碳同素异构体微观结构的正电子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用正电子湮没技术研究了石墨、纳米碳、金刚石薄膜、C_(60)薄膜四种碳材料的微观结构。结果如下:
     1、石墨和纳米碳的电子动量分布和微观缺陷
     (1)石墨晶体中的自由电子动量分布表现出显著的各向异性,偏离[0001]方向越大,自由电子的动量越小;且Doppler展宽谱S参数与cos~2θ呈线性关系;而纳米碳中自由电子动量的分布不存在明显的规律性。
     (2)当温度从25K升至295K时,石墨和纳米碳中缺陷开空间增大,平均自由电子密度降低;纳米碳中自由电子密度与温度变化成线性关系。
     (3)纳米碳表面层具有活性,可吸附微小杂质氢,导致S参数下降;纳米碳基体内部离表面越远处,吸附杂质氢的量越少。
     2、未掺杂、掺硼及掺硫金刚石薄膜退火前后的缺陷变化
     (1)未掺杂金刚石薄膜在600℃以下退火,空位回复;而900℃以上退火会使空位发生移动合并成大的缺陷,导致缺陷开空间增大。
     (2)在400℃以下退火可减小低掺硼金刚石膜中的缺陷浓度;在600℃以上退火会增加低掺硼金刚石膜的缺陷浓度。
     (3)高掺硼金刚石膜表面缺陷较容易回复,经不同温度退火后,其S参数降低。
     (4)掺硫金刚石膜经200至1000℃退火后,样品的S参数保持不变,表明掺硫金刚石膜结构的热稳定性高。
     (5)掺硫金刚石膜中缺陷浓度大于未掺杂金刚石膜,而掺硼金刚石膜中的缺陷浓度小于未掺杂金刚石膜,掺少量的硼可使金刚石薄膜中空位浓度减少。
     3、不同离子能量沉积的C_(60)薄膜退火前后样品的缺陷
     (1)当沉积离子能量低于200ev时,沉积膜中C_(60)分子有序排列、仍保持完整的笼状结构。
     (2)当沉积离子能量为250ev时,薄膜中C_(60)分子间的结合力增强,形成了C_(60)分子聚合物。
     (3)薄膜的结构取决于沉积离子能量。当沉积离子能量大于300ev时,一方面,发生C_(60)分子聚合;另一方面,部分C_(60)分子的笼状结构被破坏,形成了无定形碳碎片;而且,高能离子对薄膜的轰击作用加强,致密度加大。薄膜中缺陷开空间大小是这两种因素竞争的结果。
     (4)不同离子能量沉积膜经600℃退火1h后,膜中无定形碳成分转化为石墨微晶体,同时C_(60)聚合物分解成小的聚合物或单个的C_(60)分子。
The microstructure of allotropic carbon materials, such as graphite,nanophase C, diamond films, and C_(60) films, have been investigated bypositron annihilation techniques. The following experimental results havebeen abtained.
     1. Microdefects and the distribution of electron momentum ingraphite and nanophase C
     (1) The remarkable anisotropic distribution of electronic momentumwas found in single crystalline graphite. Furthermore, the S parameter islinear to cos~2θ. However, this phenomenon was not found in nanophaseC.
     (2) With the increase of the temperature from 25K to 295K, the openvolume of defects increase, and the average free electron density decreasein graphite and nanophase C. The electronic density in nanophase C alsohas a linear relationship with temperatures.
     (3) The defects near to the surface layer of nanophase C may absorbthe hydrogen impurity and gives rise to the decrease of S parameter. The content of hydrogen impurity decreases with the increase of the distantfrom the surface.
     2. Microdefects in the undoped, B-doped and S-doped diamondfilms before and after annealing
     (1) The defects in undoped diamond film would recover afterannealing at temperature below 600℃. The open volume of defect willincrease after annealing at temperatures above 900℃due to the thermalvacancies migrating to merge together.
     (2) The density of defect in low B-doped diamond film will decreaseafter annealing at temperature below 400℃, however it will increaseafter annealing at temperature above 600℃.
