电场激发与压力辅助燃烧合成MoSi_2及其复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MoSi2具有中等密度(6.24g·cm-3)、高的熔点(2030℃)、较低的热膨胀系数(8.1×10-6K-1)和良好的导电、导热等性能,在航空航天、能源化工、冶金机械等领域有着广阔的应用前景。为了进一步提高MoSi2及其复合材料的性能,并弥补燃烧合成(Combustion synthesis)技术难以制备致密结构材料的不足,本文采用电场激发与压力辅助燃烧合成(Field-activated and pressure assisted combustion synthesis, FAPACS)技术,实现了MoSi2和MoSi2-SiC复合材料的原位合成与同步致密一体化。着重研究了各种工艺参数对材料的合成组织和致密性的影响,探讨了FAPACS过程中材料组织结构的演变规律,研究了材料的力学与高温摩擦磨损性能,并对FAPACS过程进行了计算机数值模拟。
     通过系统研究,本文得出如下主要结论。
     对于Mo-Si反应体系,通过FAPACS技术合成的材料一般由MoSi2和分布于晶界上的Mo5Si3和少量的SiO2组成。其中,Mo5Si3是Mo和Si在较低温度下发生固相界面扩散反应的产物,而SiO2是Si与反应物粉末中残留的氧发生反应的结果。在FAPACS过程中,烧结温度对合成材料的组织和致密性有着明显的影响。当烧结温度高于Si的熔点(1410℃)时,Si粉熔化,并包覆在Mo颗粒表面,不仅有利于大量而细小的MoSi2合成,而且有利于进一步提高合成材料的致密性。结合Mo-Si体系的反应热力学和动力学的研究表明,高于Si熔点的烧结温度和大于100℃/min的加热速度以及足够的烧结时间是保证体系反应完全且获得单一、致密MoSi2块体材料的基本条件。
     在烧结温度为1500℃、升温速率为100℃/min、压力为35MPa、保温时间仅为10min的条件下,通过对Mo-Si体系进行电场激发与压力辅助,成功燃烧合成了致密度高(98%)、晶粒细小(5~10μm)的单相MoSi2块体材料。
     对于Mo-Si-C反应体系,在电场活化与等离子放电的诱发作用下,体系中的Si和C能发生燃烧合成反应,合成在普通条件下难以合成的SiC。原位合成的SiC呈颗粒状,尺寸在100nm ~ 3μm之间,纳米SiC颗粒弥散分布于MoSi2晶粒的内部,而大尺寸的SiC颗粒则分布于MoSi2的晶界,从而原位合成了所需的MoSi2-SiC复合材料。
     在合成的MoSi2-SiC复合材料组织中,未出现夹杂物SiO2相,说明C的存在有利于消除SiO2。但是,在复合组织中产生了Mo5Si3C三元中间相。Mo5Si3C是一种非稳态的过渡相,通过延长保温时间,使之发生Mo5Si3C + 8Si=5MoSi2 + SiC反应,可以使Mo5Si3C中间相的含量降低甚至得以消除。
     在烧结温度1500℃、保温时间30min、轴向压力30MPa的条件下,成功地实现了MoSi2-SiC复合材料的原位合成与同步致密一体化,从而为MoSi2-SiC复合材料的制备提供了另一条有效的新途径。
     在制备的MoSi2-SiC复合材料中,随着SiC含量的增加,复合材料的显微硬度增加,断裂韧性( K1C )明显提高。当SiC的体积百分含量为30%时,MoSi2-SiC复合材料的断裂韧性K1C值可达到5.58 MPa? m,比单一的MoSi2提高了33%。进一步的研究表明,单一MoSi2呈典型的脆性穿晶断裂,而MoSi2-SiC复合材料为沿晶和穿晶的混合型断裂,其增韧机制主要表现为细晶增韧、裂纹偏转、桥联及纳米SiC颗粒的钉扎等作用。
     系统研究了MoSi2及其复合材料的高温摩擦磨损性能。结果表明,在室温~700℃的温度范围内,单一MoSi2的摩擦系数在0.35~0.53之间,而MoSi2-SiC复合材料的摩擦系数在0.26~0.44之间,且MoSi2-SiC复合材料的耐磨性较单一MoSi2材料的耐磨性提高了36% ~59.6%。
     对于MoSi2-SiC复合材料,在载荷和滑动速度一定的条件下,随着摩擦磨损温度的增加,材料的摩擦磨损过程分为三个阶段。从室温到300℃材料的摩擦系数降低,磨损率也呈小幅降低;随着温度继续升高至600℃,摩擦系数逐渐增加,而磨损率则先增加并在400℃~600℃时基本保持不变;当摩擦磨损温度达到700℃时,摩擦系数和磨损率均出现回落。
     材料的高温摩擦磨损机理的研究表明,粘着、氧化和疲劳断裂是造成单一MoSi2材料磨损的主要原因,而氧化、转移和转移层疲劳剥落是MoSi2-SiC复合材料磨损的主要机制。
     建立了FAPACS过程的数理模型,并对FAPACS过程进行了计算机数值模拟。结果表明,冲头-试样-模具系统中的温度场特性是电场焦耳热、体系化学反应热与模具系统传热效应的综合结果,且由于焦耳热与化学热的叠加作用,试样中心具有最高温度,并沿径向形成温度梯度,从而影响合成材料的组织均匀性。因此,在FAPACS过程中,对试样内部的温度梯度进行合理控制,有利于获得组织均匀、晶粒细小且致密性高的材料。
With moderate density of 6.24g·cm-3, high melting point up to 2030℃, relatively low thermal expansion coefficient of 8.1×10-6K-1, and good thermal and electrical properties, MoSi2 exhibits promising potential in fields of aeronautic and astronautic industries, power and chemical engineering and metallurgical machineries. In the present study, Field-activated and pressure-assisted combustion synthesis (FAPACS) was employed to improve mechanical properties of MoSi2 and its composite, in which in situ synthesis and densification of composite could be achieved simultaneously. The effects of processing parameters on microstructure evolution were investigated. Mechanical properties and high temperature wear-resistance capability of the products were analyzed. Process of FAPACS was modeled by means of computer aided simulation.
