 258°C, respectively.
     Finally, Effects of reaction conditions on catalytic performance, including concentrations of O2 and total flow rate, were investigated over three catalysts. the mechanisms were proposed based on both our results and other work. The carbon particulate plays an important role in the reduction of NO, and NO, it also affected the oxidation of carbon particulate. The ignition temperature decreased with increasing O2 concentration. The maximum NO conversion into N2 catalyst increased in range from 1% to 5% using a La0.8Sr0.2Co0.95Pd0.05O3 catalyst. The total gas flow rate did less influence on the ignition temperature of soot. The La0.8Sr0.2Co0.95Pd0.05O3 catalyst showed better performance over the total gas flow rate range of 25 mL/min~50 mL/min.
引文
[1]裴梅香,黄震,上官文峰,柴油机排放催化还原技术研究进展,工业催化,2003,11(10):33~38.
    [2]刘光辉,催化过滤器同时去除柴油机微粒和氮氧化物的基础研究,[博士学位论文],上海交通大学,2002.
    [3]刘菊荣,宋绍富,汽车尾气净化技术及催化剂的发展,石油化工高等学校学报,2004,17(1):31~36.
    [4] Z. Liu, S.I. Woo, Recent advances in catalytic DeNOX science and technology, Catal. Rev., 2006, 48: 43~89.
    [5] S.Fischer, K.Rusch, B.Amon, Technology to Meet Future Diesel Emission Regulations in Europe, Asian Vehicle Emission Control Conference, Beijing, China, 2004(4): 27~29.
    [6]康新婷,汤慧萍,张健等,汽车尾气净化用贵金属催化剂研究进展,稀有金属材料与工程,2006,35(2):443~447.
    [7] J. Leyrer et al, Design Aspects of Lean NOx Catalysts for Gasoline and Diesel Applications ,SAE Paper 952495,1995.
    [8] A Fritz, V. Pitchon., The current status of research on automotive lean NOx catalysis, Appl. Catal. B: Environ, 1997, 13 (1): 1~25.
    [9] V.I. Parvulescu, P. Grange, B. Delmon, Catalytic removal of NO, Catal. Today, 1998, 46 (4): 233~316.
    [10] R. Burch, J.P. Breen , F.C. Meunier, A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts, Appl. Catal. B: Environ, 2002, 39 (4): 283~303
    [11]刘光辉,黄震,上官文峰,柴油机污染物排放后处理技术的研究进展,上海环境科学,2001,20(8):362~364.
    [12]康守方,稀燃气氛下NOx储存材料和氧化催化剂的研究,[博士学位论文],中国科学院生态环境研究中心,2005.
    [13] A. Fritz, V. Pitchon, The current state of research on automotive lean NOx catalysis, Appl.Catal.B: Environ, 1997(13): 1~25.
    [14] E. Fridell, A. Amberntsson, L. Olsson, et al, Platinum oxidation and sulfur deactivation in NOx storage catalysts, Topics Catal., 2004, 30(31): 143~146.
    [15] S. Matsumoto, Y. Ikeda, H. Suzuki, et al, NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning, Appl. Catal. B: Environ, 2000, 25(2–3): 115~124.
    [16] Dawody, M. Skoglundh, E. Fridell, The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts. J. Mole. Catal. A: Chem., 2004, 209(1–2): 215~225.
    [17] S. Matsumoto, Recent advances in automobile exhaust catalysts, Catal.Today., 2004, 90(3–4): 183~190.
    [18] G.W. Graham, H.W. Jen, W. Chun, et al, Coarsening of Pt particles in a model NOx trap, Catal. Lett., 2004, 93(3–4):129~134.
    [19] D.Uy, A.E. O’Neill, J. Li, et al, UV and visible raman study of thermal deactivation in a NOx storage catalyst. Catal. Lett., 2004, 95(3–4): 191~201.
    [20] K.Yoshida, S. Makino, S. Sumiya, et al, Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust, SAE Paper 892046, 1989.
    [21] Y Teraoka, K.Nakano, S.Kagawa, W.F.Shangguan, Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-typeoxides, Appl.Catal.B: Environ, 1995,5(3):181~185.
    [22] W.F. Shangguan, Y. Teraoka, S. Kagawa, Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB204 spinel-type oxides, Appl.Catal.B: Environ, 1996, 8(2): 217~227.