     (3) The defects in high B-doped diamond film are easy to recover.The S parameters of this sample decrease after annealing at defferenttemperature.
     (4) The S parameters of S-doped diamond film keep unchangedafter annealing at temperature from 200 up to 1000℃, that is, thestructure of this film is quite stable ever at high temperature.
     (5) The density of defect in the S-doped diamond film is higher thanthat in undoped diamond films. And the density of defect in the B-dopeddiamond film is lower than that of in undoped diamond film. Thus, theaddition of small amount of B atoms will decrease the density of defect inthe film.
     3. Microdefects in C_(60) films deposited at defferent energy before andafter annealing
     (1) As the deposition energy below 200ev, the C_(60) film is mainlypristine C_(60), the C_(60) molecules maintain their structure and preservemolecular identity.
     (2) As the deposition energy close to 250ev, the intermolecularcohesion getting stronger. The open volume of defect in C_(60) filmincreases due to the polymerized fullerenes occuring in the film.
     (3) The film structure depends on the energy of the incident ions. Asdeposition energy higher than 300ev, the polymerized fullerenes becomelarger, on the other hand, the structure of C_(60) molecules will be destroyedinto pieces, and the amorphous will form on the film. At meantime, thematerial is more compact at high deposition energy. The open volumedefect in the film depends on the competition between the above twofactors.
     (4) After the annealing at 600℃for lh, the amorphous carbon willbecome in graphitic clusters, and the polymerized C_(60) cages aretransformed back to pristine or small polymerized C_(60).
引文
[1] kroto H W, Heath J R, Smalley R E, Nature[J], 1985, 318, 162
    [2] 成会明编,纳米碳管制备、结构、物性及应用[M],化学工业出版社,2002,2
    [3] 彭郁卿,纳米材料与C_(60)的正电子湮没研究[J],核技术,1994,17(12),760
    [4] Robertson J, Positron studies of condenced mater, Adv. Phys., 1986, 35, 317
    [5] Bundy F P, Bassett W A, Weathers M S, et.al, Carbon, 1996, 34, 141
    [6] Bachmann P K, Leers D, Lydtin H, Diamond and Related Materials, 1991, 1, 1
    [7] Jocob W, Moller W, Appl Phys Lett, 1993, 63, 1771
    [8] 陈光华、张阳等,金刚石薄膜的制备与应用[M],北京,化学工业出版社,2004,3
    [9] 戴达煌等,金刚石薄膜沉积制备工艺与应用[M],北京,冶金工业出版,2001,1-16
    [10] 黄元盛等,化学气相沉积金刚石薄膜晶体缺陷和杂质[J],中国表面工程,2004,1(64),5
    [11] 邓文等,石墨和纳米碳中缺陷和电子动量研究[J],原子核物理评论,2005,22(1),50
    [12] 邓文、黄宇阳等,石墨和纳米碳中缺陷和电子密度随温度的变化[J],第十届全国低温物理学术讨论会论文集,2005,63
    [13] 朱妙琴,富勒烯C_(60)的结构、性质及应用[J],浙江教育学院学报,2005,6,52
    [14] 马荣骏等,富勒烯碳分子的结构、性质和应用[J],矿冶工程,2000,20(4),5
    [15] 崔云龙等,富勒烯晶体的正电子湮没寿命[J],核技术,1994,17(12),55
    [16] 王子军,碳化学的新领域—富勒烯[J],炭素,1995,2,43
    [17] Hyer R C, Green M, et. al., Phys. Rev. B, 1994, 49, 14573
    [18] Dannefaer S, Appl. Phys. A, 1995, 61, 59
    [19] Dannefaer S, Zhu W, Bretagnon Y and KeerD
    [20] 苏青峰等,(100)定向CVD金刚石薄膜的制备及其电学性能[J],半导体学报,2005,26(5),947-950