     The following conclusions were made with this work:
     For Mo-Si system, microstructure of the product shows that Mo5Si3 distributes at grain boundaries on matrix of MoSi2, with production of small amount of SiO2. Mo5Si3 is a product of interfacial diffusion reaction between Mo and Si at relatively lower temperature. SiO2 results from oxidation of Si.
     In FAPACS, sintering temperature plays an important role in microstructure morphology and degree of densification. When it is higher than melting point of Si (1410℃) , the molten Si wraps particles of Mo. It helps to synthesize substantial fine grained MoSi2 with higher density. Analysis with sintering dynamics shows that combination of environment higher than melting point of Si, no less than heating rate of 100℃/min, and sufficient sintering time basic condition ensure obtaining of pure and dense bulk MoSi2.
     That was realized in experiments with sintering temperature 1500℃, heating rate 100℃/min, pressure 35Mpa and holding time of 10min.
     As regards system of Mo-Si-C, SiC was obtained from Si and C with spark plasma activated by electrical field, which is difficult to synthesize under conventional environment. SiC particles were scaled over 100nm ~ 3um. Coarse particles distributed at grain boundaries of MoSi2. Whereas the finer ones dispersed within grains.
     Existence of carbon is favor of elimination of SiO2 since it is free in synthesized MoSi2-SiC composite. However, inter phase of Mo5Si3C produced, which is unstable and transitive. With extension of holding time, reaction of Mo5Si3C + 8Si=5MoSi2 + SiC took place, resulting in decreasing or even elimination of its contention. In the experiments, a simultaneous in situ synthesis and densification of MoSi2-SiC composite was achieved under sintering temperature 1500℃, pressure 30Mpa and holding time of 30min.
     For mechanical properties of MoSi2-SiC, The micro-hardness and fracture toughness of the synthesized MoSi2-SiC composites improved with increasing SiC contents. When the volume fraction of SiC was 30%, the fracture toughness of the MoSi2-SiC composite, K1C , was up to 5.58 MPa ? m, which is 33% higher than that of MoSi2.
     Further study shows MoSi2 is characterized by brittle transgranular fracture with cracks within grains. Whilst, MoSi2-SiC composite possesses a hybrid fracture attribute with both intergranular and transgranular cracks around or within grains. Its mechanisms of toughness mainly lie in refinement of grains, deflection and bridging of cracks, and pinning effect of fine SiC particles.
     The high temperature wear resistances of MoSi2 and its composites were studied. The friction coefficient of MoSi2 is 0.35~0.53 over the range 25~700℃, and 0.26~0.44 for MoSi2-SiC composite. Moreover, the wear resistance of the latter was enhanced by 36% ~59.6% higher than that of the former.
     For MoSi2-SiC composite, under certain load and speed of sliding, worn process could be staged with increasing temperature as: 1) decrease of friction coefficient with slightly dropping of wear rate over room temperature to 300℃; 2) continuing enhancement of friction coefficient with gradually increasing temperature up to 600℃, and a saturation of increasing of wear rate kept over 400-600℃; and 3) leveling off of friction coefficient and wear rate to temperature of 700℃.
     The study of wear mechanism shows that adhesions, oxidation and fatigue fracture are coactively cause the worn of MoSi2. However, those are mainly oxidation, shifting and tearing off of friction layer for MoSi2-SiC composite.
     The FAPACS modeling was made and a numerical simulation was done by means of computer aided finite element method. The results show that FAPACS temperature field was determined by an interaction among Joule heating of electric field, heat released by chemical reaction, and heat transferring characteristics of die-sample system. Due to overlay of heats by Joule effect and chemical reactions, the highest temperature was in the center of the sample and a radius temperature gradient was established. That significantly took effects to uniformity of microstructure and densification degree. Therefore, it is important to adjust temperature gradient within the sample of FAPACS to prepare dense and fine grained bulk materials.
引文
[1]师昌绪.二十一世纪初的材料科学技术[J].新材料产业. 2001, 6: 10-15
    [2]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].机械工艺出版社,2003: 904~908
    [3]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].国防工业出版社,2001: 904~948
    [4]马勤.高温结构硅化物研究的新发展[J],材料工程,1997,(7):3~6
    [5]王零森.特种陶瓷[M],长沙:中南工业大学出版社,1994,6
    [6]马勤.非平衡法增强基复合材料的研究,西北工业大学博士学位论文,1998:1~7