    [23] W. F. Shangguan, Y. Teraoka, S. Kagawa, Kinetics of soot-O2, soot-NO and soot-O2-NO reaction over spinel-type CuFe204 catalyst, Appl.Catal.B: Environ, 1997, 12(2-3): 237~247.
    [24] S.S. Hong, G.D. Lee, Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts, Catal.Today., 2000, 63(2–4): 397~404.
    [25] S. Kureti,W. Weisweiler, K. Hizbullah, Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas, Appl. Catal. B: Environ, 2003, 43(3): 281~291.
    [26] S. Xiao, K. Ma, X. Tang, et al, The lean catalytic reduction of nitric oxide by solid carbonaceous materials, Appl. Catal. B: Environ, 2001, 32(1–2): 107~122
    [27] D. Fino, P. Fino, G. Saracco, et al, Studies on kinetics and reactions mechanism of La2-xKxCu1-yVyO4 layered perovskites for the combined removal of diesel particulate and NOx, Appl. Catal. B: Environ, 2003, 43(3): 243~259.
    [28]裴梅香,黄震,上官文峰,柴油机排气微粒过滤催化处理技术及进展,环境污染治理技术与设备,2004,5(8)8~13.
    [29] J.O. Uchisa, et al, Effect of feed gas composition on the rate of carbon oxidation with Pt/SiO2 and the oxidation mechanism, Appl. Catal.B: Environ, 1999, 21: 9~17.
    [30] J.O. Uchisawa,W. Shudong, Improvement of Pt catalyst for soot oxidation using mixed oxide as a support , Appl. Catal.B: Environ, 2003, 44: 207~215.
    [31]刘艳丽,付名利,叶代启等,柴油车排气碳微粒催化燃烧研究新进展,工业催化,2004,12:30~34.
    [32] J.P.A. Nefft, M. Makkee, J.Moulijn, Catalytic oxidation of carbon black.Ⅰ. Activity of catalysts and classification of oxidation profiles. Fuel ,1998 , 77 (3): 111~119
    [33] M. Nacken, S. Heidenreich, M. Hackel, Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation. Appl. Catal. B: Environ , 2007, 70: 370~376.
    [34] J.P.A. Neeft. Catalysts for the oxidation of soot from diesel exhaust gases, Appl. Catal., 1997, 12: 21~31.
    [35] G. Neri, L. Bonaccorsi, A. Donato, Catalytic combustion of diesel soot over metal oxide catalysts, Appl. Catal., 1997, 11: 217~231.
    [36] W. Shaobin, B.S. Haynes, Catalytic combustion of soot on metal oxides and their supported metal chlorides, Catal. Commun., 2003, 4: 591~596.
    [37] C.A. Querin, L.M. Cornaglia, Catalytic combustion of diesel soot on Co, K/MgO catalysts: Effect of the potassium loading on activity and stability, Appl. Catal., 1999, 20: 165~177.
    [38] F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2, A'Ak-1BkO3k+1 and AmBm-1O3m , Prog. Solid. State. Ch., 2008, 36(4): 253~387.
    [39] M.A. Pena, J.L.G. Fierro, Chemical Structures and Performance of Perovskite Oxides, Chem. Rev., 2001, 101: 1981~2017.
    [40] H. Tanaka, M. Misono, Advances in designing perovskite catalysts, Curr. Opin. Solid. State. Mater. Sci., 2001, 5: 381~387.
    [41]周克斌,含Pd钙钛矿型复合氧化物催化剂结构与催化性能的研究,[博士学位论文],中国科学院研究生院,2003.
    [42]李丽,汽车尾气净化催化剂铁基稀土钙钛矿的结构和性能研究,[博士学位论文],哈尔滨工业大学,2004.
    [43] H. Wang, Z. Zhao, Nanometric La1-xKxMnO3 perovskite-type oxides—highlyactive catalysts for the combustion of diesel soot particle under loose contact conditions, Catal. Lett., 2005, 102(3-4): 251~256.
    [44] F. Sriti, A. Maignan, C. Martin, et al, Inflience of Fe-site sustitutions upon intragrain and intergrain magnetoresistance in the souble-perovskite Ba2FeMoO6, Chem. Mater., 2001, 13: 1746~1751.