    [21] 马哲国等,生长条件和退火对金刚石薄膜光学性质的影响[J],光学学报,2003,23(8),989-991
    [22] N. Setaka, Spring MRS Meeting[J], 1989, 3—8
    [23] Hetherington A V, Wort C J H, Southworth P, Crystalline perfection of chemical vapor deposited diamond[J], Mater Res, 1990, 5 (8), 1591-1594
    [24] 胡晓君等,掺杂金刚石薄膜的缺陷研究[J],物理学报,2004,53(6)2014-2018
    [25] M. Park, A. T. Sowers, C. Lizzul Rinne et al., Effect of nitrogen-incorporation on elecfronemission from chemical vapor depositiondiamond, Thin Solid Film, 1996, 274:50-54
    [26] Alexenko, M. Kamo, Y. Sato, H. Osaki, T. Inuzuka, Growth and characterization of phosphorousdoped {111} homoepitaxial diamond thin films[J], Appl. Phys Lett. 1997, 71(8), 1065-1067
    [27] GarridoA, Nebel C E, Stutzman M, et al. A new acceptor in CVD-diamond[J], Diamond Relat. Mater, 2002, 11, 347-350
    [28] Nakazawa K, Tachiki M, Kawarada H, et al. Cathodoluminescence and Hall-effect measurements in sulfer-doped chemical-vapor-deposited diamond[J], Appl. Phys. Lett., 2003, 82, 2074-2077
    [29] Azuma T, Saito H, Yamazaki Y, Komaki K, Nagashima Y, Watanabe H, and Kobayashi N, ICPA9[J], 1992, 595
    [30] S. Koizumi, T. Teraji, H. Kanda, Phosphorus-doped chemical vapor deposition of diamond[J], Diamond and Related Materrials, 2000, 9, 935-940
    [31] 郁伟中编,正电子物理及其应用[M],北京,科学出版社,2003:2-34
    [32] A. Rich, Positron studies of condenced mater[J], Rev Mod Phys, 1981, 53, 127
    [33] C. D. Anderson, Phys Rev[J], 1993, 41(405), 491
    [34] P. T. Schulti, K. G.. Lynn., Rev. Mod. Phys[J], 1998, 60(3), 701
    [35] L. M adanski, F. Rasetti, Phys. Rev[J], 1950, 79, 397
    [36] W. Cherry, Ph. D dissertation, Pricetion University[J], 1958, 86
    [37] D. E. Groce, G.. D. Costello, J. W. MCGowan, et, al, bull. amphys[J]soc. 13(1968) 1397
    [38] A. P. Mills, Jr, Appl. Phys Lett[J], 1979, 35, 427
    [39] 陈镇平,王如梅等.正电子湮没参量及其所反应的物质信息的探讨,大学物理实验,2005,18(2),6
    [40] W. Brandt, R. Paulin, Phys. Rev. B[J], 1972, 5, 2430
    [41] W. Brandt, J. Reinheimer, Phys. Rev. B [J], 1970, 2, 3104
    [42] A. Borghesi, B. Pivac, A. Sassellaand Stella[J], J. Appl. Phys., 1995, 77, 4196
    [43] E. Gramsch, J. Throwe, and K. G. Lynn[J], Appl. Phys. Lett., 1987, 51, 1862
    [44] K. G.. Lynn, E. Gramsch, G. Usmar and RSferlazzo, Appl. Phys. Lett[J], 1989, 55, 87
    [45] X. Y. Wu, P. Dull, and K. G. Lynn, Appl. phys. Lett[J]., 1990, 7, 998
    [46] A. P. Mills, Jr. and E. M. Gullikson, Appl. Phys. Lett[J]., 1986, 49, 1121
    [47] P. J. Schultz and K. G. Lynn, Rev. Mod. Phys[J], 1998, 60, 701
    [48] R. S. Brusa, G. P. Karwasz, M. Bettone, A. Zecca, Applied Surface Science[J], 1997, 116, 59-62.
    [49] Akahane T. Appl. Surf. Sci., Applied, 1999, 149, 54.
    [50] K. G. Lyn, D. O. Welch, J. Throwe, and B. Nielsen[J], Intern. Mater. Rev. 1991, 36, 1
    [51] 沈曾民,新型碳材料[M],化学工业出版社,2003,19-36.231-233
    [52] 杨靖,石墨有可能成为新一代纳米级电子元件基础材料[J],功能材料信息,2006,3(4),1
    [53] West R N. Positron studies of condenced mater [J]. Adv. Phys., 1973, 22(3): 263-383.