    [7] J. J. Petrovic. Toughening strategies for base high temperature structural silicides [J]. Intermetallics, 2000, 8: 1175-1184
    [8]美国国家材料咨询委员会编,金石译.高温抗氧化涂层[M],北京:科学出版社,1980:94
    [9] P. J. Meschter and Schwarts, Silicide-matrics materials for high-temperature applications [J], JOM 1998, 11: 52
    [10] H.米格兰比.材料的塑性变形与断裂[M],颜鸣皋等译,北京:科学出版社,1998, 6
    [11] J. J. Petrovic,A. K. Vasudevan. Key developments in high temperature structural silicides [J], Materials Science and Engineering A, 1999, 261: 1~5
    [12]马勤,杨延清,康沫狂.二硅化钼-用途广泛的金属间化合物[J],材料开发与应用,1997, 12(6): 27~32
    [13] R. L. Fleischer. High-temperature high-strength metals-an overview [J], J. Metals, 1985, 37: 16~20
    [14] R. L. Fleischer. High-strength, high-temperature intermetallic compounds [J], J. Metals, 1987, 22: 2281~2288
    [15] R. L. Fleischer, A. I. Taub. Selecting high-temperature structural intermetallic compounds: the materials science approach [J], JOM, 1989, 41: 8~11
    [16] A. Misra, J. J. Petrovic, T. E. Mitchell. Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite [J]. Scripta Materialia, 1999, 40(2): 191~196
    [17] Y. Liu, G. Shao, P. Tsakiropoulos. Thermodynamic reassessment of the Mo-Si and Al- Mo-Si systems [J], Intermetallics, 2000, 8: 953~962
    [18] J. Cook, A. Khan, E. Lee, R. Mahapatra. Oxidation of MoSi2-based composites [J], Materials Science and Engineering A, 1992, 155: 183~198
    [19] K. Niihara, Y. Suzuki. Strong monolithic and composite MoSi2 materials by nanostructure design [J], Materials Science and Engineering A, 1992, 261: 6~15
    [20] G. J. Zhang, X. M. Yue, T. Watanabe. Addition effects of aluminum and in-situ formation of aluminum in MoSi2 [J], Journal of Materials Science, 1999 (34): 997~1001
    [21] M. J. Maloney, R. J. Phecht. Development of continuous fiber-reinforced MoSi2-based composites [J], Materials Science and Engineering A, 1992, 155: 19~31
    [22] J. S. Jayashankar, E. N. Ross, P. D. Eason, Kaufman. Processing of MoSi2-based intermetallics [J], Materials Science and Engineering A, 1997, 239/240: 485~492
    [23] D. P. Mason, D. C. Van Aken. The effect of microstructural scale on hardness of MoSi2-Mo5Si3 eutectics [J]. Acta Metall Mater., 1992, 28: 185~189
    [24] D. P. Mason, D. C. Van Aken. On the microstructures and crystallography of directionally solidified MoSi2-Mo5Si3 eutectics [J]. Acta Metall Mater., 1994, 43(3): 1189~1199
    [25] P. H. Boldt, J. D. Embury, G. C. Weatherly. Room temperature microindentation of single-crystal MoSi2 [J], Materials Science and Engineering A, 1999, 261: 251~258
    [26] T. E. Mitchell, R. G. Castro and J. J. Petrovic. Dislocation, twins, grain boundaries and precipitates in MoSi2 [J], Materials Science and Engineering A, 1992, 155: 241~249
    [27] Y. L. Jeng, E. J. Lavernia. Review processing of molybdenum disilicide [J], Journal of Materials Science, 1994, 29: 2557~2571
    [28] F. Chu, D. J. Thoma. K. J. Mclellan, P. Peralta. Mo5Si3 single crystals: physical properties and mechanical behavior [J], Materials Science and Engineering A, 1999, 261: 44~52
    [29] E. M. Summers. M. Akinc. Wick debinding of molybdenum-silicon-boron extrudate [J]. Journal of the American Ceramic Society, 2000, 83(7): 1670-1674
    [30] Y. Umakoshi, T. Hirano, T. Sakagami, T. Yamane. Slip system and hardness in MoSi2 [J], Scripta Materialia, 1999, 40(2): 191~196
    [31] J. J. Huebsh, M. J. Kramer, H. L. Zhao, M. Akinc. Solubility of boron in Mo5+ySi3-y [J], Intermetallics, 2000, 8(2): 143~150
    [32] R. Gibala, H. Chang, C. M. Czarnik, J. P. Campbell. Plasticity enhancement mechanisms in MoSi2 [J], Materials Science and Engineering, A 1999, 261: 122~130
    [33] G.Gibala, A.K.Ghosh, D.C.van Aken, D.J.Srolovitz,A.Basu,H.Chang,D.P.Mason and W.Yang, Mechanical behavior and interface design of MoSi2-base alloys and composites [J], Materials Science and Engineering A, 1992, 155 : 147~158
    [34] W. J. Boettinger,J. H. Perepezko and P. S. Frankwicz,Application of ternary Phase diagrams to the development of MoSi2-base composites [J], Materials Science and Engineering A, 1992, 155: 33~34
    [35] J. Subrahmayam, R. Mohan. Combustion Synthesis of MoSi2-WSi2 Alloys [J], Materials Science and Engineering A, 1994, 183: 205~210
    [36] A. M. Stuart, J. J. Lewandowski, H. H. Arthur. Effect of carbon addition on the high temperature mechanical Properties of molybdenum Disilicid [J]. Materials Science and Engineering A, 1992, 155: 159~163
    [37] U. Ramamurty, J. J. Petrovic. Micromechanisms of creep-fatigue crack growth in a silicide-matrix composite with SiC particles [J], J ournal of the American Ceramic Society, 1993, 76(8): 1953
    [38] Costa e Silva A, M. J. Kaufman, In-situ formation of alumina coatings in niobium toughened Mo(Si,Al)2 [J], Scripta Metall et Mater, 1994, 31(7): 853