    [45] M.M. Natile, E. Ugel, C. Maccato, et al, LaCoO3: Effect of synthesis conditions on properties and reactivity, Appl. Catal. B: Environ, 2007, 72: 351~362.
    [46] R. Ran, X. Wu, D. Weng, Effect of complexing species in a sol–gel synthesis on the physicochemical properties of La0.7Sr0.3Mn0.7Cu0.3O3+λcatalyst, J. Alloy. Compd., 2006, 414: 169~174.
    [47] S. Royer, F. Berube, S. Kaliaguine, Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3, Appl. Catal. A: Gen, 2005, 282: 273~284.
    [48] A. Civera, M. Pavese, G. Saracco, et al, Combustion synthesis of perovskite-type catalysts for natural gas combustion, Catal.Today., 2003, 83: 199~211
    [49] D. Berger, C. Matei, F. Papa, et al, Pure and doped lanthanum cobaltites obtained by combustion method, Prog. Solid. State. Ch., 2007, 35: 183~191.
    [50] L. Armelao, G. Bandoli, D. Barreca, et al, Synthesis and characterization of nanophasic LaCoO3 powders, Surf. Interface. Anal., 2002, 34: 112~115.
    [51] S.H. Yin, D.H. Chen, W. Tang, Combustion synthesis and luminescent roperties of CaTiO3: Pr, Al persistent phosphors, J. Alloy. Compd., 2007, 441: 327~331.
    [52] J. Kirchnerova, D. Klvana, J. Vaillancourt, et al, Evaluation of some cobalt and nickel-based perovskites prepared by freeze-drying as combustion catalysts, Catal. Lett., 1993, 21: 77~87.
    [53] M. Dhakad S.S. Rayalu, R.Kumar, et al, Low cost ceria promoted perovskite type catalysts for diesel soot oxidation, Catal. Lett., 2008, 121:137~143.
    [54]黄仲涛,工业催化剂手册,化学工业出版社,2004,143~144.
    [55]冉锐,吴晓东,翁端,稀土钙钛矿催化剂制备方法的研究进展,稀土,2004,25(5):46~50.
    [56] N. Li, A.Boréave, J-P.Deloume, et al, Catalytic combustion of toluene over a Sr and Fe substituted LaCoO3 perovskite, Solid. State. Ionics., 2008, 179: 1396~1400.
    [57] S.M.de Lima, M.A. Pen?a, J.L.G. Fierro, La1-xCaxNiO3 perovskite oxides: characterization and catalytic reactivity in dry reforming of methane, Catal. Lett., 2008, 124: 195~203.
    [58] N.A. Merino, B.P. Barbero, P. Grange, La1?xCaxCoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane, J. Catal., 2005, 231: 232~244.
    [59] N.A. Merino,B.P. Barbero,P. Ruiz, Synthesis, characterisation, catalytic activity and structural stability of LaCo1?yFeyO3±λperovskite catalysts for combustionof ethanol and propane, J. Catal., 2006, 240: 245~257.
    [60]李汶霞,殷声,低温燃烧合成陶瓷微粉,硅酸盐学报,1999,1:71~76.
    [61] K. Prabhakaran, J. Joseph, N.M. Gokhale, et al, Sucrose combustion synthesis of LaxSr1-xMnO3 (x≤0.2) powders, Ceramics International, 2005, 31: 327~331.
    [62]刘伟,罗来涛,闵雯雯,有机燃料与氧化剂的化学计量比对La0.8Sr0.2CoO3,催化剂性能的影响,石油化工,2007,36(11):1093~1098.
    [63] B.M. Nagabhushana, R.P.S. Chakradhar,K.P. Rameshb, Combustion synthesis, characterization and metal–insulator transition studies of nanocrystalline La1?xCaxMnO3 (0.0≤x≤0.5), Mater. Chem. Phys., 2007, 102: 47~52.
    [64] D. Bergera, V. Fruthc, I. Jitarua, et al, Synthesis and characterisation of La1-xSrxCoO3 with large surface area, Mater. Lett. 2004, 58: 2418~2422.
    [65] P. Ciambelli, S. Cimino, L. Lisi, et al, La, Ca and Fe oxide perovskites: preparation, characterization and catalytic properties for methane combustion, Appl. Catal. B: Environ, 2001, 33: 193~203.