    [54] Deng Wen, Xiong L Y, Wang S H, Guo J T, Lung C W. Effect of B on Electronic densities of defects and bulk in Ni_3Al Alloys [J]. Journal of Materials Science Letters, 1994, 13:313-315.
    [55] Deng Wen, Zhu Yingying, Zhou Yin-E, Huang Yuyang, Cao Mingzhou, Xiong Liangyue. Study of defects and electron densities in TiA1 alloy doped with V and Ag by positron annihilation [J]. Rare Metal Materials and Engineering, 2006, 35 (3): 348-351.
    [56] Lynn K G, MacDonald J R, Boie R A, Feldman L C, Gabbe J D, Bonderup E, Golochenko J. Positron annihilation momentum profiles in aluminum: core contribution and the independent-particle model [J]. Phys. Rev. Lett., 1977, 38(5): 241-244.
    [57] Deng Wen, Zhu Yingying, Zhou Yine, Huang Yuyang, Ruan Xiangdong. The 3d electrons in binary NiA1 alloys investigated by positron annihilation [J]. Rare Metal Materials and Engineering, 2004, 33 (suppl.2): 125-128.
    [58] Deng Wen, Huang Y Y, Brusa R S, Karwasz G P, Zecca A. Positron annihilation in B-doped and undoped single and polycrystalline Ni_3Al alloys [J]. Journal of Alloys and Compounds, 2006, 421:228-231.
    [59] 周世勋,量子力学教程[M],高等教育出版社,1979,77
    [60] Brandt W, PaulinR, Positron diffusion in solid[J]. Phys Rev B, 1972, 5(7), 2430-2435
    [61] Seeger A, Banhart F, Bauer W. Positron annihilation rates in metals and semiconductors[J]. In: Dorikens-Vanpraet L, Dorikens M and Segers D ed. Positron Annihilation. Gent, Belgium: World Scientific, 1988, 275-277.
    [62] Brandt W, Reinheimer J. Theory of semiconductor response to chargedparticles[J]. Phys Rev B, 1970, 2(8), 3104-3112.
    [63] Sui M L, Lu K, Deng W, Xiong L Y, Patu S, He Y Z. Positron-lifetime study of polycrystalline Ni-P alloy with ultrafine grains[J]. Phys Rev B, 1991, 44(12), 6466-6471.
    [64] West R N. Positron studies of condensed matter. Adv Phys, 1973, 22(3), 263-383.
    [65] Sui M L, Xiong L Y, Deng W, Lu K, Patu S, He Y Z. Investigation of the Interracial Defects in a Nanocrystalline Ni-P Alloy by Positron Annihilation Spectroscopy. [J] Appl Phys, 1991, 69(8), 4451-4453.
    [66] 刘其城,夏金童.石墨的晶体缺陷对其润滑性的影响[J],炭素技术,2000,108,2
    [67] 唐伟忠著,薄膜材料制备原理、技术及应用[M],冶金工业出版社,北京,2005,292,100
    [68] May. P. W, Trans P, Lond R. S. CVD diamond-a new technology in the future[J]. 2000, 358, 473-495
    [69] Show Y, Matsukawa T, Ito H and Iwase M 2000 Diamond Relat, Mater[J], 9, 337
    [70] Wong T T, Liang G Y, Tang C Y, Yhe furface character and substructure of aluminum alloys by laster melting treatment[J], Mater Process Tech, 1997, 66, 172-178
    [71] Dannefaer S, Zhu W, Bretanon T and Kerr D, phys. Rev. B[J], 1996, 53, 1979
    [72] Tsubota T, Fukui T, Saito T, kusakabe K, Morooka S and Maeda H 2000 Diamond Relat[J], Mater, 9, 1362
    [73] S. A. Kajihara, A. Antoneui, J. Bernhole, impurity incorporation and doping of diamond [J], Physica B, 1993, 185, 144
    [74] Matsumoto S, Sato Y, Tsutsumi M, Growth of diamond paticles from methane-hydrogen gas[J], Mater Sci, 17, 3106-3112
    [75] N. Tujimori, H. Nakahata and T. Imai, Appl. Phys[J], 1990(29), 824
    [76] M. C. Polo, et al., Thin Solid films [J], 1994, 253, 136
    [77] A. W. Phelps and R. Koba, proc.lstint. Symp. on Diamond and Diomond-like Films[J], 1989, 89(12), 38.