    [39] Costa e Silva A and Kaufman M J, Application of in situ reactions to MoSi2-baced materials [J], Materials Science and Engineering A, 1995, 195: 75
    [40]马勤,杨延清,康沫狂.原位技术在复合材料制备中的应用与发展[J],兵器材料科学与工程,1997,20(5):66
    [41]郑灵仪,金燕苹,李朋兴,等. SiC颗粒强韧MoSi2复合材料[J],无机材料学报,1994, 9(2): 232
    [42]彭可,易茂中,冉丽萍. MoSi2及MoSi2基复合材料制备技术的新发展[J],材料导报,2006, 20(7): 54~57
    [43]易丹青,杜若昕,曹昱. M5Si3型硅化物的研究及相关的物理冶金学问题[J] .金属学报, 2000, 37 (11) :1121~1130
    [44]张来启,孙祖庆,张跃,等. MoSi2-SiC复合材料原位合成热力学和动力学分析[J] .金属学报, 1998, 34 (11) :1205~1209
    [45]韩雅芳,郑运荣.航空发动机用高温材料的应用与发展.世界科技研究与发展,2001, 20(6): 67~71
    [46]徐志昌,张萍.钼合金材料的研究与发展.中国钼业,1996, 20(1): 28~33
    [47]黎文献,徐广卓,唐嵘,等.钴对MoSi2组织和性能的影响.稀有金属材料与工程,1998, 27(4): 222-225
    [48]张小立,吕振林,金志浩. MoSi2金属间化合物复合材料的强韧化机理及其制备技术,中国钼业,2002, 26(6): 29~33
    [49]傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998, 18(4): 52~61
    [50]傅正义.反应合成与加工技术[J].复合材料学报,1997, 14(1): 71~75
    [51]张来启,孙祖庆,张跃,等.原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能[J],金属学报,2001, 37(3): 325~331
    [52]傅晓伟,杨王月,张来启. MoSi2-30%SiC原位合成复合材料的高温蠕变行为[J],金属学报,2002, 38(7): 731~736
    [53] H. Inui, K. Ishikawa, M. Y. Yamaguchi. Creep deformation of single crystals of binary and some ternary MoSi2 with the C11b structure [J], Intermetallics, 2000, 8: 1159~1168
    [54] O. Unal, J. J. Petrovic. Disloctions and plastic deformation in molybdenum disilicide [J], Journal of the American Ceramic Society, 1990, 73(6): 1752~1757\
    [55] W. K. Robert, G. H. Mohan. Cyclic oxidation study of MoSi2-Si3N4 base composites [J], Materials Science and Engineering A, 1999, 261: 300~303
    [56] H. Inui, M. Y. Yamaguchi. Deformation mechanisms of transition-metal disilicides with the hexagonal C40-based single crystals and polycrystalline silicides [J], Intermetallics, 2001, 9: 857~862
    [57] X. Fan, K. Hack, T. Ishigaki. Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing [J], Materials Science and Engineering A, 2000, 278: 46~53
    [58] A. K. Vasudevan. A comparative overview of molybdenum disilicide composites [J], Materials Science and Engineering A, 1992, 155: 1~17
    [59] R. H. Jones. Enviromental effects on intermetallics, ceramics and composites [J], JOM, 1993, 12: 14~21
    [60] D. P. Mason, D. C. Van Aken. On the creep of directionally solidified MoSi2- Mo5Si3 eutectics [J], Acta Metall. Mater., 1995,43(3): 1201~1210
    [61]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].冶金工业出版社.1993,341~351
    [62]王德志,左铁镛,刘心宇. MoSi2基高温结构材料的研究现状和发展趋势,材料导报,1997, 11(4): 53~60
    [63]董得民,张宝清,田杰谟,李兆新.碳陶瓷复合材料氧化性能研究[J].清华大学学报(自然科学版): 1997, 37(5): 106~109
    [64] Y. Xu, L. Cheng, L. Zhang. Oxidation behavior and mechanical properties of C/SiC composites with Si- MoSi2 oxidation protection coating [J]. Journal of Materials Science, 1999, 34: 6009:6014
    [65]曾燮榕,郑长卿,李贺军,杨铮.碳/碳复合材料MoSi2涂层的防氧化研究[J].复合材料学报,1997, 14(3): 37~39
    [66] D. A. Berztiss, R. R. Cerchiara. Oxidation of MoSi2 and comparison with other silicide materials [J], Materials Science and Engineering A, 1992, 155: 165~181
    [67] K. Kurokawa, H. Houzumi, I. Saeki, H. Takahashi. Low temperature oxidation of fully dense and porous MoSi2 [J], Materials Science and Engineering A, 1999, 261: 292~299
    [68] M. Taya, S. Hayashi, A. S. Kobayshi, H. S. Yoon. Toughening of a particulate-reinforced ceramic matrix composite by thermal residual stress[J], Journal of the American Ceramic Society, 1990, 73(5): 1382~1391
    [69]易丹青,刘会群,肖来荣等. MoSi2基复合材料组织性能的研究进展[J].材料导报,2006, 11(20): 409~414
    [70] A. Stergious, Tsakiropoulos. The intermediate and high-temperature oxidation behaviour of (Mo,X)Si2 (X = W, Ta) intermetallic alloys [J], Intermetallics, 1997, 5: 117~126
    [71] T. E. Mitchell, A. Misra. Structure and mechanical properties of (Mo, Re)Si2 alloys [J], Materials Science and Engineering A , 1999, 261, 106~112
    [72] L. Sun, J. Pan. Fabrication and characterization of TiC-particle-reinforced MoSi2 composites [J], Journal of European Ceramic Society, 2002, 22:791~796
    [73] Y. Suzuki, T. Sekino, K. Niihara. Effects of ZrO2 addition on microstructure and mechanical properties of MoSi2 [J]. Scripta Metallurgica et Materialia, 1995, 33(11), 69~74.
    [74] J. J. Petrovic, R. E. Honnell, T. E. Mitchell, R. K. Wade, K. J. McClellan. ZrO2-reinforced-MoSi2-matrix composites [J]. Ceramics Engineering Science Proceeding, 1991, 12(9), 1633~1642
    [75] A. Newman, S. Sampath, H. Hermam. Processing and properties of MoSi2-SiC and MoSi2-Al2O3 [J], Materials Science and Engineering A , 1999, 261, 252~260
    [76] M. G. Hebsur, Nathal M V , Darolia R , et al. Structural Intermetallics Warrendale , USA , TMS , 1997. 949
    [77] M. G. Hebsur. Development and characterization of SiC(f)/MoSi2–Si3N4(p) hybrid composites [J], Materials Science and Engineering A, 1999, 261: 24~37