    [66] X. Wu, L. Xu, D. Weng, The NO selective reduction on theLa1?xSrxMnO3 catalysts, Catal. Today., 2004, 90: 199~206.
    [67] A.L. Sauvet, J. Guindet, J. Fouletier, La0.8Sr0.2Cr0.95Ru0.05 (LSCRu) as a New Anode Material for SOFC using natural gas, Ionics., 1999, 5: 150~156.
    [68] Q. Wang, Y. Yuan, M. Han, et al, Synthesis and characterization of Ba0.5Sr0.5 Co0.8Fe0.2O3?σ, Rare. Metals., 2009, 1: 40~42
    [69] S. Canulescu, T. Lippert, A. Wokaun, Preparation of epitaxial La0.6Ca0.4Mn1–x FexO3 (x = 0~0.2) thin films: variation of the oxygen content., Prog. Solid State Chem., 2007, 35: 241~248.
    [70] J. Bera, S.K. Rout, Synthesis of (Ba1?xSrx)(Ti0.5Zr0.5)O3 ceramics and effect of Sr content on room temperature dielectric properties, J. Electroceram., 2007, 18: 33~37
    [71] X. Peng, H. Lin, W. Shangguan, et al, A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot, Catal. Commun., 2007, 8: 157~161.
    [72] X. Peng, H. Lin, W. Shangguan, et al Physicochemical and catalytic properties ofLa0.8K0.2CuxMn1-xO3 for simultaneous removal of NOx and soot: effect of Cu substitution amount and calcination Ttemperature, Ind. Eng. Chem. Res. 2006, 45: 8822~8828.
    [73] X. Wu, R. Ran, D. Weng, NO2-aided soot oxidation on LaMn0.7Ni0.3O3 Perovkite-type Catalyst, Catal. Lett., DOI 10.1007/s10562-009-9917-y.
    [74] H. Tanaka, M. Uenishi, M. Taniguchi, et al, The intelligent catalyst having the self-regenerative function of Pd,Rh and Pt for automotive emissions control Catal. Today., 2006, 117: 321~328.
    [75] H. Tanaka, An intelligent catalyst: the self-regenerative palladium–perovskite catalyst for automotive emissions control, Catal. Surv. Asia. 2005, 5: 63~73.
    [76] P. Dinka, A.S.Mukasyan, Perovskite catalysts for the auto-reforming of sulfur containing fuels, J. Power. Sources, 2007, 167: 472~481.
    [77] L. Giebeler, D. Kie?ling, G. Wendt, LaMnO3 perovskite supported noble metal catalysts for the total oxidation of methane, Chem. Eng. Technol., 2007, 30: 889~894.
    [78] W.F. Libby, Promising catalyst for auto exhaust, Sicence, 1971, 171(3970): 499~500.
    [79] R.J.H. Voorhoeve, J.P. Remeika, P.E. Freeland, Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust, Sicence, 1972, 177(4046): 353~354.
    [80]彭小圣,林赫,上官文峰等,煅烧温度对钙钛矿复合金属氧化物的结构及其同时催化去除NO和碳烟的影响,功能材料,2006,10:1677~1680.
    [81]孙志强,王虹,La1-xSrCo0.5Mn0.5O3催化剂同时去除柴油机碳颗粒和NOx的性能,石油化工高等学校学报,2007,1:35~38.
    [82]刘光辉,黄震,上官文峰等,同时催化去除柴油机微粒和NOx的试验研究,内燃机学报,2003,1:40~44.
    [83] B. Zhao, R. Wang, X. Yang, Simultaneous catalytic removal of NOx and diesel soot particulatesover La1-xCexNiO3 perovskite oxide catalysts, Catal. Commun., 2009, 10: 1029~1033.
    [84] S.S. Hong, G.D. Lee, Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts, Catal. Today ., 2000, 63: 397~404.
    [85] J. Liu, Z. Zhao, C. Xu, et al , Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts, Appl. Catal.B:Environ., 2008, 78: 61~72.
    [86] D. Fino, N. Russo, E. Cauda, et al, La–Li–Cr perovskite catalysts for dieselparticulate combustion, Catal. Today., 2006, 114: 31~39
    [87] J. Liu, Z. Zhao, C. Xu, et al, Simultaneous removal of NOx and diesel soot particulates over nanometric La2-xKxCuO4 complex oxide catalysts, Catal. Today., 2007, 119: 267~272
    [88] X. Peng, H. Lin, W. Shangguan, et al, Surface properties and catalytic performance of La0.8K0.2CuxMn1–xO3 for simultaneous removal of NOx and soot,Chem. Eng. Technol., 2007, 30: 99~104.