    [78] Hautojarvi, Positron in solids[J], Spinger Verlag, 1979, 12
    [79] Rebuli D B et al 1999 Diamond Relat. Mater. 8:1620
    [80] Shiyaev A A, van Veen A, Schut H and Kruseman A C Radiat. PhysChem., 2000, 58, 625
    [81] Fabis P M 1998 Appl. Surf. Sci. 126 309
    [82] Uedono A, Tamgawa S, Ogasawara M. Jpn J Appl Phys[J]. 1990, 29:1867-1872
    [83] Stiegler J, Bergmaier A, et al. Impurity and defect incorporation in diamond films deposisited at low substrate temperature [J]. Diamond and related Materials, 1998, 7, 193-199
    [84] Zhang M, Lin C L, et al. Thin Solid films[J], 1998, 333, 245-250
    [85] Griffroen C C, Evans J H, et al. Nucl Instr meth. B, 1987, 27, 417-420
    [86] Natazawa K, Kawarada H, et al. Cathodoluminescence and Hall-effect easurements inSulfur-doped chemical-vapor-deposited diamond[J], Appl Phys Lett, 2003, 82, 2074
    [87] Kroto H W, Heath J R, O'Brien S C, et al, Nature[J], 1985, 218, 162-163.
    [88] Kratschrner W, Fostiropoulos K, et. al, Nature[J], 1999, 347, 354-358
    [89] Hebard A F, Haddon RC, Prosseinnsy M J. Nature[J], 1991, 350, 600
    [90] Z. H. Kafafi, et. Al, , Photonics Spectra[J], 1993, , 27, 76
    [91] M. S. Dresselhaus, et .al, Synth. Met. [J], 1996, 78, 313.
    [92] P. C. Eklund et al, Fullerene and Photonics, Proc[J]. SPIE, 1994, 2284, 2
    [93] Ali Al-Mohamad et al, Synth. Met[J]., 1999, 104, 39
    [94] A. P. Saab et al, Adv. mater. [J], 1998, 10(6), 462
    [95] H. Huck, E. B. Halac, A. Somoza, W. Deng et.al. Applied Surface Science[J], 2003, 211, 379-385
    [96] Tomanek. D, Li YS, Ionicity of the M-C bond in M@C_(60) endohedral Complexes, Chem Phys Lett[J], 1995, 243, 42-44.
    [97] 金运范、杨茹等,荷能离子在C_(60)薄膜中引起的辐照效应[J],原子核物理评论,2000.9,17(3),135
    [98] Shiyaev AA, van Veen A, Schut H and Kruseman A C 2000 Radiat. Phys., Chem. 58, 625
    [99] Y. C. Jean, X. Lu, Y. Lou, A. Bharathi, C.S. Sundar, Y. Lyu, RH. Hor, C. W. Chu, Phys. Rev. B, 1992, 45, 12126.
    [100] H.-E. Schaefer, M. Forster, R. Wu"rshum, W.Kra"tshmer, D.R.Huffman, Phys. Rev. B [J], 1992, 45, 12164.
    [101] M. J. Puska, R. M. Nieminen, Rev. Mod. Phys[J], 1994, 66, 841.
    [102] R. S. Brusa, A. Somoza, H. Huck, N. Tiengo, G. P. Karwasz, A. Zecca, E. B. Halac, M. Reinoso, Appl. Surf. Sci[J]., 1999, 202.
    [103] M. Hasegawa, M. Kajino, H. Kuwahara, E. Kuramoto, M.Takenaka, SYamaguchi, Mater. Sci. Forum [J], 1992, 1041, 105-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700