    [78] S. P. Lee, H. Fukunaga. Interfacial reaction layer of Nb/ MoSi2 laminate composites and its effect of fracture characteristics [J], Scripta materialia, 2000, 43(9):795~799
    [79] P. Peralta, R. Dickerson, J. R. Michael, K. J. McClellan, F. Chu, T.E. Mitchell. Residual thermal stresses in MoSi2-Mo5Si3 in-situ composites [J], Materials Science and Engineering A , 1999, 261, 261~269
    [80] D. H. Carter, J. J. Petrovic, R. E. Honnel, W. S. Gibbs. SiC-MoSi2 composites. Ceramics Engineering Science Proceeding, 1989, 10(9-10),1121~1129
    [81] M. G. Hebsur. Development and characterization of SiC(f)/MoSi2-Si3N4(p) hybrid composites [J], Materials Science and Engineering. A. 1999, 261: 24~37
    [82]周玉.陶瓷材料学[M].哈尔滨工业大学出版社,1995: 308~320
    [83]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安交通大学出版社,2001: 161~168
    [84] S. A. Maloy, J. J. Lewandowski, A. H. Heuer. Effect of carbon addition on the high temperature mechanical properties of molybdenum disilicide [J]. Materials Science and Engineering A, 1992, 155: 159~163
    [85] R. Mitra, Y. R. Mahajan, N. E. Prasad , W. A. Chiou. Processing microstructure property relationships in reaction hot-pressed MoSi2 and MoSi2/SiCp composite [J], Materials Science and Engineering. A., 1997, 225: 105~117
    [86] G. J. Zhang, X. M. Yue, T. Watanabe, O. Yagishita. In situ synthesis ofMo(Si,Al)2-SiC composites [J], Journal of Materials Science, 2000, 35: 4729~4733
    [87] C. H. Henager, J . L. Brimhall, J. P. Hirth, Synthesis of a MoSi2-SiC composite in situ using a solid-state displacement reaction [J]. Materials Science and Engineering A, 1992, 155: 109~114
    [88] J. I. K. Lee, N. L. Hecht, T. Mah. In situ processing and properties of SiC/ MoSi2 nanocomposites [J], Journal of the American Ceramic Society, 1998, 81(2):421~424
    [89]江莞,赵世柯,王刚.二硅化钼材料的研究现状及应用前景[J],无机材料学报,2001, 16: 577~585
    [90]林育炼,刘盛秋.耐火材料与能源[M].北京:冶金工业出版社,1993: 361~363
    [91]山口正治,马越佑吉.金属间化合物[M].北京:科学出版社,1991
    [92] W. E. Lee, R. E. Moore. Evolution of in situ refractories in the 20th century [J], Journal of the American Ceramic Society, 1998, 81(6): 1385~1410
    [93]王学成,柴惠芬,王笑天. MoSi2新型高温结构材料的研究与开发[J].材料工程,1993, 11: 17~21
    [94] J. J. Petrovic, in High Temperature Silicide and Refractory Alloys [J]. C. L. Briant, J. J. Petrovic and B. P.Bewlay et al, eds. (MRS, Pittsburgh, PA, 1994 ),vol. 322: 107~112
    [95] M. Atzmon, in Solid State Powder Processing [J]. A. H. Chauer, J. J. D. Barbadillo, eds. ( TMS, Warrendale, PA, 1990) : 173
    [96] M. R. Jackson, J. R. Rairden and J. S. Smith, R. W. Smith. Production of metallurgical structures by rapid slolidification plasma deposition [J], JOM, 1981, 23~27
    [97] D. J. Tilly, J. P. A. Lêfvander and C. G. Levi, in IntermetallicMatrix CompositesⅡ[J]. D. B. Miracle, D. L. Anton and J. A. Graves, eds. (MRS, Pittsburgh, PA,1992) , vol. 273: 296~300
    [98] C. H. Henager, J. L. Brimhall and J. S. Vetrano, in IntermetallicMatrix CompositesⅡ[J]. D. B. Miracle, D.L. Anton and J. A. Graves, eds. (MRS, Pittsburgh,PA, 1992) , vol. 273: 281~287
    [99] D. E. Alumna , R. D. Gooier. Influence of Al additions on the reactive synthesis of MoSi2 [J] . Scripta Materialia. 1996. 34 (8): 1287~1293
    [100] S. M. L. Sastry. HIP diagrams for unreinforced MoSi2 and MoSi2 composites [J]. Materials Science and Engineering. A,. 1995, 192/193: 881~890
    [101] J. J. Petrovic, in High Temperature Silicide and Refractory Alloys[J]. C. L. Briant, J. J. Petrovic and B. P. Bewlay et al, eds. (MRS, Pittsburgh, PA, 1994 ), vol. 322: 107~112
    [102] R. W. Rice, Summary assessment of the application of SPS and related processing to produce dence ceramics [J], Combustion and Plasma Synthesis of High-Temperature Materials 1990: 3
    [103] P. Matteazzi, G. Le Cacer, E. Bauer-Grosse. Synthesis of advanced ceramics by high energy milling [J], Key Engineering Materials, 1991, 53-54: 451~456
    [104] R. K. Viswanadham, S. K. Mannan, S. Kumar, Mechanical alloying behavior in group V transition metal/silicon systems [J], Scipta Mater., 1998, 22: 1011~1014
    [105] R. B. Schwarz, S. R. Srinivasan and J. J. Petrovic et al, Synthesis of molybdenum disilicide by mechanical alloying [J], Materials Science and Engineering. A, 1992, 155(1-2): 75~83
    [106] P. Matteazzi, G. L. Caer, E. B. Grosse, in Ceramics Today-Tomorrow’s Ceramics [J]. P. Vincenzini, eds. (Elsevier Science Publishers, 1991): 793~802
    [107] S. Jayashankar, M. J. Kaufman. Tailored MoSi2/SiC composites by mechanical alloying [J], Journal of Materials Research, 1993, 8: 1428~1441