    [89] H. Wang, Z. Zhao, P. Liang, et al, Highly active La1-xKxCoO3 perovskite-type complex oxidecatalysts for the simultaneous removal of diesel soot and nitrogen oxides under loose contact conditions, Cata. Lett., 2008, 124: 91~99. [ 90 ] L. Zhu, X. Wang, C. Liang, Catalytic combustion of diesel soot over K2NiF4-type oxides La2-xKxCuO4, J. Rare. Earth, 2008, 2: 254~257.
    [91]黄齐飞,宋崇林,范国梁,钙钛矿催化剂La1-xKxCoO3-λ的表征特性及对柴油机尾气中NOx催化性能的研究,燃烧科学与技术,2006,5:413~417.
    [92] M. Couzi, P.V. Huong, Spectres infrarouge et Raman des perovskites, Ann. Chim., 1974, 9: 19-29.
    [93] M. Crespin, W.K. Hall, The surface chemistry of some perovskite oxides, J. Catal., 1981, 69: 359~370.
    [94] L.G. Fierro, M.A. Pena, L.G. Tejuca, An XPS and reduction study of PrCo0.3, J. Mater. Sci., 1988, 23 :1018~1023.
    [95]郝茂荣,刘源,崔秀兰,钙钛矿型LaCoO3 -δ和La1 - xSrxCoO3 -δ纳米粒子的XPS表征,燃料化学学报,1999,4:309~312.
    [96] S. Rousseau, S. Loridant, P.Delichere, et al, La1-xSrxCo1-yFeyO3 perovskites prepared by sol–gel method: Characterization and relationships with catalytic properties for total oxidation of toluene Appl. Catal. B:Environ., 2009, 88(3-4): 438~447.
    [97]朱玲,王学中,梁存珍,La2-xKxCuO4类钙钛矿复合氧化物对柴油车排放碳颗粒物催化燃烧性能的研究,中国稀土学报,2006,5:528~533.
    [98]翁玉攀,李庆水,固体催化剂,化学工业出版社,1983,54~57.
    [99]杨向光,吴越,类钙钛石型复合氧化物——一种富有应用前景的功能材料化学通报,1997,3:24~29.
    [100] H. Tanaka, I. Tan, M. Uenishi, et al, LaFePdO3 perovskite automotive catalyst having a self-regenerative function, J. Alloy. Compd., 2006, 408–412: 1071~1077.
    [101]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS),国防工业出版社,1992,75~77.
    [102] H. Tanaka, I. Tana, M. Uenishi, et al, Regeneration of palladium subsequent to solid solution and segregation in a perovskite catalyst: an intelligent catalyst, Top. Catal., 2001, 16-17: 63~70.
    [103] Y.Teraoka, H. Nii, S.Kagawa, et a1, Influence of the simultaneous substitution of Cu and Ru inthe perovskite-type (La,Sr)MO3 (M=A1,Mn,Fe,Co) on the catalytic activity for CO oxidation and CO-NO reactions, Appl. Catal. A: Gen.,2000, 194-195(1):35~41.
    [104] J.L. Hueso, A. Caballero, M. Oca?aa,et al, Reactivity of lanthanum substituted cobaltites toward carbon particles, J. Catal., 2008, 257: 334~344.
    [105] T. Hirano, T. Tosho, T. Watanabe, et al, Self-propagating high-temperature synthesis with post-heat treatment of La1?xSrxFeO3 (x = 0~1) perovskite as catalyst for soot combustion, J. Alloy. Compd., 2009, 470: 245~249.
    [106] H. Huang, Y. Liu, W. Tang, et al, Catalytic activity of nanometer La1-xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion, Catal. Commun., 2008, 9: 55~59.
    [107]崔梅生,李明来,张顺来等,钙钛矿催化材料La1-xCexCoO3+δ的制备、表征及甲烷燃烧催化性质,中国有色金属学报,2004,9:1580~1584.
    [108] W.D. Yang, Y.H. Chang, S.H. Huang, Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process, J. Eur. Ceram. Soc., 2005, 25: 3611~3618.