    [108] N. Iwatomo and S. Uesaka, in Ceramic powder processing IV, Proc. 4th Int. Conf. On Ceramic Powder Processing Science [C]. S. I. Hirano, G. L. Messing and H. Hausner, eds. (Am. Ceram. Soc., Westerville, Ohio, 1990): 177
    [109] S. Jayashankar, S. E. Riddle, M. J. Kaufman, in High Temperature Silicide and Refractory Alloys [J]. C. L. Birant, J. J. Petrovic and B. P. Bewlay et al, eds. (MRS, Pittsburgh, PA, 1994) , vol. 322: 33~40
    [110] D. A. Hardwick, P. L. Martin. MA of MoSi2 intermetallics [J]. Structural Intermetallics. 1993. PA : 665~674
    [111] S. N. Patankar, S. Q. Xiao, J. J. Lewandowski, et al. The mechanism of mechanical alloying of MoSi2 [J]. J . Mater. Res. 1993, 8(6): 1311~1316
    [112]理查德.J.布鲁克主编.材料科学与技术丛书:陶瓷工艺. V17B.科学出版社,1999: 6~34
    [113] C. H. Henager, J. L. Brimhall, J. S. Vetrano, J. P. Hirth, in IntermetallicMatrixComposites IID. B. Miracle, D. L. Anton, J. A. Graves, eds. (MRS, Pittsburgh, PA, 1992), 273: 281~287
    [114] R. E. Treece, E. G. Gillan, R. M. Jacubinas, J. B. Wiley, R. B. Kaner, in Better Ceramics Through Chemistry V [J]. M. J. Hamp ten-Smith, W. G. Klemperer, C. J. Brinker, Eds. (MRS, Pittsburgh, PA, 1992), 271: 169~174
    [115] R. M. Jacubinas, R. B. Kaner, in High Temperature Silicide and Refractory Alloys[J]. C. L. Briant, J. J.Petrovic, B. P. Bewlay, A. K. Vasudevan, H. A. L ip sitt, Eds. (MRS, Pittsburgh, PA, 1994 ), 322: 133~137
    [116]薛群基,喇培清.低温制备高熔点先进材料的燃烧合成熔化技术.甘肃科技纵览, 2002, 31: 28~33
    [117] A. L. Dumont, J. P. Bonnet. MoSi2/Al2O3 FGM by casting and SHS [J]. Journal of European Ceramics Society, 2001, 21: 2353~2360
    [118] L. S. Abovyan, H. H. Nersisyan, S. K. Kharatyan. Synthesis of alumina-silican carbide composites by chemically activated self-propagating reactions. Ceramic International, 2001, 27: 163~169
    [119] P. Q. La, M. W. Bai, Q. J. Xue. A study of Ni3Al coating on carbon steel surface via the SHS casting route. Surface Coating Technology, 1999, 113: 44~51
    [120] P. Q. La, Q. J. Xue, W. M. Liu. A study of MoSi2-MoS2 coating fabricated by SHS casting route. Materials Science and Engineering A, 2000, 277: 266~273
    [121] J. Yang, P. Q. La, W. M. Liu. Microstructure and properties of Fe3Al-Fe3AlC0.5 composites prepared by self-propagating high temperature synthesis casting. Materials Science and Engineering A, 2004, 382: 8~14
    [122]薛群基,喇培清.燃烧合成熔化制备块体纳米结构材料和金属间化合物基复合材料及其摩擦学性能.中国有色金属学报, 2004, 14(SI): 128~138
    [123] R. Tiwari and H. Herman, Vacuum plasma spraying of MoSi2 and its composites [J], Materials Science and Engineering. A , 1992, 155: 95~100
    [124] D. E. Alman, K. G. Shaw and N. S. Stoloff, K. Rajan. Fabrication, structure and properties of MoSi2-base composites [J], Materials Science and Engineering. A. 1992, 155: 85~93
    [125] Z. A. Munir, The effect of external electric fields on the nature and properties of materials synthesized by self-propagating combustion [J], Materials Science and Engineering. A, 2000, 287(2): 125~137
    [126] H. Shimizu, M. Yoshinaka, K. Hirota, Fabrication and mechanical properties of monolithic MoSi2 by spark plasma sintering [J], Materials Research Bulletin. 2002, 37: 1557~1563
    [127] T. Nishimura, M. Mitomo, H. Hirotsuru, M. Kawahara. The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate [J]. Journal Materials Science Letter, 1995, 14: 1046~1047
    [128] X. H. Jin, L. Gao, L. H. Gui, J. K. Guo. Microstructure and mechanical properties of SiC/zirconia-toughened mullite nanocomposites prepared from mixtures of mullite gel, 2Y-TZP, and SiC nanopowders [J], Journal Materials Research, 2002, 17 (5): 1024~1029
    [129] T. Y. Um, T. Abe, S. Suim. Fabrication of intermetallic compounds by spark plasma sintering [J], Journal of Materials Synthesis Processing, 1996,7(5): 303~309
    [130] H. C. Kim, D. Y. Oh, G. J. Jiang, I. J. Shon. Synthesis of WC and dense WC-5 vol.% Co hard materials by high-frequency induction heated combustion [J], Materials Science and Engineering A, 2004, 368:10~17
    [131] H. Xue, Z. A. Munir. Synthesis of AlN-SiC composites and solid solutions by field-activated self-propagating combustion [J], J. Eur. Ceram. Soc., 1997, 17 1787~1792
    [132] S. V. Gedevanishvili, Z. A. Munir. Investigation of the combustion synthesis of MoSi2β-SiC composites through electric-field activation [J], Materials Science and Engineering A, 1998, 242: 1~6
    [133] R. Orru, G. Cao, Z. A. Munir. Mechanistic investigation of the field-activated combustion synthesis (FACS) of titanium aluminides [J], Chemical Engineering Science, 1999, 54(15-16): 3349~3355
    [134]全永昕,施高义.摩擦磨损原理[M].杭州:浙江大学出版社,1996
    [135] A. V. Lery, N. Jee. Unlubricated sliding wear of ceramic materials [J], Wear, 1988, 121: 363~380
    [136] W. Liu, J. L. Duda, E. E. Klaus, Wear property of silicon nitride in steel-on-Si3N4 and Si3N4-on-Si3N4 systems [J], Wear, 1996, 199: 217~223
    [137] M. Belmonte, J. E. Jurado, D. Treheux. Role of triboelectrification mechanism in the wear behaviour of Al2O3-SiC platelet composites [J], Wear, 1996, 199: 54~60
    [138]张文光,徐洮,刘惠文. (Ca,Mg)-Sialon陶瓷在空气及水润滑条件下的磨损机理研究[J],摩擦学学报,1998, 18(2): 97~102
    [139]赵明,黄莉萍,丁传贤.三种结构陶瓷摩擦副的干摩擦磨损研究[J],摩擦学学报,1998, 18(1): 1~6
    [140]谭业发,王耀华,荣先辉,Mg-PSZ陶瓷在不同环境温度下的摩擦磨损行为与机制研究[J],摩擦学学报,1999, 19(4): 337~341
    [141]桑可正,金志浩.反应烧结碳化硅复合材料的磨损机理研究[J],摩擦学学报,2000,20(5): 352~355
    [142] J. A. Hawk, D. E. Alman, N. S. Stoloff, Abrasive wear behavior of MoSi2-Nb composites [J], Scripta Metal et Mater., 1994, 31(4): 473~478
    [143] J. A. Hawk, D. E. Alman, A comparative study of the abrasive wear behavior of MoSi2 [J], Scripta Metal et Mater., 1995, 32: 725~730
    [144] J. A. Hawk, D. E. Alman, J. J. Petrovic, Abrasive wear behavior of a Si3N4-MoSi2 composite [J], J. Am. Ceram. Soc., 1996, 79(5):1297~1302
    [145] J. A. Hawk, D. E. Alman, J. J. Petrovic, Abrasive wear behavior of MoSi2/SiC and MoSi2/ZrO2 composites [J], Scripta Metal et Mater., 1995, 32(11): 1765~1770
    [146] D. E. Alman, J. A. Hawk, Abrasive wear behavior of a brittle matrix (MoSi2) composite reinforced with a ductile phase (Nb) [J], Wear, 2001, 251: 890~900
    [147] P. V. Krakhmalev, J. Bergstrom, Tribological behavior and wear mechanisms of MoSi2-based composites sliding against AA6063 alloy at elevated temperature [J], Wear, 2006, 260: 450~457
    [148] J. Pan, M. K. Surappa R. A. Saravanan, B. W. Liu, D. M. Yang, Fabrication and characterization of WSi2/MoSi2 composites [J], Mater. Sci. Eng. A, 1998, 244: 191~198
    [149] L. Sun, J. Pan, Fabrication and characterization of SiCw/MoSi2 composites [J], Mater. Lett., 2002, 52: 1239~1243
    [150]吕晋军,王静波,杨生荣,薛群基. MoSi2及其复合材料摩擦学性能研究[J],摩擦学学报,2003, 9: 361~366
    [151]薛群基,吕晋军.高温固体润滑材料的现状与发展趋势[J],摩擦学学报, 1999, 19: 91~96
    [152]张厚安,刘心宇,陈平.二硅化钼自配副在干摩擦条件下的摩擦学性能研究[J],摩擦学学报, 2001, 21: 456~459
    [153]张厚安,刘心宇,陈平,唐果宁. WSi2/ MoSi2复合材料的摩擦磨损特性,摩擦学学报[J],2002, 22: 165~169
    [154]张厚安,陈平,唐果宁,刘心宇.金属间化合物二硅化钼在干摩擦条件下的磨粒磨损特性[J],机械工程材料,2002, 26: 21~22
    [155] P. La, Q. Xue, W. Liu, Study of wear resistant MoSi2-SiC composites fabricated by self-propagating high temperature synthesis casting [J], Intermetallics, 2003, 11:541~550
    [156]邱百光.计算机仿真[M],上海:上海交通大学出版社. 1988
    [157]梁静国.管理系统仿真[M],哈尔滨:哈尔滨船舶工程学院出版社. 1993
    [158]韩慧君.系统仿真[M].北京:国防工业出版社. 1985
    [159] J.E.艾金.有限元法的应用与实现[M],北京:科学出版社. 1992
    [160]孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社. 1998
    [161] E. M. Heian, A. Feng and Z. A. Munir. A kinetic model for the field-activated synthesis of MoSi2/SiC composites: simulation of SPS conditions [J]. Acta Materialia, 2002, 50(13): 3331~3346
    [162] R. Orrù, A. Cincotti, G. Cao and Z. A. Munir. Mechanistic investigation of electric field-activated self-propagating reactions: experimental and modeling studies [J]. Chemical Engineering Science, 2001, 56(2): 683~692
    [163] A. Feng, O. A. Graeve and Z. A. Munir. Modeling solution for electric field-activated combustion synthesis [J]. Computational Materials Science, 1998, 12( 2): 137~155
    [164] A.M. Locci, A. Cincotti, F. Delogu, R. Orrùand G. Cao. Advanced modelling of self-propagating high-temperature synthesis: the case of the Ti–C system [J]. Chemical Engineering Science, 2004, 59(22-23): 5121~5128
    [165] Wang Yucheng and Fu Zhengyi. Study of temperature field in spark plasma sintering [J]. Materials Science and Engineering B, 2002, 90(1-2):34~37
    [166]邹正光,吴金平,傅正义,袁润章.材料的自蔓延高温合成过程中燃烧波特征的数值模拟[J],材料科学与工程,2000,18(3):61~65
    [167] Zou Zhengguang, Fu Zhengyi Yuan Runzhang and Mai Liqiang. Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process [J]. Journal of Wuhan University of Technology-Materials Science Edition. 2002, 17(1):23~26
    [168]余石金,邹正光,何曾先. SHS过程中非线性结构及其影响因素[J].材料科学与工艺,2005,13(2):139~142
    [169]邹正光. TiC/Fe复合材料的自蔓延高温合成工艺与应用[M].北京:冶金工业出版社. 2002
    [170]胡英.物理化学[M].北京:高等教育出版社,2002
    [171]梁英教,车荫昌.无机热力学数据手册[M].沈阳:东北大学出版社, 1993
    [172] J. D. Cotton, Y. S. Kim, M. J. Kaufman, Intrinisic second-phase particles in powder-processed MoSi2 [J], Materials Science and Engineering A, 1991, 144: 287~291
    [173] Q. Hu, P. Luo, Y. Yan. Influence of spark plasma sintering temperature on sintering behavior and microstructures of dense bulk MoSi2 [J], Journal of Alloys and Compound, in press, 2007
    [174] H. C. Kim, C. D. Park, J. W. Jeong, I. J. Shon, [J], Met. Mater. Int. 9 (2003) 173
    [175] Z. A. Munir. Reaction synthesis process: mechanism and characteristics [J]. Metall Trans A. 1992, A 2(3): 7~11
    [176] D. C. Newman Novel uses of electric field and electric currents in powder metal processing [J].Mater.Sci.Eng. A, 2000, 287:198~204.