    [109] S. Li, B. Bergmana, Z. Zhao, Synthesis of La0.9Sr0.1Al0.85Mg0.1Co0.05O2.875 using a polymeric method, J. Eu. Ceram. Soc., 2009, 29: 1133~1138.
    [110] H.T. Zhang, X.H. Chen, Size-dependent X-ray photoelectron spectroscopy and complex magnetic properties of CoMn2O4 spinel nanocrystals, Nanotechnology, 2006, 17: 1384~1390.
    [111] J.C. Lupin, D. Gonbeau, H. B. Moudden, et al, XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation, Thin Solid Films, 2001, 384: 23~32.
    [112] J.P. Dacquin, C. Dujardin, P. Granger, Surface reconstruction of supported Pd on LaCoO3: Consequences on the catalytic properties in the decomposition of N2O, J. Catal., 2008, 253: 37~49.
    [113] E. Tzimpilis, N. Moschoudis, M. Stoukides, et al, Preparation, active phase composition and Pd content of perovskite-type oxides, Appl. Catal. B: Environ., 2008, 84: 607~615..
    [114]. J.L. Dubois, M. Bisiaux, H. Mimoun, et al, X-Ray Fhotoelectron SpectroscopicStudies of Lanthanum Oxide Based Oxidative Coupling of Methane Catalysts, Chem. Lett., 1990, 6: 967~970.
    [115] P.A. van der Heide, Systematic X-ray photoelectron spectroscopic study of La1-xSrx-based perovskite-type oxides, Surf. Interface Anal., 2002, 33: 414~425.
    [116] A.Dauscher, L. Hilaire,F. LeNormand ,F. Muller, et al, Characterization by XPS and XAS of supported Pt/TiO2-CeO2 catalysts, Surf. Interface Anal., 1990, 16(1-12): 341~346.
    [117] R.P. Vasquez, X-ray photoelectron spectroscopy study of Sr and Ba compounds, J. Electron Spectrosc. Relat. Phemon., 1991, 56: 217~240.
    [118]林赫,富氧环境中氮氧化物和碳烟同时催化去除的研究,[博士后研究论文],上海交通大学,2004.
    [119] B. Levasseur, S. Kaliaguine,Effects of iron and cerium in La1-yCeyCo1-xFexO3 perovskites as catalysts,for VOC oxidation, Appl. Catal. B: Environ., 2009, 88(3-4): 305~314.
    [120] G.C. Mondragón Rodriguez, R. Ochrombel, B. Saruhan,Meta-stability and microstructure of the LaFe0.65Co0.3Pd0.05O3 perovskite compound prepared by a modified citrate route, J. Eu. Ceram. Soc., 2008, 28: 2611~2616.
    [121] S.S. Hong, J.W. Park, D.Y. Jung, et al, Catalytic combustion of soot particulate over perovskite-type oxides,J. Korean Ind. Eng. Chem.,1998, 9(6): 803~810.
    [122] X. Chu, L.D. Schmidt, Intrinsic rates of nitrogen oxide (NOx)-carbon reactions, Ind. Eng. Chem. Res., 1993, 32(7): 1359~1366.
    [123]陈广新,余林,林永强等,La—Sr—Fe—Co系钙钛矿型汽车尾气净化催化剂的性能研究,分子催化,2005,4:261~265.
    [124]彭小圣,催化与高频放电藕合催化同时去除氮氧化物和碳烟,[博士学位论文],上海交通大学,2006.
    [125] E.E. Iojoiu, B. Bassou, N. Guilhaume, et al, High-throughput approach to the catalytic combustion of diesel soot, Catal. Today., 2008, 137: 103~109.
    [126] N. Russo, S. Furfori, D. Fino, Lanthanum cobaltite catalysts for diesel soot combustion, Appl. Catal. B:Environ., 2008, 83: 85~95.
    [127] N. Russo, D. Fino , G. Saracco, et al, Studies on the redox properties of chromite perovskite catalysts for soot combustion , J. Catal., 2005, 229: 459~469. [ 128 ] J. Liu, Z. Zhao, J. Wang, The highly active catalysts of nanometric CeO2-supported cobaltoxides for soot combustion, Appl.Catal. B:Environ., 2008, 84: 185~195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700