    [177] L. Liu, F. Padella, W. Guo and M. Magini. Solid state reaction induced by mechanical alloying in metal-silicon system [J]. Acta Materialia, 1995,43(10): 3755-3761
    [178] D. M. Stefanescu. Influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites [J], Metall. Trans. A, 1990, 21: 231-239
    [179] S. C. Deevi. Diffusional reaction in the combustion synthesis of MoSi2 [J]. Materials Science and Engineering. 1992, A149: 241-251
    [180] B. Meredith, D. R. Milner. Densification mechanisms in the tungsten carbide-cobalt system [J]. Powder Metall, 1976, 19: 38-45
    [181] J. L. Blumenthal, M. J. Santy, E. A. Burns, AIAA Journal, 1996, 4: 1053
    [182] H. Nowotny, E. Parthe, R. Kieffer and F. Benesovsky. Monatsh. Chem.1954,85: 255-272
    [183]徐祖耀,李麟.材料热力学(第二版)[M],北京:科学出版社. 1999: 96
    [184] A. Costa e Silva and M. J. Kaufman. Phase relations in the Mo-Si-C system relevant to the processing of MoSi2-SiC composites [J]. Metall. & Mater. Trans. A,1994, 25: 5-15
    [185]甘国友,孙加林,陈敬超,陈永羽,严继康.1600℃Mo-Si-C三元系组元化学势稳定性相图[J].稀有金属材料与工程,2001, 10: 346~348
    [186] G. R. Sivakumar, S. N. Kalkura, P. Ramasamy, Effect of magnesium on the crystallization and the microhardness of dicalcium phosphate dehydrate [J], Materials Chemistry and Physics, 1999. 57: 238~243
    [187] Z. Li, A. Ghosh, A. S. Kobayashi, R. C. Bradt. Indentation fracture toughness of sintered silicon carbide in the palmqvist crack regime [J], Journal of the American Ceramic Society. 1989, 72 (6): 904~911
    [188] G. R. Anstis, P. Chantikul, B. R. Lawn. A critical evalution of indentation techniques for measuring fracture toughness: I, direct crack measurements [J], Journal of the American Ceramic Society. 1981, 64 (9): 533~538
    [189] R. W. Davidge, Mechanical behavior of ceramics [M]. Cambridge: Cambridge University Press, 1979: 86
    [190]徐芝纶.弹性力学[M].北京:高等教育出版社,1982: 279
    [191] R. W. Davidge, T. J. Strength of two-phase ceramic/glass materials [J]. Journal Materials Science. 1968, 3(6): 629~635
    [192] Y. Kinemuchi, H. Funakoshi and K Ishizaki. Effect of coated carbon on Si3N4 powder for the surface reaction during pulsed electric current singering [J], Ceram Soc Japan, 1998, 10(6): 535-541
    [193] R. Mitra, Y. R. Mahajan, N. E. Prasd, W. A. Chiou, Processing-microstructure-property relationships in reaction hot-pressed MoSi2 and MoSi2/SiCp composites [J], Materials Science and Engineering A, 1997, 225: 105~117
    [194] K. T. Faber, A. G. Evans. Crack deflection processes-Ⅰtheory [J]. Acta metal, 1983, 31(4): 565~576
    [195]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994, 22(3): 259~268
    [196]贾成广等.陶瓷基复合材料[M].北京:冶金工业出版社,1998: 70
    [197] A. G. Evans, Prospective on the development of high-toughness ceramics [J]. Journal of the American Ceramic Society. 1990,73 (2): 187~193
    [198] A. G. Evans, P. B. Marshall. Wear mechanism in ceramics. Proc. of Inc.Conf.onFundamentals of friction and wear of material [J]. Pittsburgh. ASME. 1980: 439~452
    [199] E. Marui, N. Hasegawa, H. Endo, et al. Research on the wear characteristics of hypereutectoid steel [J]. Wear, 1997, 205: 186
    [200] J. E. Wilson, F. H. Stott, G. C. Wood, The development of wear protective oxides and their influence on sliding friction [J]. Proc. R. Soc. A 369 (1980) 557~574
    [201]方宁象,序润泽.孔隙在粉末冶金铁基材料磨损中的作用[J].粉末冶金技术, 1996, 14(3): 193~196
    [202]克拉盖尔斯基N B等著.汪一麟等译.摩擦磨损原理[M],北京:机械工业出版社:1982
    [203] F. P. Bowden, D. Tabor. The friction and lubrication of solid [M]. Oxford: Clarenden press,1964
    [204]揭晓华,毛志远. 5CrNiMo钢在高温磨损中的动态氧化行为[J].浙江大学学报(自然科学版), 1998,32(6): 769~776
    [205]欧风.应用摩擦化学的节能润滑技术[M].北京:中国标准出版社,1991
    [206] E. A.马尔钦柯:何世禹译.金属表面摩擦破坏实质[M].北京:国防工业出版社,1990
    [207] P. Heilmann, J. Don, T. C. Sun, D. A. Rigney, W. A. Glaeser. Sliding wear and transfer [J], Wear of Materials 1983, ASME, New York,: 414~425
    [208] D. A. Rigney, Wear processes in sliding systems [J], Wear, 1984, 100: 195~219
    [209] T. Sasada, S. Norose, H. Mishina. Behavior of adhered fragments interposed between sliding surface and the formation process of wear particles [J], Journal of lubrication technology, Trans. ASME, 1981, 103: 195~202
    [210] W. T. Clark, C. Pritchard, J. W. Midgley. Mild wear of unlubricated hard steels in air an carbon dioxide [J]. Proc. Inst. Mech. Eng., 1967, 9: 99~121
    [211] T. F. J. Quinn. The effect of hot-spot stemperature on the unbricated wear of steel [J]. Trans. ASLE, 1967, 10: 158~168
    [212] Y. Mizutam. Fundamentals of tribolgy [M]. The MIT press, Cambridge. 1980: 223~235
    [213] Y. Wang, T. Lei. Wear behavior of steel 1080 with different microstructures during dry sliding [J]. Wear, 1994: 44~53
    [214] J. F. Archard and R. A. Rowntre. The temperature of rubbing bodies: part 2, Thedistribution of temperature [J]. Wear, 1998, 128: 1~17
    [215] J. L. Sullivan and S. S. Athwal. Mild wear of a low alloy steel an temperature up to 500℃[J]. Tribology international, 1983, 16(3): 123~131
    [216]王补宣.工程传热传质学[M].北京:科学出版社. 1982
    [217]杨世铭.传热学[M].北京:高等教育出版社. 1982
    [218]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社. 1981
    [219] (美)G.. S. Brady,H. R. Clauser.材料手册[M].北京:科学出版社. 1989
    [220]程能林.非金属材料手册[M].长沙:湖南科学技术出版社. 1989
    [221]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,1995:20~30
    [222] Hongyun Fan. A new approach to the electrical resistivity of two-phase [J]. Acta metall, 1995 43(1):4349~4352
    [223] D. B. Das, S. M. Hassanizadeh, Hou Liqun. Perface on upscaling multiphase flow in porous media from pore to core and beyond [J]. Transport in Porous Media, 2005, 58(1-2): 1~3
    [224] S. Beckman, B.A. Cook, M. Akinc. An analysis of electrical resistivity of compositions within the Mo–Si–B ternary system part II: Multi-phase composites [J]. Materials Science and Engineering A, 2001, 299: 94~104
    [225]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1981: 40~60
    [226] (美)K. H. Huebner,E. A. Thornton.有限元素法[M].北京:世界图书出版公司. 1993
    [227]陶文铨.数值传热学[M].西安:西安交通大学出版社. 1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700